Commit b2540417 authored by Zhang Xin's avatar Zhang Xin
Browse files

Initial commit

parents
# g_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
2030.00 0.00000
2040.00 0.00000
2050.00 0.00000
2060.00 0.00000
2070.00 0.00000
2080.00 0.00000
2090.00 0.00000
2100.00 0.00000
2110.00 0.00000
2120.00 0.00000
2130.00 0.00000
2140.00 0.00000
2150.00 0.00001
2160.00 0.00001
2170.00 0.00001
2180.00 0.00001
2190.00 0.00001
2200.00 0.00001
2210.00 0.00001
2220.00 0.00002
2230.00 0.00002
2240.00 0.00002
2250.00 0.00002
2260.00 0.00003
2270.00 0.00003
2280.00 0.00003
2290.00 0.00004
2300.00 0.00004
2310.00 0.00005
2320.00 0.00005
2330.00 0.00006
2340.00 0.00006
2350.00 0.00007
2360.00 0.00007
2370.00 0.00008
2380.00 0.00008
2390.00 0.00009
2400.00 0.00010
2410.00 0.00011
2420.00 0.00011
2430.00 0.00012
2440.00 0.00013
2450.00 0.00014
2460.00 0.00015
2470.00 0.00016
2480.00 0.00017
2490.00 0.00018
2500.00 0.00019
2510.00 0.00019
2520.00 0.00020
2530.00 0.00021
2540.00 0.00022
2550.00 0.00023
2560.00 0.00023
2570.00 0.00022
2580.00 0.00022
2590.00 0.00021
2600.00 0.00021
2610.00 0.00021
2620.00 0.00021
2630.00 0.00021
2640.00 0.00020
2650.00 0.00020
2660.00 0.00019
2670.00 0.00018
2680.00 0.00017
2690.00 0.00017
2700.00 0.00017
2710.00 0.00016
2720.00 0.00016
2730.00 0.00016
2740.00 0.00015
2750.00 0.00015
2760.00 0.00015
2770.00 0.00016
2780.00 0.00016
2790.00 0.00017
2800.00 0.00017
2810.00 0.00018
2820.00 0.00019
2830.00 0.00019
2840.00 0.00019
2850.00 0.00020
2860.00 0.00020
2870.00 0.00021
2880.00 0.00021
2890.00 0.00022
2900.00 0.00022
2910.00 0.00023
2920.00 0.00023
2930.00 0.00023
2940.00 0.00023
2950.00 0.00023
2960.00 0.00022
2970.00 0.00022
2980.00 0.00022
2990.00 0.00023
3000.00 0.00023
3010.00 0.00029
3020.00 0.00029
3030.00 0.00023
3040.00 0.00015
3050.00 0.00008
3060.00 0.00003
3070.00 0.00002
3080.00 0.00001
3090.00 0.00001
3100.00 0.00001
3110.00 0.00000
3120.00 0.00000
3130.00 0.00000
3140.00 0.00000
3150.00 0.00000
3160.00 0.00000
3170.00 0.00000
3180.00 0.00000
3190.00 0.00000
3200.00 0.00000
3210.00 0.00000
3220.00 0.00000
3230.00 0.00000
3240.00 0.00000
3250.00 0.00000
3260.00 0.00000
3270.00 0.00000
3280.00 0.00000
3290.00 0.00000
3300.00 0.00000
3310.00 0.00000
3320.00 0.00000
3330.00 0.00000
3340.00 0.00000
3350.00 0.00000
3360.00 0.00000
3370.00 0.00000
3380.00 0.00000
3390.00 0.00000
3400.00 0.00000
3410.00 0.00000
3420.00 0.00000
3430.00 0.00000
3440.00 0.00000
3450.00 0.00000
3460.00 0.00000
3470.00 0.00000
3480.00 0.00000
3490.00 0.00000
3500.00 0.00000
3510.00 0.00000
3520.00 0.00000
3530.00 0.00000
3540.00 0.00000
3550.00 0.00000
3560.00 0.00000
3570.00 0.00000
3580.00 0.00000
3590.00 0.00000
3600.00 0.00000
3610.00 0.00000
3620.00 0.00000
3630.00 0.00000
3640.00 0.00000
3650.00 0.00000
3660.00 0.00000
3670.00 0.00000
3680.00 0.00000
3690.00 0.00000
3700.00 0.00000
3710.00 0.00000
3720.00 0.00000
3730.00 0.00000
3740.00 0.00000
3750.00 0.00000
3760.00 0.00000
3770.00 0.00000
3780.00 0.00000
3790.00 0.00000
3800.00 0.00000
3810.00 0.00000
3820.00 0.00000
3830.00 0.00000
3840.00 0.00000
3850.00 0.00001
3860.00 0.00001
3870.00 0.00002
3880.00 0.00003
3890.00 0.00006
3900.00 0.00009
3910.00 0.00015
3920.00 0.00026
3930.00 0.00050
3940.00 0.00100
3950.00 0.00205
3960.00 0.00437
3970.00 0.00962
3980.00 0.02183
3990.00 0.04851
4000.00 0.09436
4010.00 0.15746
4020.00 0.22882
4030.00 0.29197
4040.00 0.33603
4050.00 0.35924
4060.00 0.36793
4070.00 0.37436
4080.00 0.38515
4090.00 0.40138
4100.00 0.41976
4110.00 0.43396
4120.00 0.44410
4130.00 0.45148
4140.00 0.45555
4150.00 0.45950
4160.00 0.46325
4170.00 0.46808
4180.00 0.47311
4190.00 0.47932
4200.00 0.48490
4210.00 0.48809
4220.00 0.49160
4230.00 0.49607
4240.00 0.50154
4250.00 0.50660
4260.00 0.51182
4270.00 0.51588
4280.00 0.51954
4290.00 0.52298
4300.00 0.52681
4310.00 0.53111
4320.00 0.53565
4330.00 0.54065
4340.00 0.54552
4350.00 0.54842
4360.00 0.55056
4370.00 0.55320
4380.00 0.55497
4390.00 0.55628
4400.00 0.55810
4410.00 0.56022
4420.00 0.56418
4430.00 0.56784
4440.00 0.57139
4450.00 0.57177
4460.00 0.57109
4470.00 0.57056
4480.00 0.57073
4490.00 0.57231
4500.00 0.57505
4510.00 0.57659
4520.00 0.57743
4530.00 0.57720
4540.00 0.57605
4550.00 0.57356
4560.00 0.57143
4570.00 0.57015
4580.00 0.56881
4590.00 0.56722
4600.00 0.56571
4610.00 0.56305
4620.00 0.56048
4630.00 0.55917
4640.00 0.55810
4650.00 0.55639
4660.00 0.55511
4670.00 0.55352
4680.00 0.55241
4690.00 0.55337
4700.00 0.55467
4710.00 0.55663
4720.00 0.55920
4730.00 0.56196
4740.00 0.56446
4750.00 0.57075
4760.00 0.57642
4770.00 0.57513
4780.00 0.57322
4790.00 0.57242
4800.00 0.57303
4810.00 0.57907
4820.00 0.58632
4830.00 0.59307
4840.00 0.59971
4850.00 0.60540
4860.00 0.61026
4870.00 0.61448
4880.00 0.61726
4890.00 0.62186
4900.00 0.62654
4910.00 0.63196
4920.00 0.63856
4930.00 0.64481
4940.00 0.65124
4950.00 0.65668
4960.00 0.66159
4970.00 0.66490
4980.00 0.66745
4990.00 0.67020
5000.00 0.67297
5010.00 0.67341
5020.00 0.67379
5030.00 0.67496
5040.00 0.67633
5050.00 0.67812
5060.00 0.68082
5070.00 0.68378
5080.00 0.68717
5090.00 0.69072
5100.00 0.69383
5110.00 0.69629
5120.00 0.69830
5130.00 0.69963
5140.00 0.70051
5150.00 0.70226
5160.00 0.70355
5170.00 0.70512
5180.00 0.70682
5190.00 0.70669
5200.00 0.70497
5210.00 0.70215
5220.00 0.69898
5230.00 0.69597
5240.00 0.69425
5250.00 0.69655
5260.00 0.69875
5270.00 0.69979
5280.00 0.69936
5290.00 0.69911
5300.00 0.69912
5310.00 0.69944
5320.00 0.70162
5330.00 0.70301
5340.00 0.70379
5350.00 0.70471
5360.00 0.70421
5370.00 0.70443
5380.00 0.70456
5390.00 0.70318
5400.00 0.70132
5410.00 0.69908
5420.00 0.69593
5430.00 0.69241
5440.00 0.68567
5450.00 0.66743
5460.00 0.62882
5470.00 0.56275
5480.00 0.47122
5490.00 0.36060
5500.00 0.24974
5510.00 0.15776
5520.00 0.08989
5530.00 0.04709
5540.00 0.02357
5550.00 0.01164
5560.00 0.00594
5570.00 0.00313
5580.00 0.00172
5590.00 0.00099
5600.00 0.00058
5610.00 0.00035
5620.00 0.00022
5630.00 0.00014
5640.00 0.00009
5650.00 0.00006
5660.00 0.00004
5670.00 0.00003
5680.00 0.00002
5690.00 0.00001
5700.00 0.00001
5710.00 0.00001
5720.00 0.00001
5730.00 0.00000
5740.00 0.00000
5750.00 0.00000
5760.00 0.00000
5770.00 0.00000
5780.00 0.00000
5790.00 0.00000
5800.00 0.00000
5810.00 0.00000
5820.00 0.00000
5830.00 0.00000
5840.00 0.00000
5850.00 0.00000
5860.00 0.00000
5870.00 0.00000
5880.00 0.00000
5890.00 0.00000
5900.00 0.00000
5910.00 0.00000
5920.00 0.00000
5930.00 0.00000
5940.00 0.00000
5950.00 0.00000
5960.00 0.00000
5970.00 0.00000
5980.00 0.00000
5990.00 0.00000
6000.00 0.00000
6010.00 0.00000
6020.00 0.00000
6030.00 0.00000
6040.00 0.00000
6050.00 0.00000
6060.00 0.00000
6070.00 0.00000
6080.00 0.00000
6090.00 0.00000
6100.00 0.00000
6110.00 0.00000
6120.00 0.00000
6130.00 0.00000
6140.00 0.00000
6150.00 0.00000
6160.00 0.00000
6170.00 0.00000
6180.00 0.00000
6190.00 0.00000
6200.00 0.00000
6210.00 0.00000
6220.00 0.00000
6230.00 0.00000
6240.00 0.00000
6250.00 0.00000
6260.00 0.00000
6270.00 0.00000
6280.00 0.00000
6290.00 0.00000
6300.00 0.00000
6310.00 0.00000
6320.00 0.00000
6330.00 0.00000
6340.00 0.00000
6350.00 0.00000
6360.00 0.00000
6370.00 0.00000
6380.00 0.00000
6390.00 0.00000
6400.00 0.00000
6410.00 0.00000
6420.00 0.00000
6430.00 0.00000
6440.00 0.00000
6450.00 0.00000
6460.00 0.00000
6470.00 0.00000
6480.00 0.00000
6490.00 0.00000
6500.00 0.00000
6510.00 0.00000
6520.00 0.00000
6530.00 0.00000
6540.00 0.00000
6550.00 0.00000
6560.00 0.00000
6570.00 0.00000
6580.00 0.00000
6590.00 0.00000
6600.00 0.00000
6610.00 0.00000
6620.00 0.00000
6630.00 0.00000
6640.00 0.00000
6650.00 0.00000
6660.00 0.00000
6670.00 0.00000
6680.00 0.00000
6690.00 0.00000
6700.00 0.00000
6710.00 0.00000
6720.00 0.00000
6730.00 0.00000
6740.00 0.00000
6750.00 0.00000
6760.00 0.00000
6770.00 0.00000
6780.00 0.00000
6790.00 0.00000
6800.00 0.00000
6810.00 0.00000
6820.00 0.00000
6830.00 0.00000
6840.00 0.00000
6850.00 0.00000
6860.00 0.00000
6870.00 0.00000
6880.00 0.00000
6890.00 0.00000
6900.00 0.00000
6910.00 0.00000
6920.00 0.00000
6930.00 0.00000
6940.00 0.00000
6950.00 0.00000
6960.00 0.00000
6970.00 0.00000
6980.00 0.00000
6990.00 0.00000
7000.00 0.00000
7010.00 0.00000
7020.00 0.00000
7030.00 0.00000
7040.00 0.00000
7050.00 0.00000
7060.00 0.00000
7070.00 0.00000
7080.00 0.00000
7090.00 0.00000
7100.00 0.00000
7110.00 0.00000
7120.00 0.00000
7130.00 0.00000
7140.00 0.00000
7150.00 0.00000
7160.00 0.00000
7170.00 0.00000
7180.00 0.00000
7190.00 0.00000
7200.00 0.00000
7210.00 0.00000
7220.00 0.00000
7230.00 0.00000
7240.00 0.00000
7250.00 0.00000
7260.00 0.00000
7270.00 0.00000
7280.00 0.00000
7290.00 0.00000
7300.00 0.00000
7310.00 0.00000
7320.00 0.00000
7330.00 0.00000
7340.00 0.00000
7350.00 0.00000
7360.00 0.00000
7370.00 0.00000
7380.00 0.00000
7390.00 0.00000
7400.00 0.00000
7410.00 0.00000
7420.00 0.00000
7430.00 0.00000
7440.00 0.00000
7450.00 0.00000
7460.00 0.00000
7470.00 0.00000
7480.00 0.00000
7490.00 0.00000
7500.00 0.00000
7510.00 0.00000
7520.00 0.00000
7530.00 0.00000
7540.00 0.00000
7550.00 0.00000
7560.00 0.00000
7570.00 0.00000
7580.00 0.00000
7590.00 0.00000
7600.00 0.00000
7610.00 0.00000
7620.00 0.00000
7630.00 0.00000
7640.00 0.00000
7650.00 0.00000
7660.00 0.00000
7670.00 0.00000
7680.00 0.00000
7690.00 0.00000
7700.00 0.00000
7710.00 0.00000
7720.00 0.00000
7730.00 0.00000
7740.00 0.00000
7750.00 0.00000
7760.00 0.00000
7770.00 0.00000
7780.00 0.00000
7790.00 0.00000
7800.00 0.00000
7810.00 0.00000
7820.00 0.00000
7830.00 0.00000
7840.00 0.00000
7850.00 0.00000
7860.00 0.00000
7870.00 0.00000
7880.00 0.00000
7890.00 0.00000
7900.00 0.00000
7910.00 0.00000
7920.00 0.00000
7930.00 0.00000
7940.00 0.00000
7950.00 0.00000
7960.00 0.00000
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.00002
8010.00 0.00004
8020.00 0.00002
8030.00 0.00002
8040.00 0.00002
8050.00 0.00000
8060.00 0.00000
8070.00 0.00004
8080.00 0.00004
8090.00 0.00002
8100.00 0.00000
8110.00 0.00001
8120.00 0.00001
8130.00 0.00002
8140.00 0.00002
8150.00 0.00003
8160.00 0.00002
8170.00 0.00001
8180.00 0.00001
8190.00 0.00002
8200.00 0.00002
8210.00 0.00001
8220.00 0.00001
8230.00 0.00000
8240.00 0.00001
8250.00 0.00001
8260.00 0.00002
8270.00 0.00001
8280.00 0.00001
8290.00 0.00001
8300.00 0.00002
8310.00 0.00001
8320.00 0.00001
8330.00 0.00001
8340.00 0.00001
8350.00 0.00001
8360.00 0.00002
8370.00 0.00001
8380.00 0.00001
8390.00 0.00002
8400.00 0.00001
8410.00 0.00001
8420.00 0.00002
8430.00 0.00001
8440.00 0.00001
8450.00 0.00001
8460.00 0.00001
8470.00 0.00002
8480.00 0.00001
8490.00 0.00002
8500.00 0.00002
8510.00 0.00001
8520.00 0.00001
8530.00 0.00001
8540.00 0.00001
8550.00 0.00001
8560.00 0.00002
8570.00 0.00001
8580.00 0.00001
8590.00 0.00001
8600.00 0.00001
8610.00 0.00001
8620.00 0.00001
8630.00 0.00001
8640.00 0.00001
8650.00 0.00001
8660.00 0.00001
8670.00 0.00001
8680.00 0.00000
8690.00 0.00000
8700.00 0.00001
8710.00 0.00000
8720.00 0.00001
8730.00 0.00001
8740.00 0.00000
8750.00 0.00000
8760.00 0.00001
8770.00 0.00001
8780.00 0.00001
8790.00 0.00001
8800.00 0.00001
8810.00 0.00001
8820.00 0.00001
8830.00 0.00001
8840.00 0.00001
8850.00 0.00001
8860.00 0.00001
8870.00 0.00001
8880.00 0.00001
8890.00 0.00000
8900.00 0.00001
8910.00 0.00001
8920.00 0.00001
8930.00 0.00000
8940.00 0.00001
8950.00 0.00001
8960.00 0.00001
8970.00 0.00001
8980.00 0.00000
8990.00 0.00000
9000.00 0.00000
9010.00 0.00001
9020.00 0.00000
9030.00 0.00000
9040.00 0.00000
9050.00 0.00000
9060.00 0.00000
9070.00 0.00000
9080.00 0.00001
9090.00 0.00000
9100.00 0.00000
9110.00 0.00000
9120.00 0.00000
9130.00 0.00000
9140.00 0.00000
9150.00 0.00000
9160.00 0.00000
9170.00 0.00000
9180.00 0.00000
9190.00 0.00000
9200.00 0.00000
9210.00 0.00000
9220.00 0.00000
9230.00 0.00000
9240.00 0.00000
9250.00 0.00000
9260.00 0.00000
9270.00 0.00000
9280.00 0.00000
9290.00 0.00000
9300.00 0.00000
9310.00 0.00000
9320.00 0.00000
9330.00 0.00000
9340.00 0.00000
9350.00 0.00000
9360.00 0.00000
9370.00 0.00000
9380.00 0.00000
9390.00 0.00000
9400.00 0.00000
9410.00 0.00000
9420.00 0.00000
9430.00 0.00000
9440.00 0.00000
9450.00 0.00000
9460.00 0.00000
9470.00 0.00000
9480.00 0.00000
9490.00 0.00000
9500.00 0.00000
9510.00 0.00000
9520.00 0.00000
9530.00 0.00000
9540.00 0.00000
9550.00 0.00000
9560.00 0.00000
9570.00 0.00000
9580.00 0.00000
9590.00 0.00000
9600.00 0.00000
9610.00 0.00000
9620.00 0.00000
9630.00 0.00000
9640.00 0.00000
9650.00 0.00000
9660.00 0.00000
9670.00 0.00000
9680.00 0.00000
9690.00 0.00000
9700.00 0.00000
9710.00 0.00000
9720.00 0.00000
9730.00 0.00000
9740.00 0.00000
9750.00 0.00000
9760.00 0.00000
9770.00 0.00000
9780.00 0.00000
9790.00 0.00000
9800.00 0.00000
9810.00 0.00000
9820.00 0.00000
9830.00 0.00000
9840.00 0.00000
9850.00 0.00000
9860.00 0.00000
9870.00 0.00000
9880.00 0.00000
9890.00 0.00000
9900.00 0.00000
9910.00 0.00000
9920.00 0.00000
9930.00 0.00000
9940.00 0.00000
9950.00 0.00000
9960.00 0.00000
9970.00 0.00000
9980.00 0.00000
9990.00 0.00000
10000.00 0.00000
10010.00 0.00000
10020.00 0.00000
10030.00 0.00000
10040.00 0.00000
10050.00 0.00000
10060.00 0.00000
10070.00 0.00000
10080.00 0.00000
10090.00 0.00000
10100.00 0.00000
10110.00 0.00000
10120.00 0.00000
10130.00 0.00000
10140.00 0.00000
10150.00 0.00000
10160.00 0.00000
10170.00 0.00000
10180.00 0.00000
10190.00 0.00000
10200.00 0.00000
10210.00 0.00000
10220.00 0.00000
10230.00 0.00000
10240.00 0.00000
10250.00 0.00000
10260.00 0.00000
10270.00 0.00000
10280.00 0.00000
10290.00 0.00000
10300.00 0.00000
10310.00 0.00000
10320.00 0.00000
10330.00 0.00000
10340.00 0.00000
10350.00 0.00000
10360.00 0.00000
10370.00 0.00000
10380.00 0.00000
10390.00 0.00000
10400.00 0.00000
10410.00 0.00000
10420.00 0.00000
10430.00 0.00000
10440.00 0.00000
10450.00 0.00000
10460.00 0.00000
10470.00 0.00000
10480.00 0.00000
10490.00 0.00000
10500.00 0.00000
10510.00 0.00000
10520.00 0.00000
10530.00 0.00000
10540.00 0.00000
10550.00 0.00000
10560.00 0.00000
10570.00 0.00000
10580.00 0.00000
10590.00 0.00000
10600.00 0.00000
10610.00 0.00000
10620.00 0.00000
10630.00 0.00000
10640.00 0.00000
10650.00 0.00000
10660.00 0.00000
10670.00 0.00000
10680.00 0.00000
10690.00 0.00000
10700.00 0.00000
10710.00 0.00000
10720.00 0.00000
10730.00 0.00000
10740.00 0.00000
