straylight.py 19.7 KB
Newer Older
Zhang Xin's avatar
Zhang Xin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import ctypes
import numpy as np
import astropy.constants as cons
from scipy import interpolate
import math
from astropy.table import Table

import astropy.coordinates as coord
from astropy import units as u

filterPivotWave = {'nuv':2875.5,'u':3629.6,'g':4808.4,'r':6178.2, 'i':7609.0, 'z':9012.9,'y':9627.9}
filterIndex = {'nuv':0,'u':1,'g':2,'r':3, 'i':4, 'z':5,'y':6}
filterCCD = {'nuv':'UV0','u':'UV0','g':'Astro_MB','r':'Astro_MB', 'i':'Basic_NIR', 'z':'Basic_NIR','y':'Basic_NIR'}
bandRange = {'nuv':[2504.0,3230.0],'u':[3190.0,4039.0],'g':[3989.0,5498.0],'r':[5438.0,6956.0], 'i':[6886.0,8469.0], 'z':[8379.0,10855.0],'y':[9217.0, 10900.0], 'GU':[2550, 4000],'GV':[4000, 6200],'GI':[6200,10000]}
Instrument_dir = '/Users/zhangxin/Work/SlitlessSim/CSST_SIM/CSST_C6/straylight/straylight/Instrument/'
SpecOrder = ['-2','-1','0','1','2']

def transRaDec2D(ra, dec):
    x1 = np.cos(dec / 57.2957795) * np.cos(ra / 57.2957795);
    y1 = np.cos(dec / 57.2957795) * np.sin(ra / 57.2957795);
    z1 = np.sin(dec / 57.2957795);
    return np.array([x1, y1, z1])

def getAngle132(x1 = 0, y1 = 0, z1 = 0, x2 = 0, y2 = 0, z2 = 0, x3 = 0, y3 = 0, z3 = 0):
	
	cosValue = 0;
	angle = 0;
	
	x11 = x1-x3;
	y11 = y1-y3;
	z11 = z1-z3;
	
	x22 = x2-x3;
	y22 = y2-y3;
	z22 = z2-z3;
	
	tt = np.sqrt((x11*x11 + y11*y11 + z11* z11) * (x22*x22 + y22*y22 + z22*z22));
	if(tt==0):
		return 0;

	cosValue = (x11*x22+y11*y22+z11*z22)/tt;

	if (cosValue > 1):
		cosValue = 1;
	if (cosValue < -1):
		cosValue = -1;
	angle = math.acos(cosValue);
	return angle * 360 / (2 * math.pi);

def calculateAnglePwithEarth(sat = np.array([0,0,0]), pointing = np.array([0,0,0]), sun = np.array([0,0,0])):
    modSat = np.sqrt(sat[0]*sat[0] + sat[1]*sat[1]+sat[2]*sat[2])
    modPoint = np.sqrt(pointing[0]*pointing[0] + pointing[1]*pointing[1] + pointing[2]*pointing[2])
    withLocalZenithAngle = (pointing[0] * sat[0] + pointing[1] * sat[1] + pointing[2] * sat[2]) / (modPoint*modSat)

    innerM_sat_sun = sat[0] * sun[0] + sat[1] * sun[1] + sat[2] * sun[2]
    cosAngle = innerM_sat_sun / (modSat * cons.au.value/1000)
    isInSunSide = 1
    if (cosAngle < -0.3385737): #cos109.79
        isInSunSide = -1;
    elif cosAngle >= -0.3385737 and cosAngle <= 0.3385737:
        isInSunSide = 0;

    return math.acos(withLocalZenithAngle)*180/math.pi,isInSunSide


# /**
#  * *eCoor = ra, *eCoor+1 = dec
#  */
def Cartesian2Equatorial(carCoor = np.array([0,0,0])):
    eCoor = np.zeros(2)
    if (carCoor[0] > 0 and carCoor[1] >= 0):
        eCoor[0] = math.atan(carCoor[1] / carCoor[0]) * 360 / (2 * math.pi)
    elif (carCoor[0] < 0):
        eCoor[0] = (math.atan(carCoor[1] / carCoor[0]) + math.pi) * 360 / (2 * math.pi)
    elif (carCoor[0] > 0 and carCoor[1] < 0):
        eCoor[0] = (math.atan(carCoor[1] / carCoor[0]) + 2 * math.pi) * 360 / (2 * math.pi)
    elif (carCoor[0] == 0 and carCoor[1] < 0):
        eCoor[0] = 270
    elif (carCoor[0] == 0 and carCoor[1] > 0):
        eCoor[0] = 90
    eCoor[1] = math.atan(carCoor[2] / np.sqrt(carCoor[0] * carCoor[0] + carCoor[1] * carCoor[1])) * 360 / (2 * math.pi)
    return eCoor