10750.00 0.00000
10760.00 0.00000
10770.00 0.00000
10780.00 0.00000
10790.00 0.00000
10800.00 0.00000
10810.00 0.00000
10820.00 0.00000
10830.00 0.00000
10840.00 0.00000
10850.00 0.00000
10860.00 0.00000
10870.00 0.00000
10880.00 0.00000
10890.00 0.00000
10900.00 0.00000
10910.00 0.00000
10920.00 0.00000
10930.00 0.00000
10940.00 0.00000
10950.00 0.00000
10960.00 0.00000
10970.00 0.00000
10980.00 0.00000
10990.00 0.00000
11000.00 0.00000
# i_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
2030.00 0.00000
2040.00 0.00000
2050.00 0.00000
2060.00 0.00000
2070.00 0.00000
2080.00 0.00000
2090.00 0.00000
2100.00 0.00000
2110.00 0.00000
2120.00 0.00000
2130.00 0.00000
2140.00 0.00000
2150.00 0.00000
2160.00 0.00000
2170.00 0.00000
2180.00 0.00000
2190.00 0.00000
2200.00 0.00000
2210.00 0.00000
2220.00 0.00000
2230.00 0.00000
2240.00 0.00000
2250.00 0.00000
2260.00 0.00000
2270.00 0.00000
2280.00 0.00000
2290.00 0.00000
2300.00 0.00000
2310.00 0.00000
2320.00 0.00000
2330.00 0.00000
2340.00 0.00000
2350.00 0.00000
2360.00 0.00000
2370.00 0.00000
2380.00 0.00000
2390.00 0.00000
2400.00 0.00000
2410.00 0.00000
2420.00 0.00000
2430.00 0.00000
2440.00 0.00000
2450.00 0.00000
2460.00 0.00000
2470.00 0.00000
2480.00 0.00000
2490.00 0.00000
2500.00 0.00000
2510.00 0.00000
2520.00 0.00000
2530.00 0.00000
2540.00 0.00000
2550.00 0.00000
2560.00 0.00000
2570.00 0.00000
2580.00 0.00000
2590.00 0.00000
2600.00 0.00000
2610.00 0.00000
2620.00 0.00000
2630.00 0.00000
2640.00 0.00000
2650.00 0.00000
2660.00 0.00000
2670.00 0.00000
2680.00 0.00000
2690.00 0.00000
2700.00 0.00000
2710.00 0.00000
2720.00 0.00000
2730.00 0.00000
2740.00 0.00000
2750.00 0.00000
2760.00 0.00000
2770.00 0.00000
2780.00 0.00000
2790.00 0.00000
2800.00 0.00000
2810.00 0.00000
2820.00 0.00000
2830.00 0.00000
2840.00 0.00000
2850.00 0.00000
2860.00 0.00000
2870.00 0.00000
2880.00 0.00000
2890.00 0.00000
2900.00 0.00000
2910.00 0.00000
2920.00 0.00000
2930.00 0.00000
2940.00 0.00000
2950.00 0.00000
2960.00 0.00000
2970.00 0.00000
2980.00 0.00000
2990.00 0.00000
3000.00 0.00000
3010.00 0.00000
3020.00 0.00000
3030.00 0.00000
3040.00 0.00000
3050.00 0.00000
3060.00 0.00000
3070.00 0.00000
3080.00 0.00000
3090.00 0.00000
3100.00 0.00000
3110.00 0.00000
3120.00 0.00000
3130.00 0.00000
3140.00 0.00000
3150.00 0.00000
3160.00 0.00000
3170.00 0.00000
3180.00 0.00000
3190.00 0.00000
3200.00 0.00000
3210.00 0.00000
3220.00 0.00000
3230.00 0.00000
3240.00 0.00000
3250.00 0.00000
3260.00 0.00000
3270.00 0.00000
3280.00 0.00000
3290.00 0.00000
3300.00 0.00000
3310.00 0.00000
3320.00 0.00000
3330.00 0.00000
3340.00 0.00000
3350.00 0.00000
3360.00 0.00000
3370.00 0.00000
3380.00 0.00000
3390.00 0.00000
3400.00 0.00000
3410.00 0.00000
3420.00 0.00000
3430.00 0.00000
3440.00 0.00000
3450.00 0.00000
3460.00 0.00000
3470.00 0.00000
3480.00 0.00000
3490.00 0.00000
3500.00 0.00000
3510.00 0.00000
3520.00 0.00000
3530.00 0.00000
3540.00 0.00000
3550.00 0.00000
3560.00 0.00000
3570.00 0.00000
3580.00 0.00000
3590.00 0.00000
3600.00 0.00000
3610.00 0.00000
3620.00 0.00000
3630.00 0.00000
3640.00 0.00000
3650.00 0.00000
3660.00 0.00000
3670.00 0.00000
3680.00 0.00000
3690.00 0.00000
3700.00 0.00000
3710.00 0.00000
3720.00 0.00000
3730.00 0.00000
3740.00 0.00000
3750.00 0.00000
3760.00 0.00000
3770.00 0.00000
3780.00 0.00000
3790.00 0.00000
3800.00 0.00000
3810.00 0.00000
3820.00 0.00000
3830.00 0.00000
3840.00 0.00000
3850.00 0.00000
3860.00 0.00000
3870.00 0.00000
3880.00 0.00000
3890.00 0.00000
3900.00 0.00000
3910.00 0.00000
3920.00 0.00000
3930.00 0.00000
3940.00 0.00000
3950.00 0.00000
3960.00 0.00000
3970.00 0.00000
3980.00 0.00000
3990.00 0.00000
4000.00 0.00000
4010.00 0.00000
4020.00 0.00000
4030.00 0.00000
4040.00 0.00000
4050.00 0.00000
4060.00 0.00000
4070.00 0.00000
4080.00 0.00000
4090.00 0.00000
4100.00 0.00000
4110.00 0.00000
4120.00 0.00000
4130.00 0.00000
4140.00 0.00000
4150.00 0.00000
4160.00 0.00000
4170.00 0.00000
4180.00 0.00000
4190.00 0.00000
4200.00 0.00000
4210.00 0.00000
4220.00 0.00000
4230.00 0.00000
4240.00 0.00000
4250.00 0.00000
4260.00 0.00000
4270.00 0.00000
4280.00 0.00000
4290.00 0.00000
4300.00 0.00000
4310.00 0.00000
4320.00 0.00000
4330.00 0.00000
4340.00 0.00000
4350.00 0.00000
4360.00 0.00000
4370.00 0.00000
4380.00 0.00000
4390.00 0.00000
4400.00 0.00000
4410.00 0.00000
4420.00 0.00000
4430.00 0.00000
4440.00 0.00000
4450.00 0.00000
4460.00 0.00000
4470.00 0.00000
4480.00 0.00000
4490.00 0.00000
4500.00 0.00000
4510.00 0.00000
4520.00 0.00000
4530.00 0.00000
4540.00 0.00000
4550.00 0.00000
4560.00 0.00000
4570.00 0.00000
4580.00 0.00000
4590.00 0.00000
4600.00 0.00000
4610.00 0.00000
4620.00 0.00000
4630.00 0.00000
4640.00 0.00000
4650.00 0.00000
4660.00 0.00000
4670.00 0.00000
4680.00 0.00000
4690.00 0.00000
4700.00 0.00000
4710.00 0.00000
4720.00 0.00000
4730.00 0.00000
4740.00 0.00000
4750.00 0.00000
4760.00 0.00000
4770.00 0.00000
4780.00 0.00000
4790.00 0.00000
4800.00 0.00000
4810.00 0.00000
4820.00 0.00000
4830.00 0.00000
4840.00 0.00000
4850.00 0.00000
4860.00 0.00000
4870.00 0.00000
4880.00 0.00000
4890.00 0.00000
4900.00 0.00000
4910.00 0.00000
4920.00 0.00000
4930.00 0.00000
4940.00 0.00000
4950.00 0.00000
4960.00 0.00000
4970.00 0.00000
4980.00 0.00000
4990.00 0.00000
5000.00 0.00000
5010.00 0.00000
5020.00 0.00000
5030.00 0.00000
5040.00 0.00000
5050.00 0.00000
5060.00 0.00000
5070.00 0.00000
5080.00 0.00000
5090.00 0.00000
5100.00 0.00000
5110.00 0.00000
5120.00 0.00000
5130.00 0.00000
5140.00 0.00000
5150.00 0.00000
5160.00 0.00000
5170.00 0.00000
5180.00 0.00000
5190.00 0.00000
5200.00 0.00000
5210.00 0.00000
5220.00 0.00000
5230.00 0.00000
5240.00 0.00000
5250.00 0.00000
5260.00 0.00000
5270.00 0.00000
5280.00 0.00000
5290.00 0.00000
5300.00 0.00000
5310.00 0.00000
5320.00 0.00000
5330.00 0.00000
5340.00 0.00000
5350.00 0.00000
5360.00 0.00000
5370.00 0.00000
5380.00 0.00000
5390.00 0.00000
5400.00 0.00000
5410.00 0.00000
5420.00 0.00000
5430.00 0.00000
5440.00 0.00000
5450.00 0.00000
5460.00 0.00000
5470.00 0.00000
5480.00 0.00000
5490.00 0.00000
5500.00 0.00000
5510.00 0.00000
5520.00 0.00000
5530.00 0.00000
5540.00 0.00000
5550.00 0.00000
5560.00 0.00000
5570.00 0.00000
5580.00 0.00000
5590.00 0.00000
5600.00 0.00000
5610.00 0.00000
5620.00 0.00000
5630.00 0.00000
5640.00 0.00000
5650.00 0.00000
5660.00 0.00000
5670.00 0.00000
5680.00 0.00000
5690.00 0.00000
5700.00 0.00000
5710.00 0.00000
5720.00 0.00000
5730.00 0.00000
5740.00 0.00000
5750.00 0.00000
5760.00 0.00000
5770.00 0.00000
5780.00 0.00000
5790.00 0.00000
5800.00 0.00000
5810.00 0.00000
5820.00 0.00000
5830.00 0.00000
5840.00 0.00000
5850.00 0.00000
5860.00 0.00000
5870.00 0.00000
5880.00 0.00000
5890.00 0.00000
5900.00 0.00000
5910.00 0.00000
5920.00 0.00000
5930.00 0.00000
5940.00 0.00000
5950.00 0.00000
5960.00 0.00000
5970.00 0.00000
5980.00 0.00000
5990.00 0.00000
6000.00 0.00000
6010.00 0.00000
6020.00 0.00000
6030.00 0.00000
6040.00 0.00000
6050.00 0.00000
6060.00 0.00000
6070.00 0.00000
6080.00 0.00000
6090.00 0.00000
6100.00 0.00000
6110.00 0.00000
6120.00 0.00000
6130.00 0.00000
6140.00 0.00000
6150.00 0.00000
6160.00 0.00000
6170.00 0.00000
6180.00 0.00000
6190.00 0.00000
6200.00 0.00000
6210.00 0.00000
6220.00 0.00000
6230.00 0.00000
6240.00 0.00000
6250.00 0.00000
6260.00 0.00000
6270.00 0.00000
6280.00 0.00000
6290.00 0.00000
6300.00 0.00000
6310.00 0.00000
6320.00 0.00000
6330.00 0.00000
6340.00 0.00000
6350.00 0.00000
6360.00 0.00000
6370.00 0.00000
6380.00 0.00000
6390.00 0.00000
6400.00 0.00000
6410.00 0.00000
6420.00 0.00000
6430.00 0.00000
6440.00 0.00000
6450.00 0.00000
6460.00 0.00000
6470.00 0.00000
6480.00 0.00000
6490.00 0.00000
6500.00 0.00000
6510.00 0.00000
6520.00 0.00000
6530.00 0.00000
6540.00 0.00000
6550.00 0.00000
6560.00 0.00000
6570.00 0.00000
6580.00 0.00000
6590.00 0.00001
6600.00 0.00001
6610.00 0.00001
6620.00 0.00002
6630.00 0.00003
6640.00 0.00004
6650.00 0.00007
6660.00 0.00008
6670.00 0.00009
6680.00 0.00014
6690.00 0.00018
6700.00 0.00025
6710.00 0.00035
6720.00 0.00049
6730.00 0.00068
6740.00 0.00095
6750.00 0.00136
6760.00 0.00199
6770.00 0.00294
6780.00 0.00445
6790.00 0.00684
6800.00 0.01071
6810.00 0.01708
6820.00 0.02711
6830.00 0.04282
6840.00 0.06652
6850.00 0.09888
6860.00 0.14166
6870.00 0.19419
6880.00 0.25385
6890.00 0.31733
6900.00 0.37981
6910.00 0.43796
6920.00 0.48951
6930.00 0.53083
6940.00 0.56324
6950.00 0.58455
6960.00 0.59682
6970.00 0.60561
6980.00 0.60940
6990.00 0.60835
7000.00 0.60618
7010.00 0.60527
7020.00 0.60577
7030.00 0.60793
7040.00 0.61200
7050.00 0.61709
7060.00 0.62322
7070.00 0.63095
7080.00 0.63821
7090.00 0.64292
7100.00 0.64626
7110.00 0.64878
7120.00 0.64997
7130.00 0.65232
7140.00 0.65406
7150.00 0.65226
7160.00 0.65081
7170.00 0.65292
7180.00 0.65541
7190.00 0.65667
7200.00 0.65711
7210.00 0.65967
7220.00 0.66207
7230.00 0.66313
7240.00 0.66374
7250.00 0.66539
7260.00 0.66680
7270.00 0.66685
7280.00 0.66702
7290.00 0.66646
7300.00 0.66629
7310.00 0.66932
7320.00 0.67278
7330.00 0.67504
7340.00 0.67726
7350.00 0.67778
7360.00 0.67831
7370.00 0.68199
7380.00 0.68577
7390.00 0.68984
7400.00 0.69362
7410.00 0.69332
7420.00 0.69276
7430.00 0.69385
7440.00 0.69474
7450.00 0.69416
7460.00 0.69332
7470.00 0.69433
7480.00 0.69497
7490.00 0.69420
7500.00 0.69362
7510.00 0.69276
7520.00 0.69222
7530.00 0.69099
7540.00 0.69025
7550.00 0.69202
7560.00 0.69383
7570.00 0.69339
7580.00 0.69343
7590.00 0.69509
7600.00 0.69705
7610.00 0.69930
7620.00 0.70161
7630.00 0.70368
7640.00 0.70584
7650.00 0.70841
7660.00 0.71096
7670.00 0.71507
7680.00 0.71902
7690.00 0.71999
7700.00 0.72073
7710.00 0.72065
7720.00 0.72011
7730.00 0.71996
7740.00 0.71957
7750.00 0.71536
7760.00 0.71111
7770.00 0.71377
7780.00 0.71623
7790.00 0.71655
7800.00 0.71724
7810.00 0.71336
7820.00 0.70964
7830.00 0.70962
7840.00 0.70961
7850.00 0.71095
7860.00 0.71248
7870.00 0.71171
7880.00 0.71055
7890.00 0.70995
7900.00 0.70901
7910.00 0.70812
7920.00 0.70705
7930.00 0.70299
7940.00 0.69865
7950.00 0.69705
7960.00 0.69556
7970.00 0.69552
7980.00 0.69573
7990.00 0.69293
8000.00 0.69054
8010.00 0.68913
8020.00 0.68773
8030.00 0.68869
8040.00 0.68958
8050.00 0.68922
8060.00 0.68897
8070.00 0.69058
8080.00 0.69198
8090.00 0.69425
8100.00 0.69658
8110.00 0.69466
8120.00 0.69258
8130.00 0.69134
8140.00 0.69023
8150.00 0.68944
8160.00 0.68843
8170.00 0.68879
8180.00 0.68882
8190.00 0.68806
8200.00 0.68653
8210.00 0.68482
8220.00 0.68292
8230.00 0.67639
8240.00 0.67012
8250.00 0.67081
8260.00 0.67174
8270.00 0.66608
8280.00 0.66080
8290.00 0.66262
8300.00 0.66391
8310.00 0.65922
8320.00 0.65126
8330.00 0.64064
8340.00 0.62381
8350.00 0.59850
8360.00 0.56510
8370.00 0.52167
8380.00 0.46983
8390.00 0.41697
8400.00 0.36189
8410.00 0.30067
8420.00 0.24099
8430.00 0.18838
8440.00 0.13948
8450.00 0.09907
8460.00 0.06956
8470.00 0.04814
8480.00 0.03312
8490.00 0.02220
8500.00 0.01492
8510.00 0.01022
8520.00 0.00717
8530.00 0.00507
8540.00 0.00360
8550.00 0.00259
8560.00 0.00188
8570.00 0.00137
8580.00 0.00101
8590.00 0.00078
8600.00 0.00058
8610.00 0.00046
8620.00 0.00036
8630.00 0.00028
8640.00 0.00021
8650.00 0.00017
8660.00 0.00012
8670.00 0.00011
8680.00 0.00008
8690.00 0.00006
8700.00 0.00005
8710.00 0.00004
8720.00 0.00002
8730.00 0.00003
8740.00 0.00002
8750.00 0.00002
8760.00 0.00001
8770.00 0.00000
8780.00 0.00001
8790.00 0.00001
8800.00 0.00000
8810.00 0.00000
8820.00 0.00000
8830.00 0.00000
8840.00 0.00000
8850.00 0.00000
8860.00 0.00000
8870.00 0.00000
8880.00 0.00000
8890.00 0.00000
8900.00 0.00000
8910.00 0.00000
8920.00 0.00000
8930.00 0.00000
8940.00 0.00000
8950.00 0.00000
8960.00 0.00000
8970.00 0.00000
8980.00 0.00000
8990.00 0.00000
9000.00 0.00000
9010.00 0.00000
9020.00 0.00000
9030.00 0.00000
9040.00 0.00000
9050.00 0.00000
9060.00 0.00000
9070.00 0.00000
9080.00 0.00000
9090.00 0.00000
9100.00 0.00000
9110.00 0.00000
9120.00 0.00000
9130.00 0.00000
9140.00 0.00000
9150.00 0.00000
9160.00 0.00000
9170.00 0.00000
9180.00 0.00000
9190.00 0.00000
9200.00 0.00000
9210.00 0.00000
9220.00 0.00000
9230.00 0.00000
9240.00 0.00000
9250.00 0.00000
9260.00 0.00000
9270.00 0.00000
9280.00 0.00000
9290.00 0.00000
9300.00 0.00000
9310.00 0.00000
9320.00 0.00000
9330.00 0.00000
9340.00 0.00000
9350.00 0.00000
9360.00 0.00000
9370.00 0.00000
9380.00 0.00000
9390.00 0.00000
9400.00 0.00000
9410.00 0.00000
9420.00 0.00000
9430.00 0.00000
9440.00 0.00000
9450.00 0.00000
9460.00 0.00000
9470.00 0.00000
9480.00 0.00000
9490.00 0.00000
9500.00 0.00000
9510.00 0.00000
9520.00 0.00000
9530.00 0.00000
9540.00 0.00000
9550.00 0.00000
9560.00 0.00000
9570.00 0.00000
9580.00 0.00000
9590.00 0.00000
9600.00 0.00000
9610.00 0.00000
9620.00 0.00000
9630.00 0.00000
9640.00 0.00000
9650.00 0.00000
9660.00 0.00000
9670.00 0.00000
9680.00 0.00000
9690.00 0.00000
9700.00 0.00000
9710.00 0.00000
9720.00 0.00000
9730.00 0.00000
9740.00 0.00000
9750.00 0.00000
9760.00 0.00000
9770.00 0.00000
9780.00 0.00000
9790.00 0.00000
9800.00 0.00000
9810.00 0.00000
9820.00 0.00000
9830.00 0.00000
9840.00 0.00000
9850.00 0.00000
9860.00 0.00000
9870.00 0.00000
9880.00 0.00000
9890.00 0.00000
9900.00 0.00000
9910.00 0.00000
9920.00 0.00000
9930.00 0.00000
9940.00 0.00000
9950.00 0.00000
9960.00 0.00000
9970.00 0.00000
9980.00 0.00000
9990.00 0.00000
10000.00 0.00000
10010.00 0.00000
10020.00 0.00000
10030.00 0.00000
10040.00 0.00000
10050.00 0.00000
10060.00 0.00000
10070.00 0.00000
10080.00 0.00000
10090.00 0.00000
10100.00 0.00000
10110.00 0.00000
10120.00 0.00000
10130.00 0.00000
10140.00 0.00000
10150.00 0.00000
10160.00 0.00000
10170.00 0.00000
10180.00 0.00000
10190.00 0.00000
10200.00 0.00000
10210.00 0.00000
10220.00 0.00000
10230.00 0.00000
10240.00 0.00000
10250.00 0.00000
10260.00 0.00000
10270.00 0.00000
10280.00 0.00000
10290.00 0.00000
10300.00 0.00000
10310.00 0.00000
10320.00 0.00000
10330.00 0.00000
10340.00 0.00000
10350.00 0.00000
10360.00 0.00000
10370.00 0.00000
10380.00 0.00000
10390.00 0.00000
10400.00 0.00000
10410.00 0.00000
10420.00 0.00000
10430.00 0.00000
10440.00 0.00000
10450.00 0.00000
10460.00 0.00000
10470.00 0.00000
10480.00 0.00000
10490.00 0.00000
10500.00 0.00000
10510.00 0.00000
10520.00 0.00000
10530.00 0.00000
10540.00 0.00000
10550.00 0.00000
10560.00 0.00000
10570.00 0.00000
10580.00 0.00000
10590.00 0.00000
10600.00 0.00000
10610.00 0.00000
10620.00 0.00000
10630.00 0.00000
10640.00 0.00000
10650.00 0.00000
10660.00 0.00000
10670.00 0.00000
10680.00 0.00000
10690.00 0.00000
10700.00 0.00000
10710.00 0.00000
10720.00 0.00000
10730.00 0.00000
10740.00 0.00000
10750.00 0.00000
10760.00 0.00000
10770.00 0.00000
10780.00 0.00000
10790.00 0.00000
10800.00 0.00000
10810.00 0.00000
10820.00 0.00000
10830.00 0.00000
10840.00 0.00000
10850.00 0.00000
10860.00 0.00000
10870.00 0.00000
10880.00 0.00000
10890.00 0.00000
10900.00 0.00000
10910.00 0.00000
10920.00 0.00000
10930.00 0.00000
10940.00 0.00000
10950.00 0.00000
10960.00 0.00000
10970.00 0.00000
10980.00 0.00000
10990.00 0.00000
11000.00 0.00000
# NUV_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
2030.00 0.00000
2040.00 0.00000
2050.00 0.00000
2060.00 0.00000
2070.00 0.00000
2080.00 0.00000
2090.00 0.00000
2100.00 0.00000
2110.00 0.00000
2120.00 0.00000
2130.00 0.00000
2140.00 0.00000
2150.00 0.00000
2160.00 0.00000
2170.00 0.00000
2180.00 0.00000
2190.00 0.00000
2200.00 0.00000
2210.00 0.00000
2220.00 0.00000
2230.00 0.00000
2240.00 0.00000
2250.00 0.00000
2260.00 0.00000
2270.00 0.00000
2280.00 0.00000
2290.00 0.00000
2300.00 0.00000
2310.00 0.00000
2320.00 0.00000
2330.00 0.00000
2340.00 0.00000
2350.00 0.00000
2360.00 0.00000
2370.00 0.00000
2380.00 0.00000
2390.00 0.00000
2400.00 0.00000
2410.00 0.00000
2420.00 0.00000
2430.00 0.00000
2440.00 0.00000
2450.00 0.00000
2460.00 0.00000
2470.00 0.00000
2480.00 0.00000
2490.00 0.00000
2500.00 0.00000
2510.00 0.02890
2520.00 0.07842
2530.00 0.13705
2540.00 0.16934
2550.00 0.17568
2560.00 0.18201
2570.00 0.17908
2580.00 0.17612
2590.00 0.17743
2600.00 0.17874
2610.00 0.18320
2620.00 0.18767
2630.00 0.18694
2640.00 0.18622
2650.00 0.18415
2660.00 0.18222
2670.00 0.17916
2680.00 0.17609
2690.00 0.17934
2700.00 0.18261
2710.00 0.17972
2720.00 0.17677
2730.00 0.17248
2740.00 0.16810
2750.00 0.17060
2760.00 0.17365
2770.00 0.17828
2780.00 0.18296
2790.00 0.18927
2800.00 0.19566
2810.00 0.20374
2820.00 0.21194
2830.00 0.21147
2840.00 0.21098
2850.00 0.21570
2860.00 0.21978
2870.00 0.22200
2880.00 0.22424
2890.00 0.22634
2900.00 0.22844
2910.00 0.22980
2920.00 0.23116
2930.00 0.22575
2940.00 0.22034
2950.00 0.21453
2960.00 0.20850
2970.00 0.20439
2980.00 0.20027
2990.00 0.20086
3000.00 0.20144
3010.00 0.20298
3020.00 0.20452
3030.00 0.21077
3040.00 0.21701
3050.00 0.21982
3060.00 0.22262
3070.00 0.22042
3080.00 0.21822
3090.00 0.22159
3100.00 0.22495
3110.00 0.22649
3120.00 0.22802
3130.00 0.22460
3140.00 0.22117
3150.00 0.21898
3160.00 0.21664
3170.00 0.22178
3180.00 0.22692
3190.00 0.22901
3200.00 0.17332
3210.00 0.11541
3220.00 0.05763
3230.00 0.00000
3240.00 0.00000
3250.00 0.00000
3260.00 0.00000
3270.00 0.00000
3280.00 0.00000
3290.00 0.00000
3300.00 0.00000
3310.00 0.00000
3320.00 0.00000
3330.00 0.00000
3340.00 0.00000
3350.00 0.00000
3360.00 0.00000
3370.00 0.00000
3380.00 0.00000
3390.00 0.00000
3400.00 0.00000
3410.00 0.00000
3420.00 0.00000
3430.00 0.00000
3440.00 0.00000
3450.00 0.00000
3460.00 0.00000
3470.00 0.00000
3480.00 0.00000
3490.00 0.00000
3500.00 0.00000
3510.00 0.00000
3520.00 0.00000
3530.00 0.00000
3540.00 0.00000
3550.00 0.00000
3560.00 0.00000
3570.00 0.00000
3580.00 0.00000
3590.00 0.00000
3600.00 0.00000
3610.00 0.00000
3620.00 0.00000
3630.00 0.00000
3640.00 0.00000
3650.00 0.00000
3660.00 0.00000
3670.00 0.00000
3680.00 0.00000
3690.00 0.00000
3700.00 0.00000
3710.00 0.00000
3720.00 0.00000
3730.00 0.00000
3740.00 0.00000
3750.00 0.00000
3760.00 0.00000
3770.00 0.00000
3780.00 0.00000
3790.00 0.00000
3800.00 0.00000
3810.00 0.00000
3820.00 0.00000
3830.00 0.00000
3840.00 0.00000
3850.00 0.00000
3860.00 0.00000
3870.00 0.00000
3880.00 0.00000
3890.00 0.00000
3900.00 0.00000
3910.00 0.00000
3920.00 0.00000
3930.00 0.00000
3940.00 0.00000
3950.00 0.00000
3960.00 0.00000
3970.00 0.00000
3980.00 0.00000
3990.00 0.00000
4000.00 0.00000
4010.00 0.00000
4020.00 0.00000
4030.00 0.00000
4040.00 0.00000
4050.00 0.00000
4060.00 0.00000
4070.00 0.00000
4080.00 0.00000
4090.00 0.00000
4100.00 0.00000
4110.00 0.00000
4120.00 0.00000
4130.00 0.00000
4140.00 0.00000
4150.00 0.00000
4160.00 0.00000
4170.00 0.00000
4180.00 0.00000
4190.00 0.00000
4200.00 0.00000
4210.00 0.00000
4220.00 0.00000
4230.00 0.00000
4240.00 0.00000
4250.00 0.00000
4260.00 0.00000
4270.00 0.00000
4280.00 0.00000
4290.00 0.00000
4300.00 0.00000
4310.00 0.00000
4320.00 0.00000
4330.00 0.00000
4340.00 0.00000
4350.00 0.00000
4360.00 0.00000
4370.00 0.00000
4380.00 0.00000
4390.00 0.00000
4400.00 0.00000
4410.00 0.00000
4420.00 0.00000
4430.00 0.00000
4440.00 0.00000
4450.00 0.00000
4460.00 0.00000
4470.00 0.00000
4480.00 0.00000
4490.00 0.00000
4500.00 0.00000
4510.00 0.00000
4520.00 0.00000
4530.00 0.00000
4540.00 0.00000
4550.00 0.00000
4560.00 0.00000
4570.00 0.00000
4580.00 0.00000
4590.00 0.00000
4600.00 0.00000
4610.00 0.00000
4620.00 0.00000
4630.00 0.00000
4640.00 0.00000
4650.00 0.00000
4660.00 0.00000
4670.00 0.00000
4680.00 0.00000
4690.00 0.00000
4700.00 0.00000
4710.00 0.00000
4720.00 0.00000
4730.00 0.00000
4740.00 0.00000
4750.00 0.00000
4760.00 0.00000
4770.00 0.00000
4780.00 0.00000
4790.00 0.00000
4800.00 0.00000
4810.00 0.00000
4820.00 0.00000
4830.00 0.00000
4840.00 0.00000
4850.00 0.00000
4860.00 0.00000
4870.00 0.00000
4880.00 0.00000
4890.00 0.00000
4900.00 0.00000
4910.00 0.00000
4920.00 0.00000
4930.00 0.00000
4940.00 0.00000
4950.00 0.00000
4960.00 0.00000
4970.00 0.00000
4980.00 0.00000
4990.00 0.00000
5000.00 0.00000
5010.00 0.00000
5020.00 0.00000
5030.00 0.00000
5040.00 0.00000
5050.00 0.00000
5060.00 0.00000
5070.00 0.00000
5080.00 0.00000
5090.00 0.00000
5100.00 0.00000
5110.00 0.00000
5120.00 0.00000
5130.00 0.00000
5140.00 0.00000
5150.00 0.00000
5160.00 0.00000
5170.00 0.00000
5180.00 0.00000
5190.00 0.00000
5200.00 0.00000
5210.00 0.00000
5220.00 0.00000
5230.00 0.00000
5240.00 0.00000
5250.00 0.00000
5260.00 0.00000
5270.00 0.00000
5280.00 0.00000
5290.00 0.00000
5300.00 0.00000
5310.00 0.00000
5320.00 0.00000
5330.00 0.00000
5340.00 0.00000
5350.00 0.00000
5360.00 0.00000
5370.00 0.00000
5380.00 0.00000
5390.00 0.00000
5400.00 0.00000
5410.00 0.00000
5420.00 0.00000
5430.00 0.00000
5440.00 0.00000
5450.00 0.00000
5460.00 0.00000
5470.00 0.00000
5480.00 0.00000
5490.00 0.00000
5500.00 0.00000
5510.00 0.00000
5520.00 0.00000
5530.00 0.00000
5540.00 0.00000
5550.00 0.00000
5560.00 0.00000
5570.00 0.00000
5580.00 0.00000
5590.00 0.00000
5600.00 0.00000
5610.00 0.00000
5620.00 0.00000
5630.00 0.00000
5640.00 0.00000
5650.00 0.00000
5660.00 0.00000
5670.00 0.00000
5680.00 0.00000
5690.00 0.00000
5700.00 0.00000
5710.00 0.00000
5720.00 0.00000
5730.00 0.00000
5740.00 0.00000
5750.00 0.00000
5760.00 0.00000
5770.00 0.00000
5780.00 0.00000
5790.00 0.00000
5800.00 0.00000
5810.00 0.00000
5820.00 0.00000
5830.00 0.00000
5840.00 0.00000
5850.00 0.00000
5860.00 0.00000
5870.00 0.00000
5880.00 0.00000
5890.00 0.00000
5900.00 0.00000
5910.00 0.00000
5920.00 0.00000
5930.00 0.00000
5940.00 0.00000
5950.00 0.00000
5960.00 0.00000
5970.00 0.00000
5980.00 0.00000
5990.00 0.00000
6000.00 0.00000
6010.00 0.00000
6020.00 0.00000
6030.00 0.00000
6040.00 0.00000
6050.00 0.00000
6060.00 0.00000
6070.00 0.00000
6080.00 0.00000
6090.00 0.00000
6100.00 0.00000
6110.00 0.00000
6120.00 0.00000
6130.00 0.00000
6140.00 0.00000
6150.00 0.00000
6160.00 0.00000
6170.00 0.00000
6180.00 0.00000
6190.00 0.00000
6200.00 0.00000
6210.00 0.00000
6220.00 0.00000
6230.00 0.00000
6240.00 0.00000
6250.00 0.00000
6260.00 0.00000
6270.00 0.00000
6280.00 0.00000
6290.00 0.00000
6300.00 0.00000
6310.00 0.00000
6320.00 0.00000
6330.00 0.00000
6340.00 0.00000
6350.00 0.00000
6360.00 0.00000
6370.00 0.00000
6380.00 0.00000
6390.00 0.00000
6400.00 0.00000
6410.00 0.00000
6420.00 0.00000
6430.00 0.00000
6440.00 0.00000
6450.00 0.00000
6460.00 0.00000
6470.00 0.00000
6480.00 0.00000
6490.00 0.00000
6500.00 0.00000
6510.00 0.00000
6520.00 0.00000
6530.00 0.00000
6540.00 0.00000
6550.00 0.00000
6560.00 0.00000
6570.00 0.00000
6580.00 0.00000
6590.00 0.00000
6600.00 0.00000
6610.00 0.00000
6620.00 0.00000
6630.00 0.00000
6640.00 0.00000
6650.00 0.00000
6660.00 0.00000
6670.00 0.00000
6680.00 0.00000
6690.00 0.00000
6700.00 0.00000
6710.00 0.00000
6720.00 0.00000
6730.00 0.00000
6740.00 0.00000
6750.00 0.00000
6760.00 0.00000
6770.00 0.00000
6780.00 0.00000
6790.00 0.00000
6800.00 0.00000
6810.00 0.00000
6820.00 0.00000
6830.00 0.00000
6840.00 0.00000
6850.00 0.00000
6860.00 0.00000
6870.00 0.00000
6880.00 0.00000
6890.00 0.00000
6900.00 0.00000
6910.00 0.00000
6920.00 0.00000
6930.00 0.00000
6940.00 0.00000
6950.00 0.00000
6960.00 0.00000
6970.00 0.00000
6980.00 0.00000
6990.00 0.00000
7000.00 0.00000
7010.00 0.00000
7020.00 0.00000
7030.00 0.00000
7040.00 0.00000
7050.00 0.00000
7060.00 0.00000
7070.00 0.00000
7080.00 0.00000
7090.00 0.00000
7100.00 0.00000
7110.00 0.00000
7120.00 0.00000
7130.00 0.00000
7140.00 0.00000
7150.00 0.00000
7160.00 0.00000
7170.00 0.00000
7180.00 0.00000
7190.00 0.00000
7200.00 0.00000
7210.00 0.00000
7220.00 0.00000
7230.00 0.00000
7240.00 0.00000
7250.00 0.00000
7260.00 0.00000
7270.00 0.00000
7280.00 0.00000
7290.00 0.00000
7300.00 0.00000
7310.00 0.00000
7320.00 0.00000
7330.00 0.00000
7340.00 0.00000
7350.00 0.00000
7360.00 0.00000
7370.00 0.00000
7380.00 0.00000
7390.00 0.00000
7400.00 0.00000
7410.00 0.00000
7420.00 0.00000
7430.00 0.00000
7440.00 0.00000
7450.00 0.00000
7460.00 0.00000
7470.00 0.00000
7480.00 0.00000
7490.00 0.00000
7500.00 0.00000
7510.00 0.00000
7520.00 0.00000
7530.00 0.00000
7540.00 0.00000
7550.00 0.00000
7560.00 0.00000
7570.00 0.00000
7580.00 0.00000
7590.00 0.00000
7600.00 0.00000
7610.00 0.00000
7620.00 0.00000
7630.00 0.00000
7640.00 0.00000
7650.00 0.00000
7660.00 0.00000
7670.00 0.00000
7680.00 0.00000
7690.00 0.00000
7700.00 0.00000
7710.00 0.00000
7720.00 0.00000
7730.00 0.00000
7740.00 0.00000
7750.00 0.00000
7760.00 0.00000
7770.00 0.00000
7780.00 0.00000
7790.00 0.00000
7800.00 0.00000
7810.00 0.00000
7820.00 0.00000
7830.00 0.00000
7840.00 0.00000
7850.00 0.00000
7860.00 0.00000
7870.00 0.00000
7880.00 0.00000
7890.00 0.00000
7900.00 0.00000
7910.00 0.00000
7920.00 0.00000
7930.00 0.00000
7940.00 0.00000
7950.00 0.00000
7960.00 0.00000
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.00000
8010.00 0.00000
8020.00 0.00000
8030.00 0.00000
8040.00 0.00000
8050.00 0.00000
8060.00 0.00000
8070.00 0.00000
8080.00 0.00000
8090.00 0.00000
8100.00 0.00000
8110.00 0.00000
8120.00 0.00000
8130.00 0.00000
8140.00 0.00000
8150.00 0.00000
8160.00 0.00000
8170.00 0.00000
8180.00 0.00000
8190.00 0.00000
8200.00 0.00000
8210.00 0.00000
8220.00 0.00000
8230.00 0.00000
8240.00 0.00000
8250.00 0.00000
8260.00 0.00000
8270.00 0.00000
8280.00 0.00000
8290.00 0.00000
8300.00 0.00000
8310.00 0.00000
8320.00 0.00000
8330.00 0.00000
8340.00 0.00000
8350.00 0.00000
8360.00 0.00000
8370.00 0.00000
8380.00 0.00000
8390.00 0.00000
8400.00 0.00000
8410.00 0.00000
8420.00 0.00000
8430.00 0.00000
8440.00 0.00000
8450.00 0.00000
8460.00 0.00000
8470.00 0.00000
8480.00 0.00000
8490.00 0.00000
8500.00 0.00000
8510.00 0.00000
8520.00 0.00000
8530.00 0.00000
8540.00 0.00000
8550.00 0.00000
8560.00 0.00000
8570.00 0.00000
8580.00 0.00000
8590.00 0.00000
8600.00 0.00000
8610.00 0.00000
8620.00 0.00000
8630.00 0.00000
8640.00 0.00000
8650.00 0.00000
8660.00 0.00000
8670.00 0.00000
8680.00 0.00000
8690.00 0.00000
8700.00 0.00000
8710.00 0.00000
8720.00 0.00000
8730.00 0.00000
8740.00 0.00000
8750.00 0.00000
8760.00 0.00000
8770.00 0.00000
8780.00 0.00000
8790.00 0.00000
8800.00 0.00000
8810.00 0.00000
8820.00 0.00000
8830.00 0.00000
8840.00 0.00000
8850.00 0.00000
8860.00 0.00000
8870.00 0.00000
8880.00 0.00000
8890.00 0.00000
8900.00 0.00000
8910.00 0.00000
8920.00 0.00000
8930.00 0.00000
8940.00 0.00000
8950.00 0.00000
8960.00 0.00000
8970.00 0.00000
8980.00 0.00000
8990.00 0.00000
9000.00 0.00000
9010.00 0.00000
9020.00 0.00000
9030.00 0.00000
9040.00 0.00000
9050.00 0.00000
9060.00 0.00000
9070.00 0.00000
9080.00 0.00000
9090.00 0.00000
9100.00 0.00000
9110.00 0.00000
9120.00 0.00000
9130.00 0.00000
9140.00 0.00000
9150.00 0.00000
9160.00 0.00000
9170.00 0.00000
9180.00 0.00000
9190.00 0.00000
9200.00 0.00000
9210.00 0.00000
9220.00 0.00000
9230.00 0.00000
9240.00 0.00000
9250.00 0.00000
9260.00 0.00000
9270.00 0.00000
9280.00 0.00000
9290.00 0.00000
9300.00 0.00000
9310.00 0.00000
9320.00 0.00000
9330.00 0.00000
9340.00 0.00000
9350.00 0.00000
9360.00 0.00000
9370.00 0.00000
9380.00 0.00000
9390.00 0.00000
9400.00 0.00000
9410.00 0.00000
9420.00 0.00000
9430.00 0.00000
9440.00 0.00000
9450.00 0.00000
9460.00 0.00000
9470.00 0.00000
9480.00 0.00000
9490.00 0.00000
9500.00 0.00000
9510.00 0.00000
9520.00 0.00000
9530.00 0.00000
9540.00 0.00000
9550.00 0.00000
9560.00 0.00000
9570.00 0.00000
9580.00 0.00000
9590.00 0.00000
9600.00 0.00000
9610.00 0.00000
9620.00 0.00000
9630.00 0.00000
9640.00 0.00000
9650.00 0.00000
9660.00 0.00000
9670.00 0.00000
9680.00 0.00000
9690.00 0.00000
9700.00 0.00000
9710.00 0.00000
9720.00 0.00000
9730.00 0.00000
9740.00 0.00000
9750.00 0.00000
9760.00 0.00000
9770.00 0.00000
9780.00 0.00000
9790.00 0.00000
9800.00 0.00000
9810.00 0.00000
9820.00 0.00000
9830.00 0.00000
9840.00 0.00000
9850.00 0.00000
9860.00 0.00000
9870.00 0.00000
9880.00 0.00000
9890.00 0.00000
9900.00 0.00000
9910.00 0.00000
9920.00 0.00000
9930.00 0.00000
9940.00 0.00000
9950.00 0.00000
9960.00 0.00000
9970.00 0.00000
9980.00 0.00000
9990.00 0.00000
10000.00 0.00000
10010.00 0.00000
10020.00 0.00000
10030.00 0.00000
10040.00 0.00000
10050.00 0.00000
10060.00 0.00000
10070.00 0.00000
10080.00 0.00000
10090.00 0.00000
10100.00 0.00000
10110.00 0.00000
10120.00 0.00000
10130.00 0.00000
10140.00 0.00000
10150.00 0.00000
10160.00 0.00000
10170.00 0.00000
10180.00 0.00000
10190.00 0.00000
10200.00 0.00000
10210.00 0.00000
10220.00 0.00000
10230.00 0.00000
10240.00 0.00000
10250.00 0.00000
10260.00 0.00000
10270.00 0.00000
10280.00 0.00000
10290.00 0.00000
10300.00 0.00000
10310.00 0.00000
10320.00 0.00000
10330.00 0.00000