    

class StrayLight(object):
    def __init__(self, jtime = 2460843., sat = np.array([0,0,0]), radec = np.array([0,0])):
        self.jtime = jtime
        self.sat = sat
        self.equator = coord.SkyCoord(radec[0]*u.degree, radec[1]*u.degree,frame='icrs')
        self.ecliptic = self.equator.transform_to('barycentrictrueecliptic')
        self.pointing = transRaDec2D(radec[0], radec[1])
        self.slcdll=ctypes.CDLL('./libstraylight.dylib')
        self.slcdll.Calculate.argtypes =[ctypes.c_double ,ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double),ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double)]

        self.slcdll.PointSource.argtypes =[ctypes.c_double ,ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double),ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double)]

        self.slcdll.EarthShine.argtypes =[ctypes.c_double ,ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double),ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double)]

        self.slcdll.Zodiacal.argtypes =[ctypes.c_double ,ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double)]
        self.slcdll.ComposeY.argtypes=[ctypes.POINTER(ctypes.c_double),ctypes.POINTER(ctypes.c_double),ctypes.POINTER(ctypes.c_double)]
        self.slcdll.Init()

    def getFilterAndCCD_Q(self, filter = 'i'):
        ccd_fn = Instrument_dir + 'ccd/' + filterCCD[filter] + '.txt'
        filter_fn = Instrument_dir + 'filters/' + filter + '.txt'
        q_ccd_f = np.loadtxt(ccd_fn)
        q_fil_f = np.loadtxt(filter_fn)
        band_s = 2000
        band_e = 11000

        q_ccd = np.zeros([q_ccd_f.shape[0]+2,q_ccd_f.shape[1]])
        q_ccd[1:-1,:] = q_ccd_f
        q_ccd[0] = [band_s,0]
        q_ccd[-1] = [band_e,0]

        q_fil = np.zeros([q_fil_f.shape[0]+2,q_fil_f.shape[1]])
        q_fil[1:-1,:] = q_fil_f
        q_fil[0] = [band_s,0]
        q_fil[-1] = [band_e,0]

        
        q_fil_i = interpolate.interp1d(q_fil[:,0], q_fil[:,1])
        q_ccd_i = interpolate.interp1d(q_ccd[:,0], q_ccd[:,1])
        bands = np.arange(bandRange[filter][0], bandRange[filter][1],0.5)
        q_ccd_fil = q_fil_i(bands)*q_ccd_i(bands)
        
        return np.trapz(q_ccd_fil, bands)/(bandRange[filter][1]-bandRange[filter][0])
        
    def caculateEarthShineFilter(self, filter = 'i', pixel_size_phy = 10 ):
        sat = (ctypes.c_double*3)()
        sat[:] = self.sat
        ob = (ctypes.c_double*3)()
        ob[:]=self.pointing
        
        
        py1 = (ctypes.c_double*3)()
        py2 = (ctypes.c_double*3)()
        self.slcdll.ComposeY(ob,py1,py2)


        earth_e1 = (ctypes.c_double*7)()
        self.slcdll.EarthShine(self.jtime,sat,ob,py1,earth_e1)
        earth_e2 = (ctypes.c_double*7)()
        self.slcdll.EarthShine(self.jtime,sat,ob,py2,earth_e2)
        
        band_earth_e1 = earth_e1[:][filterIndex[filter]]
        band_earth_e2 = earth_e2[:][filterIndex[filter]]
        
        q=self.getFilterAndCCD_Q(filter=filter)
        p_lambda = filterPivotWave[filter]
        c = cons.c.value
        h = cons.h.value
        pix_earth_e1 = band_earth_e1/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q
        pix_earth_e2 = band_earth_e2/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q

        if pix_earth_e1< pix_earth_e2:
            return pix_earth_e1, py1[:]
        else:
            return pix_earth_e2, py2[:]
    