10340.00 0.00000
10350.00 0.00000
10360.00 0.00000
10370.00 0.00000
10380.00 0.00000
10390.00 0.00000
10400.00 0.00000
10410.00 0.00000
10420.00 0.00000
10430.00 0.00000
10440.00 0.00000
10450.00 0.00000
10460.00 0.00000
10470.00 0.00000
10480.00 0.00000
10490.00 0.00000
10500.00 0.00000
10510.00 0.00000
10520.00 0.00000
10530.00 0.00000
10540.00 0.00000
10550.00 0.00000
10560.00 0.00000
10570.00 0.00000
10580.00 0.00000
10590.00 0.00000
10600.00 0.00000
10610.00 0.00000
10620.00 0.00000
10630.00 0.00000
10640.00 0.00000
10650.00 0.00000
10660.00 0.00000
10670.00 0.00000
10680.00 0.00000
10690.00 0.00000
10700.00 0.00000
10710.00 0.00000
10720.00 0.00000
10730.00 0.00000
10740.00 0.00000
10750.00 0.00000
10760.00 0.00000
10770.00 0.00000
10780.00 0.00000
10790.00 0.00000
10800.00 0.00000
10810.00 0.00000
10820.00 0.00000
10830.00 0.00000
10840.00 0.00000
10850.00 0.00000
10860.00 0.00000
10870.00 0.00000
10880.00 0.00000
10890.00 0.00000
10900.00 0.00000
10910.00 0.00000
10920.00 0.00000
10930.00 0.00000
10940.00 0.00000
10950.00 0.00000
10960.00 0.00000
10970.00 0.00000
10980.00 0.00000
10990.00 0.00000
11000.00 0.00000
# r_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
2030.00 0.00000
2040.00 0.00000
2050.00 0.00000
2060.00 0.00000
2070.00 0.00000
2080.00 0.00000
2090.00 0.00000
2100.00 0.00000
2110.00 0.00000
2120.00 0.00000
2130.00 0.00000
2140.00 0.00000
2150.00 0.00000
2160.00 0.00000
2170.00 0.00000
2180.00 0.00000
2190.00 0.00000
2200.00 0.00000
2210.00 0.00000
2220.00 0.00000
2230.00 0.00000
2240.00 0.00000
2250.00 0.00000
2260.00 0.00000
2270.00 0.00000
2280.00 0.00000
2290.00 0.00000
2300.00 0.00000
2310.00 0.00000
2320.00 0.00000
2330.00 0.00000
2340.00 0.00000
2350.00 0.00000
2360.00 0.00000
2370.00 0.00000
2380.00 0.00000
2390.00 0.00000
2400.00 0.00000
2410.00 0.00000
2420.00 0.00000
2430.00 0.00000
2440.00 0.00000
2450.00 0.00000
2460.00 0.00000
2470.00 0.00000
2480.00 0.00000
2490.00 0.00000
2500.00 0.00000
2510.00 0.00000
2520.00 0.00000
2530.00 0.00000
2540.00 0.00000
2550.00 0.00000
2560.00 0.00000
2570.00 0.00000
2580.00 0.00000
2590.00 0.00000
2600.00 0.00000
2610.00 0.00000
2620.00 0.00000
2630.00 0.00000
2640.00 0.00000
2650.00 0.00000
2660.00 0.00000
2670.00 0.00000
2680.00 0.00000
2690.00 0.00000
2700.00 0.00000
2710.00 0.00000
2720.00 0.00000
2730.00 0.00000
2740.00 0.00000
2750.00 0.00000
2760.00 0.00000
2770.00 0.00000
2780.00 0.00000
2790.00 0.00000
2800.00 0.00000
2810.00 0.00000
2820.00 0.00000
2830.00 0.00000
2840.00 0.00000
2850.00 0.00000
2860.00 0.00000
2870.00 0.00000
2880.00 0.00000
2890.00 0.00000
2900.00 0.00000
2910.00 0.00000
2920.00 0.00000
2930.00 0.00000
2940.00 0.00000
2950.00 0.00000
2960.00 0.00000
2970.00 0.00000
2980.00 0.00000
2990.00 0.00000
3000.00 0.00000
3010.00 0.00000
3020.00 0.00000
3030.00 0.00000
3040.00 0.00000
3050.00 0.00000
3060.00 0.00000
3070.00 0.00000
3080.00 0.00000
3090.00 0.00000
3100.00 0.00000
3110.00 0.00000
3120.00 0.00000
3130.00 0.00000
3140.00 0.00000
3150.00 0.00000
3160.00 0.00000
3170.00 0.00000
3180.00 0.00000
3190.00 0.00000
3200.00 0.00000
3210.00 0.00000
3220.00 0.00000
3230.00 0.00000
3240.00 0.00000
3250.00 0.00000
3260.00 0.00000
3270.00 0.00000
3280.00 0.00000
3290.00 0.00000
3300.00 0.00000
3310.00 0.00000
3320.00 0.00000
3330.00 0.00000
3340.00 0.00000
3350.00 0.00000
3360.00 0.00000
3370.00 0.00000
3380.00 0.00000
3390.00 0.00000
3400.00 0.00000
3410.00 0.00000
3420.00 0.00000
3430.00 0.00000
3440.00 0.00000
3450.00 0.00000
3460.00 0.00000
3470.00 0.00000
3480.00 0.00000
3490.00 0.00000
3500.00 0.00000
3510.00 0.00000
3520.00 0.00000
3530.00 0.00000
3540.00 0.00000
3550.00 0.00000
3560.00 0.00000
3570.00 0.00000
3580.00 0.00000
3590.00 0.00000
3600.00 0.00000
3610.00 0.00000
3620.00 0.00000
3630.00 0.00000
3640.00 0.00000
3650.00 0.00000
3660.00 0.00000
3670.00 0.00000
3680.00 0.00000
3690.00 0.00000
3700.00 0.00000
3710.00 0.00000
3720.00 0.00000
3730.00 0.00000
3740.00 0.00000
3750.00 0.00000
3760.00 0.00000
3770.00 0.00000
3780.00 0.00000
3790.00 0.00000
3800.00 0.00000
3810.00 0.00000
3820.00 0.00000
3830.00 0.00000
3840.00 0.00000
3850.00 0.00000
3860.00 0.00000
3870.00 0.00000
3880.00 0.00000
3890.00 0.00000
3900.00 0.00000
3910.00 0.00000
3920.00 0.00000
3930.00 0.00000
3940.00 0.00000
3950.00 0.00000
3960.00 0.00000
3970.00 0.00000
3980.00 0.00000
3990.00 0.00000
4000.00 0.00000
4010.00 0.00000
4020.00 0.00000
4030.00 0.00000
4040.00 0.00000
4050.00 0.00000
4060.00 0.00000
4070.00 0.00000
4080.00 0.00000
4090.00 0.00000
4100.00 0.00000
4110.00 0.00000
4120.00 0.00000
4130.00 0.00000
4140.00 0.00000
4150.00 0.00000
4160.00 0.00000
4170.00 0.00000
4180.00 0.00000
4190.00 0.00000
4200.00 0.00000
4210.00 0.00000
4220.00 0.00000
4230.00 0.00000
4240.00 0.00000
4250.00 0.00000
4260.00 0.00000
4270.00 0.00000
4280.00 0.00000
4290.00 0.00000
4300.00 0.00000
4310.00 0.00000
4320.00 0.00000
4330.00 0.00000
4340.00 0.00000
4350.00 0.00000
4360.00 0.00000
4370.00 0.00000
4380.00 0.00000
4390.00 0.00000
4400.00 0.00000
4410.00 0.00000
4420.00 0.00000
4430.00 0.00000
4440.00 0.00000
4450.00 0.00000
4460.00 0.00000
4470.00 0.00000
4480.00 0.00000
4490.00 0.00000
4500.00 0.00000
4510.00 0.00000
4520.00 0.00000
4530.00 0.00000
4540.00 0.00000
4550.00 0.00000
4560.00 0.00000
4570.00 0.00000
4580.00 0.00000
4590.00 0.00000
4600.00 0.00000
4610.00 0.00000
4620.00 0.00000
4630.00 0.00000
4640.00 0.00000
4650.00 0.00000
4660.00 0.00000
4670.00 0.00000
4680.00 0.00000
4690.00 0.00000
4700.00 0.00000
4710.00 0.00000
4720.00 0.00000
4730.00 0.00000
4740.00 0.00000
4750.00 0.00000
4760.00 0.00000
4770.00 0.00000
4780.00 0.00000
4790.00 0.00000
4800.00 0.00000
4810.00 0.00000
4820.00 0.00000
4830.00 0.00000
4840.00 0.00000
4850.00 0.00000
4860.00 0.00000
4870.00 0.00000
4880.00 0.00000
4890.00 0.00000
4900.00 0.00000
4910.00 0.00000
4920.00 0.00000
4930.00 0.00000
4940.00 0.00000
4950.00 0.00000
4960.00 0.00000
4970.00 0.00000
4980.00 0.00000
4990.00 0.00000
5000.00 0.00000
5010.00 0.00000
5020.00 0.00000
5030.00 0.00000
5040.00 0.00000
5050.00 0.00000
5060.00 0.00000
5070.00 0.00000
5080.00 0.00000
5090.00 0.00000
5100.00 0.00000
5110.00 0.00000
5120.00 0.00001
5130.00 0.00001
5140.00 0.00001
5150.00 0.00001
5160.00 0.00001
5170.00 0.00001
5180.00 0.00000
5190.00 0.00000
5200.00 0.00000
5210.00 0.00000
5220.00 0.00000
5230.00 0.00000
5240.00 0.00000
5250.00 0.00000
5260.00 0.00000
5270.00 0.00000
5280.00 0.00000
5290.00 0.00000
5300.00 0.00001
5310.00 0.00001
5320.00 0.00001
5330.00 0.00002
5340.00 0.00003
5350.00 0.00005
5360.00 0.00009
5370.00 0.00016
5380.00 0.00031
5390.00 0.00066
5400.00 0.00150
5410.00 0.00395
5420.00 0.01166
5430.00 0.03307
5440.00 0.07854
5450.00 0.14926
5460.00 0.23899
5470.00 0.33256
5480.00 0.41052
5490.00 0.46942
5500.00 0.51316
5510.00 0.54712
5520.00 0.57754
5530.00 0.60334
5540.00 0.62365
5550.00 0.63930
5560.00 0.64902
5570.00 0.65482
5580.00 0.65288
5590.00 0.64276
5600.00 0.62930
5610.00 0.61532
5620.00 0.60637
5630.00 0.60599
5640.00 0.61270
5650.00 0.62476
5660.00 0.63883
5670.00 0.65060
5680.00 0.65817
5690.00 0.66197
5700.00 0.66176
5710.00 0.65954
5720.00 0.65814
5730.00 0.66021
5740.00 0.66449
5750.00 0.66846
5760.00 0.67119
5770.00 0.67199
5780.00 0.66919
5790.00 0.66394
5800.00 0.65767
5810.00 0.65139
5820.00 0.64820
5830.00 0.65106
5840.00 0.65767
5850.00 0.66682
5860.00 0.67617
5870.00 0.68388
5880.00 0.68869
5890.00 0.68975
5900.00 0.68857
5910.00 0.68569
5920.00 0.68383
5930.00 0.68380
5940.00 0.68630
5950.00 0.69038
5960.00 0.69529
5970.00 0.70020
5980.00 0.70338
5990.00 0.70456
6000.00 0.70354
6010.00 0.70066
6020.00 0.69712
6030.00 0.69494
6040.00 0.69399
6050.00 0.69320
6060.00 0.69388
6070.00 0.69624
6080.00 0.69898
6090.00 0.70077
6100.00 0.70221
6110.00 0.70386
6120.00 0.70518
6130.00 0.70747
6140.00 0.70999
6150.00 0.71149
6160.00 0.71301
6170.00 0.71518
6180.00 0.71703
6190.00 0.71840
6200.00 0.71953
6210.00 0.72052
6220.00 0.72152
6230.00 0.72192
6240.00 0.72250
6250.00 0.72269
6260.00 0.72254
6270.00 0.72336
6280.00 0.72378
6290.00 0.72403
6300.00 0.72409
6310.00 0.72262
6320.00 0.72125
6330.00 0.72066
6340.00 0.72042
6350.00 0.72120
6360.00 0.72182
6370.00 0.72298
6380.00 0.72341
6390.00 0.71960
6400.00 0.71461
6410.00 0.71000
6420.00 0.70473
6430.00 0.69886
6440.00 0.69369
6450.00 0.68920
6460.00 0.68565
6470.00 0.68573
6480.00 0.68694
6490.00 0.68660
6500.00 0.68667
6510.00 0.68760
6520.00 0.68845
6530.00 0.68866
6540.00 0.68844
6550.00 0.68662
6560.00 0.68462
6570.00 0.68347
6580.00 0.68216
6590.00 0.68049
6600.00 0.67869
6610.00 0.67935
6620.00 0.67989
6630.00 0.67634
6640.00 0.67264
6650.00 0.67151
6660.00 0.67007
6670.00 0.66786
6680.00 0.66532
6690.00 0.66222
6700.00 0.65913
6710.00 0.65660
6720.00 0.65451
6730.00 0.65243
6740.00 0.65085
6750.00 0.65020
6760.00 0.65004
6770.00 0.65077
6780.00 0.65145
6790.00 0.65186
6800.00 0.65081
6810.00 0.64842
6820.00 0.64393
6830.00 0.63715
6840.00 0.62891
6850.00 0.61936
6860.00 0.61129
6870.00 0.60651
6880.00 0.60553
6890.00 0.60666
6900.00 0.60476
6910.00 0.59163
6920.00 0.55628
6930.00 0.49411
6940.00 0.40862
6950.00 0.30991
6960.00 0.21906
6970.00 0.14420
6980.00 0.09015
6990.00 0.05548
7000.00 0.03389
7010.00 0.02119
7020.00 0.01362
7030.00 0.00897
7040.00 0.00608
7050.00 0.00421
7060.00 0.00296
7070.00 0.00216
7080.00 0.00158
7090.00 0.00118
7100.00 0.00089
7110.00 0.00068
7120.00 0.00053
7130.00 0.00042
7140.00 0.00033
7150.00 0.00026
7160.00 0.00021
7170.00 0.00017
7180.00 0.00014
7190.00 0.00012
7200.00 0.00010
7210.00 0.00008
7220.00 0.00007
7230.00 0.00006
7240.00 0.00005
7250.00 0.00004
7260.00 0.00004
7270.00 0.00003
7280.00 0.00003
7290.00 0.00003
7300.00 0.00002
7310.00 0.00002
7320.00 0.00002
7330.00 0.00002
7340.00 0.00001
7350.00 0.00001
7360.00 0.00001
7370.00 0.00001
7380.00 0.00001
7390.00 0.00001
7400.00 0.00001
7410.00 0.00001
7420.00 0.00001
7430.00 0.00001
7440.00 0.00001
7450.00 0.00001
7460.00 0.00001
7470.00 0.00001
7480.00 0.00001
7490.00 0.00001
7500.00 0.00001
7510.00 0.00001
7520.00 0.00000
7530.00 0.00000
7540.00 0.00000
7550.00 0.00000
7560.00 0.00000
7570.00 0.00000
7580.00 0.00000
7590.00 0.00000
7600.00 0.00000
7610.00 0.00000
7620.00 0.00000
7630.00 0.00000
7640.00 0.00000
7650.00 0.00000
7660.00 0.00000
7670.00 0.00000
7680.00 0.00000
7690.00 0.00000
7700.00 0.00000
7710.00 0.00000
7720.00 0.00000
7730.00 0.00000
7740.00 0.00000
7750.00 0.00000
7760.00 0.00000
7770.00 0.00000
7780.00 0.00000
7790.00 0.00000
7800.00 0.00000
7810.00 0.00000
7820.00 0.00000
7830.00 0.00000
7840.00 0.00000
7850.00 0.00000
7860.00 0.00000
7870.00 0.00000
7880.00 0.00000
7890.00 0.00000
7900.00 0.00000
7910.00 0.00000
7920.00 0.00000
7930.00 0.00000
7940.00 0.00000
7950.00 0.00000
7960.00 0.00000
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.00001
8010.00 0.00001
8020.00 0.00001
8030.00 0.00001
8040.00 0.00001
8050.00 0.00001
8060.00 0.00001
8070.00 0.00000
8080.00 0.00000
8090.00 0.00001
8100.00 0.00001
8110.00 0.00000
8120.00 0.00001
8130.00 0.00001
8140.00 0.00001
8150.00 0.00000
8160.00 0.00000
8170.00 0.00001
8180.00 0.00001
8190.00 0.00001
8200.00 0.00001
8210.00 0.00001
8220.00 0.00001
8230.00 0.00001
8240.00 0.00001
8250.00 0.00001
8260.00 0.00001
8270.00 0.00002
8280.00 0.00001
8290.00 0.00001
8300.00 0.00001
8310.00 0.00001
8320.00 0.00001
8330.00 0.00001
8340.00 0.00001
8350.00 0.00001
8360.00 0.00001
8370.00 0.00001
8380.00 0.00001
8390.00 0.00001
8400.00 0.00000
8410.00 0.00000
8420.00 0.00001
8430.00 0.00001
8440.00 0.00001
8450.00 0.00001
8460.00 0.00000
8470.00 0.00001
8480.00 0.00001
8490.00 0.00001
8500.00 0.00001
8510.00 0.00000
8520.00 0.00001
8530.00 0.00000
8540.00 0.00000
8550.00 0.00000
8560.00 0.00000
8570.00 0.00000
8580.00 0.00001
8590.00 0.00000
8600.00 0.00000
8610.00 0.00000
8620.00 0.00000
8630.00 0.00000
8640.00 0.00000
8650.00 0.00000
8660.00 0.00001
8670.00 0.00001
8680.00 0.00000
8690.00 0.00000
8700.00 0.00001
8710.00 0.00000
8720.00 0.00000
8730.00 0.00001
8740.00 0.00000
8750.00 0.00000
8760.00 0.00001
8770.00 0.00000
8780.00 0.00000
8790.00 0.00000
8800.00 0.00000
8810.00 0.00000
8820.00 0.00000
8830.00 0.00000
8840.00 0.00000
8850.00 0.00000
8860.00 0.00000
8870.00 0.00000
8880.00 0.00000
8890.00 0.00000
8900.00 0.00000
8910.00 0.00000
8920.00 0.00000
8930.00 0.00000
8940.00 0.00000
8950.00 0.00000
8960.00 0.00000
8970.00 0.00000
8980.00 0.00000
8990.00 0.00000
9000.00 0.00000
9010.00 0.00000
9020.00 0.00000
9030.00 0.00000
9040.00 0.00000
9050.00 0.00000
9060.00 0.00000
9070.00 0.00000
9080.00 0.00000
9090.00 0.00000
9100.00 0.00000
9110.00 0.00000
9120.00 0.00000
9130.00 0.00000
9140.00 0.00000
9150.00 0.00000
9160.00 0.00000
9170.00 0.00000
9180.00 0.00000
9190.00 0.00000
9200.00 0.00000
9210.00 0.00000
9220.00 0.00000
9230.00 0.00000
9240.00 0.00000
9250.00 0.00000
9260.00 0.00000
9270.00 0.00000
9280.00 0.00000
9290.00 0.00000
9300.00 0.00000
9310.00 0.00000
9320.00 0.00000
9330.00 0.00000
9340.00 0.00000
9350.00 0.00000
9360.00 0.00000
9370.00 0.00000
9380.00 0.00000
9390.00 0.00000
9400.00 0.00000
9410.00 0.00000
9420.00 0.00000
9430.00 0.00000
9440.00 0.00000
9450.00 0.00000
9460.00 0.00000
9470.00 0.00000
9480.00 0.00000
9490.00 0.00000
9500.00 0.00000
9510.00 0.00000
9520.00 0.00000
9530.00 0.00000
9540.00 0.00000
9550.00 0.00000
9560.00 0.00000
9570.00 0.00000
9580.00 0.00000
9590.00 0.00000
9600.00 0.00000
9610.00 0.00000
9620.00 0.00000
9630.00 0.00000
9640.00 0.00000
9650.00 0.00000
9660.00 0.00000
9670.00 0.00000
9680.00 0.00000
9690.00 0.00000
9700.00 0.00000
9710.00 0.00000
9720.00 0.00000
9730.00 0.00000
9740.00 0.00000
9750.00 0.00000
9760.00 0.00000
9770.00 0.00000
9780.00 0.00000
9790.00 0.00000
9800.00 0.00000
9810.00 0.00000
9820.00 0.00000
9830.00 0.00000
9840.00 0.00000
9850.00 0.00000
9860.00 0.00000
9870.00 0.00000
9880.00 0.00000
9890.00 0.00000
9900.00 0.00000
9910.00 0.00000
9920.00 0.00000
9930.00 0.00000
9940.00 0.00000
9950.00 0.00000
9960.00 0.00000
9970.00 0.00000
9980.00 0.00000
9990.00 0.00000
10000.00 0.00000
10010.00 0.00000
10020.00 0.00000
10030.00 0.00000
10040.00 0.00000
10050.00 0.00000
10060.00 0.00000
10070.00 0.00000
10080.00 0.00000
10090.00 0.00000
10100.00 0.00000
10110.00 0.00000
10120.00 0.00000
10130.00 0.00000
10140.00 0.00000
10150.00 0.00000
10160.00 0.00000
10170.00 0.00000
10180.00 0.00000
10190.00 0.00000
10200.00 0.00000
10210.00 0.00000
10220.00 0.00000
10230.00 0.00000
10240.00 0.00000
10250.00 0.00000
10260.00 0.00000
10270.00 0.00000
10280.00 0.00000
10290.00 0.00000
10300.00 0.00000
10310.00 0.00000
10320.00 0.00000
10330.00 0.00000
10340.00 0.00000
10350.00 0.00000
10360.00 0.00000
10370.00 0.00000
10380.00 0.00000
10390.00 0.00000
10400.00 0.00000
10410.00 0.00000
10420.00 0.00000
10430.00 0.00000
10440.00 0.00000
10450.00 0.00000
10460.00 0.00000
10470.00 0.00000
10480.00 0.00000
10490.00 0.00000
10500.00 0.00000
10510.00 0.00000
10520.00 0.00000
10530.00 0.00000
10540.00 0.00000
10550.00 0.00000
10560.00 0.00000
10570.00 0.00000
10580.00 0.00000
10590.00 0.00000
10600.00 0.00000
10610.00 0.00000
10620.00 0.00000
10630.00 0.00000
10640.00 0.00000
10650.00 0.00000
10660.00 0.00000
10670.00 0.00000
10680.00 0.00000
10690.00 0.00000
10700.00 0.00000
10710.00 0.00000
10720.00 0.00000
10730.00 0.00000
10740.00 0.00000
10750.00 0.00000
10760.00 0.00000
10770.00 0.00000
10780.00 0.00000
10790.00 0.00000
10800.00 0.00000
10810.00 0.00000
10820.00 0.00000
10830.00 0.00000
10840.00 0.00000
10850.00 0.00000
10860.00 0.00000
10870.00 0.00000
10880.00 0.00000
10890.00 0.00000
10900.00 0.00000
10910.00 0.00000
10920.00 0.00000
10930.00 0.00000
10940.00 0.00000
10950.00 0.00000
10960.00 0.00000
10970.00 0.00000
10980.00 0.00000
10990.00 0.00000
11000.00 0.00000
# huble skybackground mean level, earthshine + zodical light
#wavelength(A) flux(photon/s/A/arcsec^2/m^2)
1000.0 6.062014541418706e-09
1005.0 1.1324002246856417e-08
1010.0 1.6638046446152143e-08
1015.0 2.2004147139305884e-08
1020.0 2.7422304326317643e-08
1025.0 3.289251800718741e-08
1030.0 3.8414788181915204e-08
1035.0 4.398911485050101e-08
1040.0 4.961549801294483e-08
1045.0 5.5293937669246676e-08
1050.0 6.102443381940653e-08
1055.0 6.68069864634244e-08
1060.0 7.26415956013003e-08
1065.0 7.852826123303418e-08
1070.0 8.446698335862612e-08
1075.0 9.045776197807603e-08
1080.0 9.650059709138398e-08
1085.0 1.0259548869854993e-07
1090.0 1.0874243679957394e-07
1095.0 1.1494144139445595e-07
1100.0 1.2119250248319594e-07
1105.0 1.1621516866148182e-07
1110.0 1.1118780580055496e-07
1115.0 1.0611041390041543e-07
1120.0 1.009829929610632e-07
1125.0 9.580554298249834e-08
1130.0 9.057806396472076e-08
1135.0 8.530055590773051e-08
1140.0 7.997301881152757e-08
1145.0 7.459545267611195e-08
1150.0 6.916785750148364e-08
1155.0 6.369023328764268e-08
1160.0 5.8162580034589e-08
1165.0 5.2584897742322656e-08
1170.0 4.695718641084362e-08
1175.0 4.127944604015191e-08
1180.0 3.5551676630247506e-08
1185.0 2.977387818113043e-08
1190.0 2.394605069280067e-08
1195.0 1.8068194165258228e-08
1200.0 1.2140308598503108e-08
1205.0 1.1911173524700924e-08
1210.0 1.1679717125645938e-08
1215.0 1.144593940133815e-08
1220.0 1.1209840351777559e-08
1225.0 1.0971419976964167e-08
1230.0 1.0730678276897972e-08
1235.0 1.0487615251578977e-08
1240.0 1.0242230901007181e-08
1245.0 9.994525225182583e-09
1250.0 9.744498224105179e-09
1255.0 9.49214989777498e-09
1260.0 9.237480246191975e-09
1265.0 8.980489269356168e-09
1270.0 8.721176967267561e-09
1275.0 8.45954333992615e-09
1280.0 8.19558838733194e-09
1285.0 7.929312109484926e-09
1290.0 7.660714506385111e-09
1295.0 7.389795578032495e-09
1300.0 7.116555324427076e-09
1305.0 6.840993745568856e-09
1310.0 6.5631108414578336e-09
1315.0 6.282906612094011e-09
1320.0 6.000381057477383e-09
1325.0 5.715534177607957e-09
1330.0 5.428365972485726e-09
1335.0 5.138876442110697e-09
1340.0 4.847065586482863e-09
1345.0 4.552933405602229e-09
1350.0 4.256479899468791e-09
1355.0 3.9577050680825545e-09
1360.0 3.656608911443514e-09
1365.0 3.3531914295516723e-09
1370.0 3.0474526224070294e-09
1375.0 2.7393924900095834e-09
1380.0 2.4290110323593374e-09
1385.0 2.1163082494562875e-09
1390.0 1.801284141300438e-09
1395.0 1.483938707891785e-09
1400.0 1.1642719492303297e-09
1405.0 1.302827183295651e-09
1410.0 1.442338980492367e-09
1415.0 1.5828073408204775e-09
1420.0 1.7242322642799823e-09
1425.0 1.866613750870882e-09
1430.0 2.009951800593176e-09
1435.0 2.154246413446864e-09
1440.0 2.2994975894319473e-09
1445.0 2.445705328548425e-09
1450.0 2.5928696307962963e-09
1455.0 2.7409904961755633e-09
1460.0 2.890067924686224e-09
1465.0 3.040101916328279e-09
1470.0 3.1910924711017297e-09
1475.0 3.343039589006575e-09
1480.0 3.495943270042813e-09
1485.0 3.649803514210447e-09
1490.0 3.804620321509474e-09
1495.0 3.960393691939896e-09
1500.0 4.117123625501715e-09
1505.0 8.93940767390179e-09
1510.0 1.3793642289099087e-08
1515.0 1.8679827471093606e-08
1520.0 2.3597963219885345e-08
1525.0 2.8548049535474305e-08
1530.0 3.353008641786049e-08
1535.0 3.8544073867043887e-08
1540.0 4.359001188302451e-08
1545.0 4.866790046580235e-08
1550.0 5.3777739615377417e-08
1555.0 5.8919529331749705e-08
1560.0 6.409326961491921e-08
1565.0 6.929896046488596e-08
1570.0 7.453660188164988e-08
1575.0 7.980619386521105e-08
1580.0 8.510773641556946e-08
1585.0 9.044122953272506e-08
1590.0 9.58066732166779e-08
1595.0 1.0120406746742795e-07
1600.0 1.0663341228497521e-07
1605.0 2.656467766234215e-07
1610.0 4.2564880223865926e-07
1615.0 5.866394891306888e-07
1620.0 7.486188372995099e-07
1625.0 9.115868467451226e-07
1630.0 1.075543517467527e-06
1635.0 1.2404888494667231e-06
1640.0 1.4064228427427105e-06
1645.0 1.5733454972954894e-06
1650.0 1.7412568131250607e-06
1655.0 1.9101567902314226e-06
1660.0 2.080045428614577e-06
1665.0 2.250922728274523e-06
1670.0 2.4227886892112605e-06
1675.0 2.595643311424789e-06
1680.0 2.76948659491511e-06
1685.0 2.9443185396822223e-06
1690.0 3.120139145726126e-06
1695.0 3.2969484130468213e-06
1700.0 3.474746341644308e-06
1705.0 3.6828985428956737e-06
1710.0 3.892211637748622e-06
1715.0 4.102685626203155e-06
1720.0 4.3143205082592715e-06
1725.0 4.527116283916972e-06
1730.0 4.741072953176257e-06
1735.0 4.956190516037125e-06
1740.0 5.172468972499578e-06
1745.0 5.389908322563615e-06
1750.0 5.608508566229232e-06
1755.0 5.828269703496438e-06
1760.0 6.0491917343652265e-06
1765.0 6.271274658835598e-06
1770.0 6.494518476907555e-06
1775.0 6.7189231885810926e-06
1780.0 6.944488793856216e-06
1785.0 7.171215292732926e-06
1790.0 7.399102685211216e-06
1795.0 7.6281509712910916e-06
1800.0 7.85836015097255e-06
1805.0 8.07091933107771e-06
1810.0 8.284535189309783e-06
1815.0 8.49920772566877e-06
1820.0 8.714936940154672e-06
1825.0 8.931722832767487e-06
1830.0 9.149565403507218e-06
1835.0 9.368464652373863e-06
1840.0 9.588420579367423e-06
1845.0 9.809433184487896e-06
1850.0 1.0031502467735282e-05
1855.0 1.0254628429109583e-05
1860.0 1.0478811068610799e-05
1865.0 1.0704050386238928e-05
1870.0 1.0930346381993973e-05
1875.0 1.115769905587593e-05
1880.0 1.1386108407884804e-05
1885.0 1.1615574438020591e-05
1890.0 1.184609714628329e-05
1895.0 1.2077676532672904e-05
1900.0 1.2310312597189432e-05
1905.0 1.2712087023747278e-05
1910.0 1.3115800446982773e-05
1915.0 1.3521452866895907e-05
1920.0 1.3929044283486693e-05
1925.0 1.433857469675512e-05
1930.0 1.4750044106701198e-05
1935.0 1.5163452513324916e-05
1940.0 1.5578799916626283e-05
1945.0 1.59960863166053e-05
1950.0 1.6415311713261957e-05
1955.0 1.6836476106596262e-05
1960.0 1.7259579496608216e-05
1965.0 1.7684621883297813e-05
1970.0 1.8111603266665053e-05
1975.0 1.8540523646709943e-05
1980.0 1.8971383023432478e-05
1985.0 1.940418139683266e-05
1990.0 1.9838918766910488e-05
1995.0 2.027559513366596e-05
2000.0 2.071421049709908e-05
2005.0 2.327957785004678e-05
2010.0 2.5857481770708722e-05
2015.0 2.8447922259084894e-05
2020.0 3.105089931517531e-05
2025.0 3.3666412938979966e-05
2030.0 3.6294463130498865e-05
2035.0 3.893504988973199e-05
2040.0 4.158817321667937e-05
2045.0 4.425383311134099e-05
2050.0 4.6932029573716845e-05
2055.0 4.9622762603806926e-05
2060.0 5.232603220161126e-05
2065.0 5.504183836712983e-05
2070.0 5.7770181100362636e-05
2075.0 6.051106040130968e-05
2080.0 6.326447626997097e-05
2085.0 6.60304287063465e-05
2090.0 6.880891771043627e-05
2095.0 7.159994328224026e-05
2100.0 7.440350542175852e-05
2105.0 7.745262372366961e-05
2110.0 8.051538557474235e-05
2115.0 8.359179097497673e-05
2120.0 8.668183992437276e-05
2125.0 8.978553242293042e-05
2130.0 9.290286847064974e-05
2135.0 9.60338480675307e-05
2140.0 9.917847121357329e-05
2145.0 0.00010233673790877756
2150.0 0.00010550864815314345
2155.0 0.00010869420194667097
2160.0 0.00011189339928936014
2165.0 0.00011510624018121096
2170.0 0.00011833272462222341
2175.0 0.00012157285261239751
2180.0 0.00012482662415173328
2185.0 0.00012809403924023065
2190.0 0.0001313750978778897
2195.0 0.00013466980006471039
2200.0 0.0001379781458006927
2205.0 0.00013697162005895603
2210.0 0.00013595910741274437
2215.0 0.00013494060786205768
2220.0 0.00013391612140689602
2225.0 0.00013288564804725934
2230.0 0.0001318491877831476
2235.0 0.00013080674061456097
2240.0 0.00012975830654149924
2245.0 0.00012870388556396258
2250.0 0.00012764347768195084
2255.0 0.00012657708289546412
2260.0 0.00012550470120450242
2265.0 0.00012442633260906571
2270.0 0.000123341977109154
2275.0 0.0001222516347047673
2280.0 0.00012115530539590555
2285.0 0.00012005298918256885
2290.0 0.00011894468606475708
2295.0 0.00011783039604247039
2300.0 0.00011671011911570866
2305.0 0.00011709491260915991
2310.0 0.00011748027476136693
2315.0 0.00011786620557232971
2320.0 0.00011825270504204823
2325.0 0.00011863977317052247
2330.0 0.00011902740995775252
2335.0 0.00011941561540373824
2340.0 0.00011980438950847977
2345.0 0.00012019373227197702
2350.0 0.00012058364369422999
2355.0 0.00012097412377523875
2360.0 0.00012136517251500323
2365.0 0.0001217567899135235
2370.0 0.00012214897597079947
2375.0 0.0001225417306868312
2380.0 0.00012293505406161867
2385.0 0.00012332894609516193
2390.0 0.0001237234067874609
2395.0 0.00012411843613851565
2400.0 0.0001245140341483261
2405.0 0.00012714023131933059
2410.0 0.0001297762696251924
2415.0 0.00013242214906591162
2420.0 0.00013507786964148816
2425.0 0.00013774343135192208
2430.0 0.00014041883419721335
2435.0 0.000143104078177362
2440.0 0.000145799163292368
2445.0 0.00014850408954223136
2450.0 0.00015121885692695206
2455.0 0.00015394346544653017
2460.0 0.00015667791510096563
2465.0 0.00015942220589025842
2470.0 0.0001621763378144086
2475.0 0.00016494031087341615
2480.0 0.000167714125067281
2485.0 0.00017049778039600328
2490.0 0.00017329127685958287
2495.0 0.00017609461445801988
2500.0 0.00017890779319131418
2505.0 0.00018094365741134615
2510.0 0.00018298622042831872
2515.0 0.00018503548224223207
2520.0 0.0001870914428530861
2525.0 0.0001891541022608809
2530.0 0.00019122346046561634
2535.0 0.00019329951746729256
2540.0 0.0001953822732659095
2545.0 0.00019747172786146707
2550.0 0.00019956788125396544
2555.0 0.00020167073344340452
2560.0 0.0002037802844297843
2565.0 0.00020589653421310478
2570.0 0.000208019482793366
2575.0 0.00021014913017056787
2580.0 0.00021228547634471055
2585.0 0.00021442852131579388
2590.0 0.00021657826508381795
2595.0 0.00021873470764878275
2600.0 0.00022089784901068826
2605.0 0.0002479953230516333
2610.0 0.00027519518738234857
2615.0 0.0003024974420028341
2620.0 0.00032990208691309003
2625.0 0.00035740912211311616
2630.0 0.00038501854760291255
2635.0 0.0004127303633824792
2640.0 0.00044054456945181607
2645.0 0.0004684611658109233
2650.0 0.0004964801524598007
2655.0 0.0005246015293984484
2660.0 0.0005528252966268666
2665.0 0.0005811514541450546
2670.0 0.0006095800019530132
2675.0 0.000638110940050742
2680.0 0.0006667442684382412
2685.0 0.0006954799871155105
2690.0 0.0007243180960825502
2695.0 0.0007532585953393599
2700.0 0.0007823014848859402
2705.0 0.0007556728768021461
2710.0 0.0007289404708827242
2715.0 0.0007021042671276747
2720.0 0.0006751642655369976
2725.0 0.0006481204661106927
2730.0 0.0006209728688487601
2735.0 0.0005937214737511999
2740.0 0.000566366280818012
2745.0 0.0005389072900491964
2750.0 0.0005113445014447532
2755.0 0.00048367791500468233
2760.0 0.0004559075307289837
2765.0 0.0004280333486176574
2770.0 0.00040005536867070347
2775.0 0.0003719735908881218
2780.0 0.00034378801526991243
2785.0 0.00031549864181607554
2790.0 0.0002871054705266108
2795.0 0.0002586085014015184
2800.0 0.00023000773444079842
2805.0 0.0003032463272527141
2810.0 0.0003767445559459658
2815.0 0.00045050242052055314
2820.0 0.0005245199209764765
2825.0 0.0005987970573137354
2830.0 0.0006733338295323304
2835.0 0.0007481302376322609
2840.0 0.0008231862816135275
2845.0 0.00089850196147613
2850.0 0.0009740772772200681
2855.0 0.0010499122288453423
2860.0 0.0011260068163519523
2865.0 0.0012023610397398977
2870.0 0.0012789748990091792
2875.0 0.0013558483941597966
2880.0 0.0014329815251917497
2885.0 0.0015103742921050388
2890.0 0.0015880266948996636
2895.0 0.0016659387335756243
2900.0 0.001744110408132921
2905.0 0.0017136314040109434
2910.0 0.001683037129351848
2915.0 0.0016523275841556356
2920.0 0.001621502768422306
2925.0 0.0015905626821518595
2930.0 0.0015595073253442955
2935.0 0.0015283366979996146
2940.0 0.0014970508001178162
2945.0 0.0014656496316989007
2950.0 0.0014341331927428679
2955.0 0.001402501483249718
2960.0 0.0013707545032194506
2965.0 0.001338892252652066
2970.0 0.0013069147315475647
2975.0 0.0012748219399059458
2980.0 0.0012426138777272093
2985.0 0.001210290545011356
2990.0 0.0011778519417583856
2995.0 0.0011452980679682978
3000.0 0.001112628923641093
3005.0 0.0011300853582804423
3010.0 0.0011475937132296088
3015.0 0.001165153988488592
3020.0 0.0011827661840573915
3025.0 0.0012004302999360085
3030.0 0.001218146336124442
3035.0 0.0012359142926226924
3040.0 0.0012537341694307594
3045.0 0.001271605966548643
3050.0 0.001289529683976344
3055.0 0.0013075053217138615
3060.0 0.0013255328797611957
3065.0 0.001343612358118347
3070.0 0.0013617437567853149
3075.0 0.0013799270757620995
3080.0 0.001398162315048701
3085.0 0.001416449474645119
3090.0 0.0014347885545513543
3095.0 0.0014531795547674065
3100.0 0.0014716224752932747
3105.0 0.0015154755320681617
3110.0 0.0015594621781252946
3115.0 0.0016035824134646728
3120.0 0.0016478362380862974
3125.0 0.0016922236519901674
3130.0 0.0017367446551762832
3135.0 0.001781399247644645
3140.0 0.0018261874293952524