    """
    calculate zodiacal  call c++ program, seems to have some problem
    """
    def calculateZodiacalFilter1(self, filter = 'i', pixel_size_phy = 10 ):
        sat = (ctypes.c_double*3)()
        sat[:] = self.sat
        ob = (ctypes.c_double*3)()
        ob[:]=self.pointing
    
        zodical_e = (ctypes.c_double*7)()
        self.slcdll.Zodiacal(self.jtime,ob,zodical_e)

        ob1 = (ctypes.c_double*2)()
        ob1[:] = np.array([self.ecliptic.lon.value, self.ecliptic.lat.value])
        zodical_e1 = (ctypes.c_double*7)()
        self.slcdll.Zodiacal1(ob1,zodical_e1)
        
        band_zodical_e = zodical_e[:][filterIndex[filter]]
        
        q=self.getFilterAndCCD_Q(filter=filter)
        p_lambda = filterPivotWave[filter]
        c = cons.c.value
        h = cons.h.value
        pix_zodical_e = band_zodical_e/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q
        
        return pix_zodical_e, band_zodical_e
    
    """
    calculate zodiacal  use python
    """
    def calculateZaodiacalFilter2(self,filter = 'i', aper = 2, pixelsize = 0.074, sun_pos = np.array([0,0,0])):
       
        spec, v_mag = self.calculateZaodicalSpec(longitude = self.ecliptic.lon.value, latitude = self.ecliptic.lat.value, sun_pos = sun_pos)
        # spec = self.calculateZaodicalSpec(longitude = lon, latitude = lat)

        throughputFn = Instrument_dir + 'throughputs/' + filter + '_throughput.txt'
        throughput = np.loadtxt(throughputFn)
        deltL = 0.5
        lamb = np.arange(bandRange[filter][0], bandRange[filter][1], deltL)

        speci = interpolate.interp1d(spec['WAVELENGTH'], spec['FLUX'])

        y = speci(lamb)
        # erg/s/cm2/A --> photo/s/m2/A
        flux = y * lamb / (cons.h.value * cons.c.value) * 1e-13

        throughput_i = interpolate.interp1d(throughput[:, 0], throughput[:, 1])

        throughput_ = throughput_i(lamb)

        sky_pix = np.trapz(flux*throughput_, lamb) * math.pi * aper*aper/4 * pixelsize * pixelsize

        # sky_pix_e = np.trapz(y, lamb) * math.pi * aper*aper/4 * pixelsize * pixelsize/(10*10*1e-6*1e-6)*1e-7*1e4

        return sky_pix, v_mag#,  sky_pix_e
    
    def caculateStarLightFilter(self, filter = 'i', pointYaxis = np.array([1,1,1]), pixel_size_phy = 10 ):
        sat = (ctypes.c_double*3)()
        sat[:] = self.sat
        ob = (ctypes.c_double*3)()
        ob[:]=self.pointing
        
        
        py = (ctypes.c_double*3)()
        py[:] = pointYaxis

        q=self.getFilterAndCCD_Q(filter=filter)
        p_lambda = filterPivotWave[filter]
        c = cons.c.value
        h = cons.h.value


        star_e1 = (ctypes.c_double*7)()
        self.slcdll.PointSource(self.jtime,sat,ob,py,star_e1)

        band_star_e1 = star_e1[:][filterIndex[filter]]

        pix_star_e1 = band_star_e1/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q
        
        return pix_star_e1



    def caculateStrayLightFilter(self, filter = 'i', pixel_size_phy = 10 ):
        sat = (ctypes.c_double*3)()
        sat[:] = self.sat
        ob = (ctypes.c_double*3)()
        ob[:]=self.pointing
        
        
        py1 = (ctypes.c_double*3)()
        py2 = (ctypes.c_double*3)()
        self.slcdll.ComposeY(ob,py1,py2)


        earth_e1 = (ctypes.c_double*7)()
        self.slcdll.EarthShine(self.jtime,sat,ob,py1,earth_e1)
        earth_e2 = (ctypes.c_double*7)()
        self.slcdll.EarthShine(self.jtime,sat,ob,py2,earth_e2)
        zodical_e = (ctypes.c_double*7)()
        self.slcdll.Zodiacal(self.jtime,ob,zodical_e)
        