3145.0 0.0018711092004281052
3150.0 0.0019161645607432046
3155.0 0.001961353510340549
3160.0 0.00200667604922014
3165.0 0.002052132177381976
3170.0 0.002097721894826058
3175.0 0.0021434452015523862
3180.0 0.00218930209756096
3185.0 0.0022352925828517797
3190.0 0.0022814166574248447
3195.0 0.002327674321280156
3200.0 0.002374065574417713
3205.0 0.002396407454528067
3210.0 0.0024188074700601065
3215.0 0.0024412656210138317
3220.0 0.002463781907389243
3225.0 0.002486356329186341
3230.0 0.002508988886405124
3235.0 0.0025316795790455934
3240.0 0.002554428407107748
3245.0 0.002577235370591589
3250.0 0.0026001004694971154
3255.0 0.0026230237038243277
3260.0 0.0026460050735732264
3265.0 0.002669044578743811
3270.0 0.002692142219336081
3275.0 0.002715297995350038
3280.0 0.0027385119067856794
3285.0 0.0027617839536430077
3290.0 0.002785114135922021
3295.0 0.002808502453622721
3300.0 0.0028319489067451064
3305.0 0.002855453495289178
3310.0 0.0028790162192549357
3315.0 0.0029026370786423786
3320.0 0.002926316073451508
3325.0 0.0029500532036823225
3330.0 0.0029738484693348235
3335.0 0.0029977018704090107
3340.0 0.0030216134069048833
3345.0 0.0030455830788224418
3350.0 0.003069610886161686
3355.0 0.0030936968289226167
3360.0 0.003117840907105233
3365.0 0.0031420431207095354
3370.0 0.0031663034697355236
3375.0 0.0031906219541831967
3380.0 0.003214998574052557
3385.0 0.003239433329343603
3390.0 0.0032639262200563346
3395.0 0.003288477246190751
3400.0 0.0033130864077468548
3405.0 0.003321724067055163
3410.0 0.003330372785022544
3415.0 0.0033390325616489995
3420.0 0.0033477033969345287
3425.0 0.003356385290879132
3430.0 0.003365078243482808
3435.0 0.0033737822547455576
3440.0 0.0033824973246673806
3445.0 0.003391223453248277
3450.0 0.003399960640488249
3455.0 0.0034087088863872924
3460.0 0.003417468190945411
3465.0 0.003426238554162602
3470.0 0.0034350199760388666
3475.0 0.0034438124565742056
3480.0 0.003452615995768618
3485.0 0.0034614305936221034
3490.0 0.003470256250134663
3495.0 0.0034790929653062963
3500.0 0.0034879407391370026
3505.0 0.0035009664271809385
3510.0 0.003514015062202219
3515.0 0.003527086644200845
3520.0 0.0035401811731768165
3525.0 0.0035532986491301323
3530.0 0.0035664390720607933
3535.0 0.0035796024419687987
3540.0 0.0035927887588541505
3545.0 0.003605998022716847
3550.0 0.003619230233556889
3555.0 0.0036324853913742754
3560.0 0.0036457634961690063
3565.0 0.0036590645479410836
3570.0 0.0036723885466905053
3575.0 0.0036857354924172726
3580.0 0.003699105385121384
3585.0 0.003712498224802841
3590.0 0.0037259140114616436
3595.0 0.0037393527450977912
3600.0 0.003752814425711283
3605.0 0.0037950234170193533
3610.0 0.0038373350345383807
3615.0 0.003879749278268364
3620.0 0.003922266148209306
3625.0 0.0039648856443612055
3630.0 0.004007607766724061
3635.0 0.004050432515297875
3640.0 0.004093359890082647
3645.0 0.004136389891078376
3650.0 0.004179522518285061
3655.0 0.004222757771702705
3660.0 0.004266095651331307
3665.0 0.004309536157170864
3670.0 0.00435307928922138
3675.0 0.004396725047482853
3680.0 0.0044404734319552835
3685.0 0.004484324442638672
3690.0 0.004528278079533017
3695.0 0.004572334342638319
3700.0 0.004616493231954578
3705.0 0.0046124722536385445
3710.0 0.004608423584411084
3715.0 0.004604347224272196
3720.0 0.004600243173221882
3725.0 0.004596111431260142
3730.0 0.004591951998386975
3735.0 0.004587764874602381
3740.0 0.004583550059906362
3745.0 0.004579307554298915
3750.0 0.004575037357780041
3755.0 0.004570739470349742
3760.0 0.004566413892008016
3765.0 0.004562060622754863
3770.0 0.004557679662590283
3775.0 0.004553271011514277
3780.0 0.0045488346695268436
3785.0 0.0045443706366279845
3790.0 0.004539878912817699
3795.0 0.004535359498095987
3800.0 0.004530812392462847
3805.0 0.004562768196679388
3810.0 0.004594792316819616
3815.0 0.004626884752883532
3820.0 0.004659045504871137
3825.0 0.004691274572782429
3830.0 0.004723571956617409
3835.0 0.004755937656376078
3840.0 0.0047883716720584345
3845.0 0.004820874003664478
3850.0 0.00485344465119421
3855.0 0.00488608361464763
3860.0 0.004918790894024738
3865.0 0.004951566489325536
3870.0 0.00498441040055002
3875.0 0.005017322627698192
3880.0 0.0050503031707700525
3885.0 0.0050833520297656025
3890.0 0.005116469204684839
3895.0 0.005149654695527763
3900.0 0.005182908502294377
3905.0 0.005303572726882924
3910.0 0.005424528934749572
3915.0 0.005545777125894321
3920.0 0.005667317300317171
3925.0 0.005789149458018122
3930.0 0.005911273598997175
3935.0 0.006033689723254326
3940.0 0.0061563978307895804
3945.0 0.006279397921602936
3950.0 0.006402689995694391
3955.0 0.006526274053063948
3960.0 0.006650150093711606
3965.0 0.006774318117637365
3970.0 0.0068987781248412245
3975.0 0.007023530115323184
3980.0 0.007148574089083247
3985.0 0.007273910046121409
3990.0 0.007399537986437672
3995.0 0.007525457910032037
4000.0 0.007651669816904504
4005.0 0.007659843135265862
4010.0 0.007668012979797236
4015.0 0.00767617935049862
4020.0 0.00768434224737002
4025.0 0.007692501670411432
4030.0 0.007700657619622858
4035.0 0.007708810095004297
4040.0 0.007716959096555747
4045.0 0.00772510462427721
4050.0 0.007733246678168689
4055.0 0.007741385258230179
4060.0 0.0077495203644616815
4065.0 0.007757651996863199
4070.0 0.007765780155434729
4075.0 0.007773904840176271
4080.0 0.007782026051087828
4085.0 0.007790143788169395
4090.0 0.007798258051420978
4095.0 0.007806368840842572
4100.0 0.00781447615643418
4105.0 0.007822579998195802
4110.0 0.007830680366127435
4115.0 0.007838777260229083
4120.0 0.007846870680500741
4125.0 0.007854960626942414
4130.0 0.007863047099554103
4135.0 0.007871130098335802
4140.0 0.007879209623287513
4145.0 0.00788728567440924
4150.0 0.007895358251700976
4155.0 0.007903427355162728
4160.0 0.007911492984794492
4165.0 0.007919555140596272
4170.0 0.007927613822568062
4175.0 0.007935669030709865
4180.0 0.007943720765021683
4185.0 0.00795176902550351
4190.0 0.007959813812155356
4195.0 0.007967855124977212
4200.0 0.00797589296396908
4205.0 0.007983927329130964
4210.0 0.007991958220462858
4215.0 0.007999985637964764
4220.0 0.008008009581636687
4225.0 0.00801603005147862
4230.0 0.00802404704749057
4235.0 0.00803206056967253
4240.0 0.008040070618024503
4245.0 0.008048077192546488
4250.0 0.008056080293238487
4255.0 0.008096526315512843
4260.0 0.008137045118705534
4265.0 0.008177636702816567
4270.0 0.008218301067845933
4275.0 0.008259038213793642
4280.0 0.008299848140659687
4285.0 0.008340730848444073
4290.0 0.008381686337146792
4295.0 0.008422714606767853
4300.0 0.008463815657307252
4305.0 0.008504989488764988
4310.0 0.008546236101141063
4315.0 0.008587555494435475
4320.0 0.008628947668648225
4325.0 0.008670412623779312
4330.0 0.008711950359828741
4335.0 0.008753560876796507
4340.0 0.00879524417468261
4345.0 0.00883700025348705
4350.0 0.008878829113209832
4355.0 0.008920730753850949
4360.0 0.008962705175410406
4365.0 0.009004752377888201
4370.0 0.009046872361284332
4375.0 0.009089065125598803
4380.0 0.00913133067083161
4385.0 0.009173668996982761
4390.0 0.009216080104052246
4395.0 0.009258563992040067
4400.0 0.009301120660946228
4405.0 0.00934375011077073
4410.0 0.009386452341513567
4415.0 0.009429227353174743
4420.0 0.009472075145754258
4425.0 0.009514995719252111
4430.0 0.009557989073668303
4435.0 0.009601055209002831
4440.0 0.0096441941252557
4445.0 0.009687405822426904
4450.0 0.009730690300516449
4455.0 0.00977404755952433
4460.0 0.009817477599450548
4465.0 0.009860980420295106
4470.0 0.009904556022058005
4475.0 0.009948204404739239
4480.0 0.00999192556833881
4485.0 0.010035719512856723
4490.0 0.01007958623829297
4495.0 0.010123525744647557
4500.0 0.010167538031920484
4505.0 0.010171012488436406
4510.0 0.01017446958022877
4515.0 0.010177909307297572
4520.0 0.010181331669642813
4525.0 0.010184736667264497
4530.0 0.010188124300162617
4535.0 0.01019149456833718
4540.0 0.010194847471788178
4545.0 0.01019818301051562
4550.0 0.010201501184519497
4555.0 0.010204801993799816
4560.0 0.010208085438356574
4565.0 0.010211351518189773
4570.0 0.010214600233299408
4575.0 0.010217831583685489
4580.0 0.010221045569348004
4585.0 0.010224242190286961
4590.0 0.010227421446502356
4595.0 0.010230583337994191
4600.0 0.010233727864762466
4605.0 0.010236855026807181
4610.0 0.010239964824128336
4615.0 0.010243057256725929
4620.0 0.01024613232459996
4625.0 0.010249190027750434
4630.0 0.010252230366177345
4635.0 0.010255253339880695
4640.0 0.01025825894886049
4645.0 0.010261247193116716
4650.0 0.010264218072649389
4655.0 0.010267171587458497
4660.0 0.010270107737544049
4665.0 0.010273026522906036
4670.0 0.010275927943544465
4675.0 0.01027881199945933
4680.0 0.01028167869065064
4685.0 0.010284528017118388
4690.0 0.010287359978862574
4695.0 0.010290174575883198
4700.0 0.010292971808180265
4705.0 0.01029575167575377
4710.0 0.010298514178603713
4715.0 0.010301259316730097
4720.0 0.01030398709013292
4725.0 0.010306697498812186
4730.0 0.010309390542767886
4735.0 0.01031206622200003
4740.0 0.010314724536508611
4745.0 0.010317365486293632
4750.0 0.010319989071355094
4755.0 0.010322595291692995
4760.0 0.010325184147307332
4765.0 0.010327755638198115
4770.0 0.010330309764365333
4775.0 0.010332846525808992
4780.0 0.01033536592252909
4785.0 0.010337867954525628
4790.0 0.010340352621798606
4795.0 0.010342819924348021
4800.0 0.010345269862173876
4805.0 0.010347702435276173
4810.0 0.01035011764365491
4815.0 0.010352515487310084
4820.0 0.010354895966241697
4825.0 0.010357259080449752
4830.0 0.010359604829934244
4835.0 0.010361933214695179
4840.0 0.010364244234732551
4845.0 0.010366537890046362
4850.0 0.010368814180636616
4855.0 0.010371073106503306
4860.0 0.010373314667646438
4865.0 0.010375538864066006
4870.0 0.010377745695762016
4875.0 0.010379935162734466
4880.0 0.010382107264983354
4885.0 0.010384262002508684
4890.0 0.010386399375310452
4895.0 0.01038851938338866
4900.0 0.010390622026743306
4905.0 0.010392707305374392
4910.0 0.010394775219281917
4915.0 0.010396825768465883
4920.0 0.010398858952926289
4925.0 0.010400874772663134
4930.0 0.010402873227676418
4935.0 0.010404854317966143
4940.0 0.010406818043532304
4945.0 0.010408764404374908
4950.0 0.010410693400493951
4955.0 0.010412605031889432
4960.0 0.010414499298561353
4965.0 0.010416376200509716
4970.0 0.010418235737734515
4975.0 0.010420077910235758
4980.0 0.010421902718013434
4985.0 0.010423710161067556
4990.0 0.010425500239398115
4995.0 0.010427272953005112
5000.0 0.01042902830188855
5005.0 0.010450896385217042
5010.0 0.010472787323800331
5015.0 0.01049470111763842
5020.0 0.010516637766731307
5025.0 0.010538597271078993
5030.0 0.010560579630681476
5035.0 0.01058258484553876
5040.0 0.010604612915650841
5045.0 0.010626663841017719
5050.0 0.010648737621639395
5055.0 0.01067083425751587
5060.0 0.010692953748647146
5065.0 0.01071509609503322
5070.0 0.01073726129667409
5075.0 0.010759449353569758
5080.0 0.010781660265720227
5085.0 0.010803894033125492
5090.0 0.010826150655785557
5095.0 0.010848430133700421
5100.0 0.010870732466870082
5105.0 0.010893057655294542
5110.0 0.010915405698973802
5115.0 0.010937776597907858
5120.0 0.010960170352096713
5125.0 0.010982586961540365
5130.0 0.011005026426238818
5135.0 0.011027488746192067
5140.0 0.011049973921400117
5145.0 0.011072481951862964
5150.0 0.011095012837580609
5155.0 0.011117566578553052
5160.0 0.011140143174780296
5165.0 0.011162742626262337
5170.0 0.011185364932999176
5175.0 0.011208010094990815
5180.0 0.011230678112237248
5185.0 0.011253368984738485
5190.0 0.011276082712494518
5195.0 0.011298819295505347
5200.0 0.011321578733770977
5205.0 0.011344361027291406
5210.0 0.011367166176066633
5215.0 0.011389994180096657
5220.0 0.01141284503938148
5225.0 0.0114357187539211
5230.0 0.011458615323715522
5235.0 0.011481534748764741
5240.0 0.011504477029068757
5245.0 0.011527442164627573
5250.0 0.011550430155441186
5255.0 0.01155661730472812
5260.0 0.01156279529462327
5265.0 0.011568964125126627
5270.0 0.011575123796238197
5275.0 0.011581274307957978
5280.0 0.011587415660285968
5285.0 0.011593547853222173
5290.0 0.011599670886766587
5295.0 0.011605784760919214
5300.0 0.011611889475680053
5305.0 0.011617985031049102
5310.0 0.011624071427026362
5315.0 0.011630148663611834
5320.0 0.011636216740805519
5325.0 0.011642275658607414
5330.0 0.011648325417017519
5335.0 0.011654366016035837
5340.0 0.011660397455662367
5345.0 0.011666419735897108
5350.0 0.011672432856740057
5355.0 0.01167843681819122
5360.0 0.011684431620250596
5365.0 0.011690417262918182
5370.0 0.011696393746193981
5375.0 0.011702361070077988
5380.0 0.011708319234570209
5385.0 0.011714268239670641
5390.0 0.011720208085379283
5395.0 0.011726138771696138
5400.0 0.011732060298621203
5405.0 0.01173797266615448
5410.0 0.011743875874295968
5415.0 0.011749769923045668
5420.0 0.011755654812403581
5425.0 0.011761530542369702
5430.0 0.011767397112944037
5435.0 0.011773254524126583
5440.0 0.01177910277591734
5445.0 0.011784941868316308
5450.0 0.011790771801323487
5455.0 0.01179659257493888
5460.0 0.011802404189162482
5465.0 0.011808206643994294
5470.0 0.011813999939434319
5475.0 0.011819784075482556
5480.0 0.011825559052139003
5485.0 0.011831324869403664
5490.0 0.011837081527276534
5495.0 0.011842829025757616
5500.0 0.01184856736484691
5505.0 0.011862374443121321
5510.0 0.011876187035752495
5515.0 0.011890005142740426
5520.0 0.011903828764085122
5525.0 0.011917657899786577
5530.0 0.011931492549844795
5535.0 0.011945332714259776
5540.0 0.01195917839303152
5545.0 0.011973029586160021
5550.0 0.011986886293645287
5555.0 0.012000748515487313
5560.0 0.0120146162516861
5565.0 0.012028489502241651
5570.0 0.012042368267153962
5575.0 0.012056252546423035
5580.0 0.01207014234004887
5585.0 0.012084037648031466
5590.0 0.012097938470370825
5595.0 0.012111844807066943
5600.0 0.012125756658119827
5605.0 0.01213967402352947
5610.0 0.012153596903295873
5615.0 0.01216752529741904
5620.0 0.012181459205898967
5625.0 0.012195398628735655
5630.0 0.012209343565929107
5635.0 0.012223294017479317
5640.0 0.012237249983386296
5645.0 0.01225121146365003
5650.0 0.012265178458270527
5655.0 0.012279150967247788
5660.0 0.012293128990581808
5665.0 0.012307112528272589
5670.0 0.012321101580320135
5675.0 0.012335096146724438