        band_earth_e1 = earth_e1[:][filterIndex[filter]]
        band_earth_e2 = earth_e2[:][filterIndex[filter]]
        # band_earth_e1 = 0
        # band_earth_e2 = 0
        band_zodical_e = zodical_e[:][filterIndex[filter]]
        
        q=self.getFilterAndCCD_Q(filter=filter)
        p_lambda = filterPivotWave[filter]
        c = cons.c.value
        h = cons.h.value
        pix_earth_e1 = band_earth_e1/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q
        pix_earth_e2 = band_earth_e2/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q
        pix_zodical_e = band_zodical_e/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q

        # star_e1 = (ctypes.c_double*7)()
        # self.slcdll.PointSource(self.jtime,sat,ob,py1,star_e1)
        # # star_e2 = (ctypes.c_double*7)()
        # # self.slcdll.PointSource(self.jtime,sat,ob,py2,star_e2)
        # band_star_e1 = star_e1[:][filterIndex[filter]]
        # # band_star_e2 = star_e2[:][filterIndex[filter]]
        # pix_star_e1 = band_star_e1/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q


        pix_star_e1 = 0
        # pix_star_e2 = band_star_e2/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q
        
        return pix_earth_e1+pix_zodical_e+pix_star_e1, pix_zodical_e, pix_earth_e1, pix_earth_e2

    def caculateStrayLightGrating(self, grating = 'GU', pixel_size_phy = 10, normFilter = 'g',  aper = 2, pixelsize = 0.074):
        sat = (ctypes.c_double*3)()
        sat[:] = self.sat
        ob = (ctypes.c_double*3)()
        ob[:]=self.pointing
        
        
        py1 = (ctypes.c_double*3)()
        py2 = (ctypes.c_double*3)()
        self.slcdll.ComposeY(ob,py1,py2)


        earth_e1 = (ctypes.c_double*7)()
        self.slcdll.EarthShine(self.jtime,sat,ob,py1,earth_e1)
        earth_e2 = (ctypes.c_double*7)()
        self.slcdll.EarthShine(self.jtime,sat,ob,py2,earth_e2)
        # zodical_e = (ctypes.c_double*7)()
        # self.slcdll.Zodiacal(self.jtime,ob,zodical_e)
        
        band_earth_e1 = earth_e1[:][filterIndex[normFilter]]
        band_earth_e2 = earth_e2[:][filterIndex[normFilter]]
        band_earth_e = np.min([band_earth_e1, band_earth_e2])

        # band_earth_e1 = 0
        # band_earth_e2 = 0
        # band_zodical_e = zodical_e[:][filterIndex[normFilter]]
        
        q=self.getFilterAndCCD_Q(filter=normFilter)
        p_lambda = filterPivotWave[normFilter]
        c = cons.c.value
        h = cons.h.value
        pix_earth_e = band_earth_e/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q
        
        # pix_earth_e2 = band_earth_e2/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q
        # pix_zodical_e = band_zodical_e/(h*c/(p_lambda*1e-10))*pixel_size_phy*1e-6*pixel_size_phy*1e-6*q
        # pix_earth_e = np.min([pix_earth_e1, pix_earth_e2])

        # zodical_v, zodical_spec = self.calculatSkylightBySpec(specType = 'zodical', filter = 'g', aper = 2, pixelsize = 0.074)
        earthshine_v, earthshine_spec = self.calculatSkylightBySpec(specType = 'earthshine', filter = 'g', aper = aper, pixelsize = pixelsize)

        lamb_earth = earthshine_spec['WAVELENGTH']
        flux_earth = earthshine_spec['FLUX']*pix_earth_e/earthshine_v
        print(pix_earth_e,earthshine_v)
        earth_v_grating = 0
        for s_order in SpecOrder:
            thpFn = Instrument_dir + 'sls_conf/' + grating + '.Throughput.' + s_order + 'st.fits'
            thp_ = Table.read(thpFn)
            thpFn_i = interpolate.interp1d(thp_['WAVELENGTH'], thp_['SENSITIVITY'])
            thp = thpFn_i(lamb_earth)
            beamsEarth = np.trapz(flux_earth*thp,lamb_earth)* math.pi*aper*aper/4 * pixelsize * pixelsize
            earth_v_grating = earth_v_grating + beamsEarth
            print(beamsEarth)