5680.0 0.012349096227485507
5685.0 0.012363101822603337
5690.0 0.012377112932077926
5695.0 0.012391129555909278
5700.0 0.012405151694097392
5705.0 0.01241917934664227
5710.0 0.012433212513543904
5715.0 0.012447251194802306
5720.0 0.012461295390417465
5725.0 0.012475345100389387
5730.0 0.01248940032471807
5735.0 0.012503461063403516
5740.0 0.01251752731644572
5745.0 0.01253159908384469
5750.0 0.01254567636560042
5755.0 0.012545781096577774
5760.0 0.012545867053353879
5765.0 0.012545934235928733
5770.0 0.012545982644302341
5775.0 0.0125460122784747
5780.0 0.012546023138445809
5785.0 0.012546015224215668
5790.0 0.012545988535784276
5795.0 0.012545943073151638
5800.0 0.012545878836317751
5805.0 0.012545795825282615
5810.0 0.01254569404004623
5815.0 0.012545573480608594
5820.0 0.012545434146969712
5825.0 0.012545276039129574
5830.0 0.012545099157088197
5835.0 0.012544903500845564
5840.0 0.012544689070401686
5845.0 0.012544455865756556
5850.0 0.012544203886910178
5855.0 0.01254393313386255
5860.0 0.012543643606613674
5865.0 0.01254333530516355
5870.0 0.012543008229512173
5875.0 0.012542662379659553
5880.0 0.01254229775560568
5885.0 0.012541914357350558
5890.0 0.012541512184894188
5895.0 0.01254109123823657
5900.0 0.012540651517377701
5905.0 0.012540193022317583
5910.0 0.012539715753056216
5915.0 0.012539219709593602
5920.0 0.012538704891929736
5925.0 0.012538171300064623
5930.0 0.012537618933998263
5935.0 0.012537047793730651
5940.0 0.01253645787926179
5945.0 0.01253584919059168
5950.0 0.012535221727720322
5955.0 0.012534575490647713
5960.0 0.012533910479373855
5965.0 0.012533226693898749
5970.0 0.012532524134222395
5975.0 0.012531802800344794
5980.0 0.012531062692265938
5985.0 0.012530303809985838
5990.0 0.012529526153504486
5995.0 0.012528729722821885
6000.0 0.012527914517938037
6005.0 0.012527610530212086
6010.0 0.012527288650868329
6015.0 0.012526948879906772
6020.0 0.012526591217327406
6025.0 0.012526215663130242
6030.0 0.012525822217315269
6035.0 0.012525410879882501
6040.0 0.012524981650831924
6045.0 0.012524534530163545
6050.0 0.012524069517877361
6055.0 0.012523586613973375
6060.0 0.012523085818451588
6065.0 0.012522567131311993
6070.0 0.0125220305525546
6075.0 0.012521476082179397
6080.0 0.012520903720186397
6085.0 0.012520313466575594
6090.0 0.01251970532134698
6095.0 0.01251907928450057
6100.0 0.012518435356036353
6105.0 0.012517773535954336
6110.0 0.01251709382425451
6115.0 0.012516396220936888
6120.0 0.012515680726001458
6125.0 0.012514947339448223
6130.0 0.012514196061277188
6135.0 0.012513426891488353
6140.0 0.012512639830081707
6145.0 0.012511834877057263
6150.0 0.012511012032415012
6155.0 0.012510171296154959
6160.0 0.012509312668277105
6165.0 0.012508436148781443
6170.0 0.012507541737667983
6175.0 0.012506629434936717
6180.0 0.012505699240587647
6185.0 0.012504751154620774
6190.0 0.012503785177036101
6195.0 0.012502801307833622
6200.0 0.012501799547013337
6205.0 0.012500779894575254
6210.0 0.012499742350519361
6215.0 0.012498686914845672
6220.0 0.012497613587554175
6225.0 0.012496522368644878
6230.0 0.012495413258117776
6235.0 0.012494286255972866
6240.0 0.012493141362210159
6245.0 0.012491978576829649
6250.0 0.01249079789983133
6255.0 0.012495785632139699
6260.0 0.012500765362999608
6265.0 0.012505737092411057
6270.0 0.012510700820374046
6275.0 0.012515656546888576
6280.0 0.01252060427195465
6285.0 0.012525543995572258
6290.0 0.01253047571774141
6295.0 0.012535399438462103
6300.0 0.012540315157734332
6305.0 0.012545222875558103
6310.0 0.01255012259193342
6315.0 0.012555014306860271
6320.0 0.012559898020338665
6325.0 0.012564773732368598
6330.0 0.012569641442950072
6335.0 0.012574501152083088
6340.0 0.012579352859767643
6345.0 0.01258419656600374
6350.0 0.012589032270791372
6355.0 0.01259385997413055
6360.0 0.012598679676021265
6365.0 0.012603491376463525
6370.0 0.012608295075457321
6375.0 0.012613090773002659
6380.0 0.012617878469099536
6385.0 0.012622658163747951
6390.0 0.012627429856947911
6395.0 0.01263219354869941
6400.0 0.012636949239002451
6405.0 0.01264169692785703
6410.0 0.012646436615263152
6415.0 0.012651168301220811
6420.0 0.012655891985730014
6425.0 0.012660607668790754
6430.0 0.012665315350403036
6435.0 0.012670015030566856
6440.0 0.012674706709282219
6445.0 0.012679390386549121
6450.0 0.012684066062367563
6455.0 0.012688733736737548
6460.0 0.012693393409659073
6465.0 0.012698045081132137
6470.0 0.012702688751156743
6475.0 0.012707324419732888
6480.0 0.012711952086860573
6485.0 0.012716571752539799
6490.0 0.012721183416770563
6495.0 0.012725787079552872
6500.0 0.012730382740886717
6505.0 0.012729747080689507
6510.0 0.012729095389343484
6515.0 0.012728427666848641
6520.0 0.012727743913204984
6525.0 0.012727044128412504
6530.0 0.01272632831247121
6535.0 0.012725596465381097
6540.0 0.01272484858714217
6545.0 0.012724084677754424
6550.0 0.012723304737217861
6555.0 0.012722508765532478
6560.0 0.012721696762698284
6565.0 0.012720868728715268
6570.0 0.012720024663583438
6575.0 0.012719164567302788
6580.0 0.012718288439873321
6585.0 0.012717396281295038
6590.0 0.012716488091567937
6595.0 0.012715563870692023
6600.0 0.012714623618667284
6605.0 0.012713667335493733
6610.0 0.012712695021171363
6615.0 0.01271170667570018
6620.0 0.012710702299080173
6625.0 0.012709681891311353
6630.0 0.012708645452393714
6635.0 0.01270759298232726
6640.0 0.012706524481111989
6645.0 0.012705439948747899
6650.0 0.012704339385234988
6655.0 0.012703222790573265
6660.0 0.012702090164762727
6665.0 0.012700941507803367
6670.0 0.012699776819695193
6675.0 0.0126985961004382
6680.0 0.01269739935003239
6685.0 0.01269618656847776
6690.0 0.012694957755774316
6695.0 0.012693712911922056
6700.0 0.012692452036920977
6705.0 0.012691175130771082
6710.0 0.012689882193472368
6715.0 0.012688573225024837
6720.0 0.012687248225428494
6725.0 0.012685907194683326
6730.0 0.012684550132789343
6735.0 0.012683177039746547
6740.0 0.012681787915554929
6745.0 0.012680382760214498
6750.0 0.012678961573725247
6755.0 0.0126722541108143
6760.0 0.01266552281476302
6765.0 0.012658767685571396
6770.0 0.012651988723239435
6775.0 0.012645185927767134
6780.0 0.012638359299154495
6785.0 0.012631508837401514
6790.0 0.012624634542508197
6795.0 0.012617736414474546
6800.0 0.012610814453300551
6805.0 0.012603868658986217
6810.0 0.012596899031531541
6815.0 0.012589905570936533
6820.0 0.012582888277201184
6825.0 0.012575847150325494
6830.0 0.012568782190309467
6835.0 0.012561693397153097
6840.0 0.012554580770856394
6845.0 0.012547444311419353
6850.0 0.012540284018841968
6855.0 0.012533099893124247
6860.0 0.012525891934266186
6865.0 0.012518660142267787
6870.0 0.012511404517129048
6875.0 0.012504125058849968
6880.0 0.012496821767430557
6885.0 0.0124894946428708
6890.0 0.012482143685170708
6895.0 0.012474768894330274
6900.0 0.012467370270349505
6905.0 0.012459947813228393
6910.0 0.012452501522966945
6915.0 0.012445031399565156
6920.0 0.01243753744302303
6925.0 0.012430019653340564
6930.0 0.01242247803051776
6935.0 0.012414912574554616
6940.0 0.012407323285451135
6945.0 0.012399710163207314
6950.0 0.012392073207823154
6955.0 0.012384412419298656
6960.0 0.012376727797633817
6965.0 0.01236901934282864
6970.0 0.012361287054883128
6975.0 0.012353530933797272
6980.0 0.01234575097957108
6985.0 0.012337947192204546
6990.0 0.012330119571697678
6995.0 0.012322268118050468
7000.0 0.012314392831262918
7005.0 0.012317936211134214
7010.0 0.012321472092625768
7015.0 0.012325000475737586
7020.0 0.012328521360469658
7025.0 0.012332034746821992
7030.0 0.012335540634794587
7035.0 0.01233903902438744
7040.0 0.012342529915600553
7045.0 0.012346013308433925
7050.0 0.012349489202887556
7055.0 0.012352957598961448
7060.0 0.012356418496655598
7065.0 0.012359871895970008
7070.0 0.012363317796904676
7075.0 0.012366756199459606
7080.0 0.012370187103634796
7085.0 0.012373610509430243
7090.0 0.012377026416845953
7095.0 0.012380434825881921
7100.0 0.012383835736538147
7105.0 0.012387229148814634
7110.0 0.012390615062711382
7115.0 0.012393993478228388
7120.0 0.012397364395365651
7125.0 0.012400727814123175
7130.0 0.012404083734500963
7135.0 0.012407432156499006
7140.0 0.012410773080117309
7145.0 0.012414106505355875
7150.0 0.012417432432214697
7155.0 0.012420750860693778
7160.0 0.012424061790793119
7165.0 0.012427365222512721
7170.0 0.012430661155852582
7175.0 0.012433949590812702
7180.0 0.012437230527393085
7185.0 0.012440503965593723
7190.0 0.012443769905414622
7195.0 0.012447028346855779
7200.0 0.0124502792899172
7205.0 0.012453522734598875
7210.0 0.012456758680900815
7215.0 0.012459987128823012
7220.0 0.012463208078365469
7225.0 0.012466421529528185
7230.0 0.012469627482311162
7235.0 0.012472825936714395
7240.0 0.012476016892737892
7245.0 0.012479200350381647
7250.0 0.01248237630964566
7255.0 0.012478149182323806
7260.0 0.012473904362841081
7265.0 0.012469641851197498
7270.0 0.012465361647393045
7275.0 0.01246106375142773
7280.0 0.012456748163301546
7285.0 0.0124524148830145
7290.0 0.012448063910566586
7295.0 0.012443695245957809
7300.0 0.012439308889188164
7305.0 0.012434904840257655
7310.0 0.01243048309916628
7315.0 0.01242604366591404
7320.0 0.012421586540500937
7325.0 0.012417111722926965
7330.0 0.01241261921319213
7335.0 0.012408109011296428
7340.0 0.012403581117239864
7345.0 0.01239903553102243
7350.0 0.012394472252644133
7355.0 0.01238989128210497
7360.0 0.012385292619404943
7365.0 0.012380676264544048
7370.0 0.012376042217522292
7375.0 0.012371390478339666
7380.0 0.012366721046996177
7385.0 0.012362033923491823
7390.0 0.012357329107826602
7395.0 0.012352606600000518
7400.0 0.012347866400013566
7405.0 0.012343108507865751
7410.0 0.012338332923557066
7415.0 0.01233353964708752
7420.0 0.01232872867845711
7425.0 0.012323900017665833
7430.0 0.01231905366471369
7435.0 0.012314189619600678
7440.0 0.012309307882326806
7445.0 0.012304408452892065
7450.0 0.012299491331296462
7455.0 0.012294556517539993
7460.0 0.012289604011622659
7465.0 0.012284633813544455
7470.0 0.012279645923305391
7475.0 0.012274640340905462
7480.0 0.012269617066344662
7485.0 0.012264576099623
7490.0 0.012259517440740475
7495.0 0.012254441089697084
7500.0 0.012249347046492822
7505.0 0.0122455388658303
7510.0 0.012241714729921905
7515.0 0.012237874638767639
7520.0 0.0122340185923675
7525.0 0.01223014659072149
7530.0 0.012226258633829609
7535.0 0.012222354721691853
7540.0 0.012218434854308229
7545.0 0.01221449903167873
7550.0 0.01221054725380336
7555.0 0.012206579520682118
7560.0 0.012202595832315003
7565.0 0.012198596188702018
7570.0 0.01219458058984316
7575.0 0.012190549035738431
7580.0 0.01218650152638783
7585.0 0.012182438061791357
7590.0 0.012178358641949013
7595.0 0.012174263266860795
7600.0 0.012170151936526704
7605.0 0.012166024650946745
7610.0 0.012161881410120916
7615.0 0.012157722214049208
7620.0 0.012153547062731633
7625.0 0.012149355956168183
7630.0 0.012145148894358864
7635.0 0.012140925877303674
7640.0 0.012136686905002607
7645.0 0.012132431977455675
7650.0 0.012128161094662866
7655.0 0.012123874256624187
7660.0 0.012119571463339635
7665.0 0.01211525271480921
7670.0 0.012110918011032918
7675.0 0.01210656735201075
7680.0 0.012102200737742711
7685.0 0.012097818168228799
7690.0 0.012093419643469015
7695.0 0.012089005163463364
7700.0 0.012084574728211835
7705.0 0.012080128337714437
7710.0 0.012075665991971168
7715.0 0.012071187690982024
7720.0 0.01206669343474701
7725.0 0.012062183223266123
7730.0 0.012057657056539366
7735.0 0.012053114934566737
7740.0 0.012048556857348234
7745.0 0.01204398282488386
7750.0 0.012039392837173615
7755.0 0.012039939353590916
7760.0 0.012040476558810537
7765.0 0.012041004452832479
7770.0 0.012041523035656743
7775.0 0.012042032307283327
7780.0 0.01204253226771223
7785.0 0.012043022916943456
7790.0 0.012043504254977
7795.0 0.012043976281812868
7800.0 0.012044438997451055
7805.0 0.012044892401891565
7810.0 0.012045336495134392
7815.0 0.012045771277179542
7820.0 0.012046196748027012
7825.0 0.012046612907676803
7830.0 0.012047019756128916
7835.0 0.012047417293383347
7840.0 0.012047805519440102
7845.0 0.012048184434299176
7850.0 0.012048554037960572
7855.0 0.01204891433042429
7860.0 0.012049265311690326
7865.0 0.012049606981758682
7870.0 0.012049939340629359
7875.0 0.01205026238830236
7880.0 0.012050576124777678
7885.0 0.01205088055005532
7890.0 0.012051175664135282
7895.0 0.012051461467017565
7900.0 0.012051737958702168
7905.0 0.012052005139189092
7910.0 0.012052263008478335
7915.0 0.0120525115665699
7920.0 0.012052750813463787
7925.0 0.012052980749159992
7930.0 0.012053201373658524
7935.0 0.01205341268695937
7940.0 0.01205361468906254
7945.0 0.01205380737996803
7950.0 0.01205399075967584
7955.0 0.012054164828185972
7960.0 0.012054329585498427
7965.0 0.012054485031613198
7970.0 0.012054631166530293
7975.0 0.012054767990249708
7980.0 0.012054895502771442
7985.0 0.012055013704095499
7990.0 0.012055122594221876
7995.0 0.012055222173150575
8000.0 0.012055312440881594
8005.0 0.012051746423183251
8010.0 0.012048166538416857
8015.0 0.012044572786582417
8020.0 0.012040965167679926
8025.0 0.012037343681709384
8030.0 0.01203370832867079
8035.0 0.01203005910856415
8040.0 0.012026396021389458
8045.0 0.012022719067146718
8050.0 0.012019028245835926
8055.0 0.012015323557457087
8060.0 0.012011605002010196
8065.0 0.012007872579495253
8070.0 0.012004126289912266
8075.0 0.012000366133261225
8080.0 0.011996592109542136
8085.0 0.011992804218754996
8090.0 0.011989002460899805
8095.0 0.011985186835976564
8100.0 0.011981357343985276
8105.0 0.011977513984925938
8110.0 0.01197365675879855
8115.0 0.011969785665603111
8120.0 0.01196590070533962
8125.0 0.011962001878008083
8130.0 0.011958089183608495
8135.0 0.011954162622140854
8140.0 0.01195022219360517
8145.0 0.011946267898001432
8150.0 0.011942299735329644
8155.0 0.011938317705589806
8160.0 0.011934321808781918
8165.0 0.011930312044905982
8170.0 0.011926288413961992
8175.0 0.011922250915949955
8180.0 0.011918199550869871
8185.0 0.011914134318721733
8190.0 0.011910055219505545
8195.0 0.01190596225322131
8200.0 0.011901855419869024
8205.0 0.011897734719448686
8210.0 0.011893600151960306
8215.0 0.011889451717403866
8220.0 0.011885289415779382