        # print(earthshine_v, pix_earth_e, earth_v_grating)
        return earth_v_grating
        
    
    def calculatSkylightBySpec(self, specType = 'earthshine', filter = 'g', aper = 2, pixelsize = 0.074, s = 2000, e = 11000):
        specFn = ''
        if specType == 'zodical':
            specFn=Instrument_dir + 'sky/zodiacal.dat'
        elif specType == 'earthshine':
            specFn= Instrument_dir + 'sky/earthShine.dat'
        spec = np.loadtxt(specFn)
        throughputFn = Instrument_dir + 'throughputs/' + filter + '_throughput.txt'
        throughput = np.loadtxt(throughputFn)
        deltL = 0.5
        lamb = np.arange(bandRange[filter][0], bandRange[filter][1], deltL)

        speci = interpolate.interp1d(spec[:, 0], spec[:, 1])
        y = speci(lamb)
        # erg/s/cm2/A --> photo/s/m2/A
        flux = y * lamb / (cons.h.value * cons.c.value) * 1e-13

        throughput_i = interpolate.interp1d(throughput[:, 0], throughput[:, 1])

        throughput_ = throughput_i(lamb)

        sky_pix = np.trapz(flux*throughput_, lamb) * math.pi * aper*aper/4 * pixelsize * pixelsize

        lamb = np.arange(s, e, deltL)
        speci = interpolate.interp1d(spec[:, 0], spec[:, 1])
        y = speci(lamb)
        # erg/s/cm2/A --> photo/s/m2/A
        flux = y * lamb / (cons.h.value * cons.c.value) * 1e-13

        return sky_pix, Table(np.array([lamb, flux]).T,names=('WAVELENGTH', 'FLUX'))

    def calculateZaodicalSpec(self,longitude = 50, latitude = 60, sun_pos = np.array([0,0,0])):
        from scipy.interpolate import interp2d
        from scipy.interpolate import griddata
        z_map_fn = Instrument_dir + 'Zodiacal_map1.dat'
        ZL = np.loadtxt(z_map_fn)
        # zl_sh = ZL.shape
        # x = np.arange(0,zl_sh[1],1)
        # y = np.arange(0,zl_sh[0],1)
        x = ZL[0,1:]
        y = ZL[1:,0]
        X,Y = np.meshgrid(x,y)
        # f_sur = interp2d(X,Y,ZL,kind='linear')
        sun_radec = Cartesian2Equatorial(sun_pos)

        sun_eclip = coord.SkyCoord(sun_radec[0]*u.degree, sun_radec[1]*u.degree,frame='icrs')
        sun_equtor = sun_eclip.transform_to('barycentrictrueecliptic')

        longitude = longitude - (sun_equtor.lon*u.degree).value
        longitude = np.abs(longitude)
        print((sun_equtor.lon*u.degree).value)

        if (longitude > 180):
            longitude = 360 - longitude

        latitude = np.abs(latitude)
        lo = longitude
        la = latitude
        zl = griddata((X.flatten(),Y.flatten()),ZL[1:,1:].flatten(),(la,lo), method='cubic').min()
        zl = zl*(math.pi*math.pi)/(180*180)/(3600*3600)*1e-4*1e7*1e-8*1e-4
        # print(zl , '\n')


        zodical_fn = Instrument_dir + 'sky/zodiacal.dat'

        spec = np.loadtxt(zodical_fn)

        speci = interpolate.interp1d(spec[:, 0], spec[:, 1])
        flux5000 = speci(5000)
        f_ration = zl/flux5000

        v_mag = np.log10(f_ration)*(-2.5)+22.1
        # print("factor:", v_mag, lo, la)

        return Table(np.array([spec[:,0], spec[:,1]*f_ration]).T,names=('WAVELENGTH', 'FLUX')), v_mag
 

def testZodiacal(lon = 285.04312526255366, lat = 30.):
    c_eclip = coord.SkyCoord(lon*u.degree, lat*u.degree,frame='barycentrictrueecliptic')
    c_equtor = c_eclip.transform_to('icrs')

    sl = StrayLight(jtime = 2459767.00354975, sat = np.array([]), radec = np.array([(c_equtor.ra*u.degree).value, (c_equtor.dec*u.degree).value]))
    e_zol, v_mag = sl.calculateZaodiacalFilter2(filter = 'i', sun_pos=np.array([-3.70939436e+07,  1.35334903e+08,  5.86673104e+07]))
    print(e_zol)

# ju=2.4608437604166665e+06
# sat = (ctypes.c_double*3)()
# sat[:] = np.array([5873.752, -1642.066, 2896.744])
# ob = (ctypes.c_double*3)()
# ob[:]=np.array([0.445256,0.76061,-0.47246])

# sl = StrayLight(jtime = ju, sat = np.array([5873.752, -1642.066, 2896.744]), pointing = np.array([-0.445256,-0.76061,0.47246]))


fn = '/Users/zhangxin/Work/SurveyPlan/point/csst_survey_sim_20211028/E17.5_b17.5_beta_11.6_opt_transtime_1_CMG_1_dp_2_0.25_da_10_Texp_1.5_DEC60_500_0.1_800_1000_+5deg.dat'

surveylist = np.loadtxt(fn)
sky_pix = np.zeros([surveylist.shape[0],7])


i = 693438 
c_eclip = coord.SkyCoord(surveylist[:,2]*u.degree, surveylist[:,1]*u.degree,frame='barycentrictrueecliptic')
c_equtor = c_eclip.transform_to('icrs')


# pointing = transRaDec2D((c_equtor[i].ra*u.degree).value, (c_equtor[i].dec*u.degree).value)
#     # print(ju, pointing, surveylist[i,3:9])
# ju = surveylist[i,0]
# sl = StrayLight(jtime = ju, sat = surveylist[i,3:6], pointing = pointing)
# sl.caculateStrayLightGrating(grating = 'GI', pixel_size_phy = 10, normFilter = 'g')

for i in np.arange(surveylist.shape[0]):
    print(i)
    if i > 300:
        break
    # if i != 300:
    #     continue
    # if i != 693438:
    #      continue
    ju = surveylist[i,0]
    pointing = transRaDec2D((c_equtor[i].ra*u.degree).value, (c_equtor[i].dec*u.degree).value)
    # print(ju, pointing, surveylist[i,3:9])
    sl = StrayLight(jtime = ju, sat = surveylist[i,3:6], radec = np.array([(c_equtor[i].ra*u.degree).value, (c_equtor[i].dec*u.degree).value]))
    # strayl_i,s_zoldical ,s_earth, s_earth1 = sl.caculateStrayLightFilter(filter = 'i')
    # print(i,strayl_i,s_zoldical,s_earth, s_earth1)
    p_cart= transRaDec2D((c_equtor[i].ra*u.degree).value, (c_equtor[i].dec*u.degree).value)
    sky_pix[i,6] = getAngle132(x1 = surveylist[i,6], y1 = surveylist[i,7], z1 = surveylist[i,8], x2 = p_cart[0], y2 = p_cart[1], z2 = p_cart[2], x3 = 0, y3 = 0, z3 = 0)

    earthZenithAngle,isInSunSide = calculateAnglePwithEarth(sat = surveylist[i,3:6], pointing = pointing, sun = surveylist[i,6:9])
    sky_pix[i,4] = earthZenithAngle
    sky_pix[i,5] = isInSunSide

    e1,py = sl.caculateEarthShineFilter(filter = 'i')
    # e2, e2_ = sl.calculateZodiacalFilter1(filter = 'i')
    e3, v_mag = sl.calculateZaodiacalFilter2(filter = 'i', sun_pos=surveylist[i,6:9])
    e4 = sl.caculateStarLightFilter(filter = 'i',pointYaxis = py)
    # e4 = 0 

    # e4 = sl.caculateStrayLightGrating(grating = 'GI', pixel_size_phy = 10, normFilter = 'g')

    sky_pix[i,0] = e1
    sky_pix[i,1] = e3
    sky_pix[i,2] = e4
    sky_pix[i,3] = v_mag
    print(e1,e3,e4)

    # print(e1,e2,e3,e4)