8225.0 0.011881113247086846
8230.0 0.011876923211326263
8235.0 0.011872719308497629
8240.0 0.011868501538600942
8245.0 0.011864269901636209
8250.0 0.011860024397603423
8255.0 0.011851298904818959
8260.0 0.011842554134764528
8265.0 0.011833790087440128
8270.0 0.01182500676284576
8275.0 0.011816204160981425
8280.0 0.011807382281847119
8285.0 0.011798541125442846
8290.0 0.011789680691768605
8295.0 0.011780800980824397
8300.0 0.011771901992610218
8305.0 0.011762983727126074
8310.0 0.01175404618437196
8315.0 0.011745089364347877
8320.0 0.011736113267053826
8325.0 0.011727117892489808
8330.0 0.01171810324065582
8335.0 0.011709069311551865
8340.0 0.01170001610517794
8345.0 0.01169094362153405
8350.0 0.011681851860620191
8355.0 0.011672740822436363
8360.0 0.011663610506982567
8365.0 0.011654460914258803
8370.0 0.011645292044265069
8375.0 0.011636103897001367
8380.0 0.011626896472467698
8385.0 0.011617669770664061
8390.0 0.011608423791590458
8395.0 0.011599158535246883
8400.0 0.01158987400163334
8405.0 0.01158057019074983
8410.0 0.011571247102596351
8415.0 0.011561904737172906
8420.0 0.01155254309447949
8425.0 0.011543162174516107
8430.0 0.011533761977282755
8435.0 0.011524342502779438
8440.0 0.01151490375100615
8445.0 0.011505445721962892
8450.0 0.011495968415649666
8455.0 0.011486471832066476
8460.0 0.011476955971213315
8465.0 0.011467420833090184
8470.0 0.011457866417697091
8475.0 0.011448292725034023
8480.0 0.01143869975510099
8485.0 0.011429087507897987
8490.0 0.011419455983425017
8495.0 0.01140980518168208
8500.0 0.011400135102669174
8505.0 0.011400205470705107
8510.0 0.011400268036749516
8515.0 0.011400322800802406
8520.0 0.011400369762863776
8525.0 0.011400408922933621
8530.0 0.011400440281011948
8535.0 0.011400463837098751
8540.0 0.011400479591194031
8545.0 0.011400487543297791
8550.0 0.01140048769341003
8555.0 0.011400480041530747
8560.0 0.011400464587659939
8565.0 0.011400441331797613
8570.0 0.011400410273943767
8575.0 0.011400371414098396
8580.0 0.011400324752261503
8585.0 0.01140027028843309
8590.0 0.011400208022613156
8595.0 0.011400137954801697
8600.0 0.01140006008499872
8605.0 0.011399974413204221
8610.0 0.011399880939418199
8615.0 0.011399779663640653
8620.0 0.011399670585871591
8625.0 0.011399553706111003
8630.0 0.011399429024358898
8635.0 0.011399296540615268
8640.0 0.011399156254880114
8645.0 0.011399008167153443
8650.0 0.011398852277435246
8655.0 0.01139868858572553
8660.0 0.011398517092024291
8665.0 0.011398337796331533
8670.0 0.01139815069864725
8675.0 0.011397955798971448
8680.0 0.011397753097304123
8685.0 0.011397542593645279
8690.0 0.01139732428799491
8695.0 0.011397098180353019
8700.0 0.011396864270719606
8705.0 0.011396622559094674
8710.0 0.01139637304547822
8715.0 0.011396115729870244
8720.0 0.011395850612270745
8725.0 0.011395577692679727
8730.0 0.011395296971097185
8735.0 0.01139500844752312
8740.0 0.011394712121957534
8745.0 0.01139440799440043
8750.0 0.011394096064851802
8755.0 0.011390053480916627
8760.0 0.011385998842731341
8765.0 0.011381932150295943
8770.0 0.011377853403610435
8775.0 0.011373762602674814
8780.0 0.011369659747489085
8785.0 0.011365544838053243
8790.0 0.011361417874367289
8795.0 0.011357278856431226
8800.0 0.011353127784245052
8805.0 0.011348964657808765
8810.0 0.011344789477122369
8815.0 0.01134060224218586
8820.0 0.011336402952999241
8825.0 0.011332191609562513
8830.0 0.011327968211875669
8835.0 0.011323732759938717
8840.0 0.011319485253751654
8845.0 0.011315225693314479
8850.0 0.011310954078627195
8855.0 0.011306670409689797
8860.0 0.011302374686502293
8865.0 0.011298066909064671
8870.0 0.011293747077376941
8875.0 0.011289415191439101
8880.0 0.01128507125125115
8885.0 0.011280715256813085
8890.0 0.011276347208124914
8895.0 0.011271967105186628
8900.0 0.011267574947998233
8905.0 0.011263170736559724
8910.0 0.011258754470871109
8915.0 0.011254326150932376
8920.0 0.011249885776743535
8925.0 0.011245433348304586
8930.0 0.011240968865615524
8935.0 0.011236492328676349
8940.0 0.011232003737487065
8945.0 0.011227503092047671
8950.0 0.011222990392358165
8955.0 0.011218465638418544
8960.0 0.011213928830228818
8965.0 0.011209379967788976
8970.0 0.011204819051099026
8975.0 0.011200246080158963
8980.0 0.01119566105496879
8985.0 0.011191063975528508
8990.0 0.011186454841838112
8995.0 0.011181833653897607
9000.0 0.011177200411706988
9005.0 0.011171897050077895
9010.0 0.011166580903421135
9015.0 0.011161251971736709
9020.0 0.011155910255024616
9025.0 0.011150555753284858
9030.0 0.011145188466517433
9035.0 0.011139808394722343
9040.0 0.011134415537899586
9045.0 0.011129009896049162
9050.0 0.011123591469171074
9055.0 0.011118160257265319
9060.0 0.011112716260331897
9065.0 0.01110725947837081
9070.0 0.011101789911382056
9075.0 0.011096307559365635
9080.0 0.01109081242232155
9085.0 0.011085304500249797
9090.0 0.011079783793150378
9095.0 0.011074250301023294
9100.0 0.011068704023868543
9105.0 0.011063144961686127
9110.0 0.011057573114476044
9115.0 0.011051988482238293
9120.0 0.011046391064972879
9125.0 0.0110407808626798
9130.0 0.011035157875359051
9135.0 0.011029522103010636
9140.0 0.011023873545634558
9145.0 0.01101821220323081
9150.0 0.011012538075799399
9155.0 0.011006851163340322
9160.0 0.011001151465853575
9165.0 0.010995438983339165
9170.0 0.010989713715797086
9175.0 0.010983975663227345
9180.0 0.010978224825629936
9185.0 0.010972461203004859
9190.0 0.010966684795352118
9195.0 0.010960895602671711
9200.0 0.010955093624963637
9205.0 0.010949278862227898
9210.0 0.010943451314464493
9215.0 0.01093761098167342
9220.0 0.01093175786385468
9225.0 0.010925891961008277
9230.0 0.010920013273134205
9235.0 0.010914121800232468
9240.0 0.010908217542303065
9245.0 0.010902300499345995
9250.0 0.01089637067136126
9255.0 0.010895110106476476
9260.0 0.010893841815503114
9265.0 0.010892565798441178
9270.0 0.010891282055290665
9275.0 0.010889990586051576
9280.0 0.010888691390723909
9285.0 0.010887384469307666
9290.0 0.010886069821802848
9295.0 0.010884747448209452
9300.0 0.01088341734852748
9305.0 0.010882079522756933
9310.0 0.010880733970897808
9315.0 0.01087938069295011
9320.0 0.010878019688913831
9325.0 0.010876650958788977
9330.0 0.010875274502575546
9335.0 0.010873890320273543
9340.0 0.01087249841188296
9345.0 0.0108710987774038
9350.0 0.010869691416836066
9355.0 0.010868276330179755
9360.0 0.010866853517434868
9365.0 0.010865422978601404
9370.0 0.010863984713679364
9375.0 0.010862538722668746
9380.0 0.010861085005569553
9385.0 0.010859623562381782
9390.0 0.010858154393105437
9395.0 0.010856677497740516
9400.0 0.010855192876287018
9405.0 0.010853700528744941
9410.0 0.010852200455114291
9415.0 0.010850692655395063
9420.0 0.010849177129587259
9425.0 0.010847653877690877
9430.0 0.010846122899705922
9435.0 0.01084458419563239
9440.0 0.01084303776547028
9445.0 0.010841483609219594
9450.0 0.010839921726880333
9455.0 0.010838352118452493
9460.0 0.01083677478393608
9465.0 0.010835189723331088
9470.0 0.010833596936637522
9475.0 0.010831996423855378
9480.0 0.010830388184984658
9485.0 0.01082877222002536
9490.0 0.010827148528977487
9495.0 0.010825517111841038
9500.0 0.010823877968616013
9505.0 0.01082010199478353
9510.0 0.010816316054878755
9515.0 0.010812520148901694
9520.0 0.010808714276852344
9525.0 0.010804898438730701
9530.0 0.010801072634536776
9535.0 0.010797236864270556
9540.0 0.01079339112793205
9545.0 0.010789535425521253
9550.0 0.01078566975703817
9555.0 0.010781794122482796
9560.0 0.01077790852185513
9565.0 0.01077401295515518
9570.0 0.010770107422382939
9575.0 0.010766191923538407
9580.0 0.010762266458621588
9585.0 0.01075833102763248
9590.0 0.010754385630571083
9595.0 0.010750430267437397
9600.0 0.010746464938231422
9605.0 0.010742489642953157
9610.0 0.010738504381602605
9615.0 0.010734509154179764
9620.0 0.010730503960684631
9625.0 0.010726488801117212
9630.0 0.010722463675477504
9635.0 0.010718428583765505
9640.0 0.010714383525981218
9645.0 0.010710328502124642
9650.0 0.010706263512195776
9655.0 0.010702188556194621
9660.0 0.010698103634121178
9665.0 0.010694008745975446
9670.0 0.010689903891757424
9675.0 0.010685789071467115
9680.0 0.010681664285104515
9685.0 0.010677529532669625
9690.0 0.01067338481416245
9695.0 0.010669230129582983
9700.0 0.010665065478931228
9705.0 0.010660890862207183
9710.0 0.010656706279410852
9715.0 0.010652511730542229
9720.0 0.010648307215601317
9725.0 0.010644092734588117
9730.0 0.010639868287502626
9735.0 0.010635633874344848
9740.0 0.010631389495114782
9745.0 0.010627135149812426
9750.0 0.01062287083843778
9755.0 0.01062183719549682
9760.0 0.01062079690850767
9765.0 0.010619749977470326
9770.0 0.01061869640238479
9775.0 0.01061763618325106
9780.0 0.01061656932006914
9785.0 0.010615495812839024
9790.0 0.010614415661560718
9795.0 0.010613328866234218
9800.0 0.010612235426859526
9805.0 0.010611135343436641
9810.0 0.010610028615965562
9815.0 0.010608915244446295
9820.0 0.010607795228878829
9825.0 0.010606668569263174
9830.0 0.010605535265599325
9835.0 0.010604395317887285
9840.0 0.01060324872612705
9845.0 0.010602095490318625
9850.0 0.010600935610462004
9855.0 0.010599769086557194
9860.0 0.01059859591860419
9865.0 0.010597416106602992
9870.0 0.010596229650553603
9875.0 0.01059503655045602
9880.0 0.010593836806310245
9885.0 0.010592630418116278
9890.0 0.010591417385874116
9895.0 0.010590197709583764
9900.0 0.010588971389245218
9905.0 0.010587738424858478
9910.0 0.010586498816423548
9915.0 0.010585252563940425
9920.0 0.010583999667409107
9925.0 0.010582740126829599
9930.0 0.010581473942201897
9935.0 0.010580201113526002
9940.0 0.010578921640801913
9945.0 0.010577635524029634
9950.0 0.010576342763209163
9955.0 0.010575043358340497
9960.0 0.01057373730942364
9965.0 0.01057242461645859
9970.0 0.010571105279445346
9975.0 0.01056977929838391
9980.0 0.010568446673274282
9985.0 0.01056710740411646
9990.0 0.010565761490910444
9995.0 0.01056440893365624
10000.0 0.010563049732353839
10005.0 0.010559191123171958
10010.0 0.010555323378423813
10015.0 0.010551446498109403
10020.0 0.010547560482228728
10025.0 0.010543665330781788
10030.0 0.010539761043768584
10035.0 0.010535847621189113
10040.0 0.010531925063043379
10045.0 0.010527993369331379
10050.0 0.010524052540053116
10055.0 0.010520102575208586
10060.0 0.010516143474797792
10065.0 0.010512175238820731
10070.0 0.010508197867277408
10075.0 0.01050421136016782
10080.0 0.010500215717491965
10085.0 0.010496210939249847
10090.0 0.01049219702544146
10095.0 0.01048817397606681
10100.0 0.010484141791125898
10105.0 0.01048010047061872
10110.0 0.010476050014545275
10115.0 0.010471990422905567
10120.0 0.010467921695699592
10125.0 0.010463843832927354
10130.0 0.010459756834588852
10135.0 0.010455660700684082
10140.0 0.01045155543121305
10145.0 0.010447441026175753
10150.0 0.010443317485572187
10155.0 0.010439184809402358
10160.0 0.010435042997666266
10165.0 0.010430892050363908
10170.0 0.010426731967495285
10175.0 0.010422562749060399
10180.0 0.010418384395059247
10185.0 0.01041419690549183
10190.0 0.010410000280358147
10195.0 0.010405794519658198
10200.0 0.010401579623391987
10205.0 0.010397355591559508
10210.0 0.010393122424160767
10215.0 0.01038888012119576
10220.0 0.010384628682664486
10225.0 0.01038036810856695
10230.0 0.01037609839890315
10235.0 0.01037181955367308
10240.0 0.010367531572876749
10245.0 0.010363234456514154
10250.0 0.010358928204585291
10255.0 0.0103553350728503
10260.0 0.010351733509845253
10265.0 0.010348123515570146
10270.0 0.010344505090024983
10275.0 0.010340878233209762
10280.0 0.010337242945124484
10285.0 0.010333599225769145
10290.0 0.010329947075143748
10295.0 0.010326286493248293
10300.0 0.010322617480082782
10305.0 0.01031894003564721
10310.0 0.010315254159941582
10315.0 0.010311559852965895
10320.0 0.010307857114720152
10325.0 0.010304145945204348
10330.0 0.01030042634441849
10335.0 0.01029669831236257
10340.0 0.010292961849036593
10345.0 0.010289216954440558
10350.0 0.010285463628574465
10355.0 0.010281701871438315
10360.0 0.010277931683032104
10365.0 0.010274153063355839
10370.0 0.010270366012409512
10375.0 0.010266570530193132
10380.0 0.010262766616706689
10385.0 0.010258954271950189
10390.0 0.010255133495923632
10395.0 0.010251304288627016
10400.0 0.010247466650060343
10405.0 0.01024362058022361
10410.0 0.01023976607911682
10415.0 0.010235903146739974
10420.0 0.010232031783093067
10425.0 0.010228151988176103
10430.0 0.010224263761989082
10435.0 0.010220367104532002
10440.0 0.010216462015804863
10445.0 0.010212548495807668
10450.0 0.010208626544540413
10455.0 0.010204696162003101
10460.0 0.01020075734819573
10465.0 0.010196810103118303
10470.0 0.010192854426770816
10475.0 0.010188890319153272
10480.0 0.01018491778026567
10485.0 0.01018093681010801
10490.0 0.01017694740868029
10495.0 0.010172949575982512
10500.0 0.01016894331201468
10505.0 0.010161333135725684
10510.0 0.010153711105528788
10515.0 0.010146077221423997
10520.0 0.010138431483411309
10525.0 0.010130773891490719
10530.0 0.010123104445662234
10535.0 0.01011542314592585
10540.0 0.010107729992281564
10545.0 0.010100024984729384
10550.0 0.010092308123269304
10555.0 0.010084579407901329
10560.0 0.010076838838625451
10565.0 0.010069086415441676
10570.0 0.010061322138350006
10575.0 0.010053546007350436
10580.0 0.010045758022442964
10585.0 0.010037958183627595
10590.0 0.010030146490904331
10595.0 0.01002232294427317
10600.0 0.010014487543734107
10605.0 0.010006640289287147
10610.0 0.009998781180932288
10615.0 0.009990910218669533
10620.0 0.009983027402498876
10625.0 0.009975132732420323
10630.0 0.009967226208433873
10635.0 0.009959307830539523
10640.0 0.009951377598737278
10645.0 0.009943435513027128
10650.0 0.009935481573409085
10655.0 0.009927515779883146
10660.0 0.009919538132449302
10665.0 0.009911548631107563
10670.0 0.009903547275857927
10675.0 0.009895534066700393
10680.0 0.00988750900363496
10685.0 0.009879472086661626
10690.0 0.009871423315780396
10695.0 0.009863362690991268
10700.0 0.00985529021229424
10705.0 0.009847205879689316
10710.0 0.009839109693176492
10715.0 0.009831001652755772
10720.0 0.009822881758427153
10725.0 0.009814750010190634
10730.0 0.00980660640804622
10735.0 0.009798450951993906
10740.0 0.009790283642033692
10745.0 0.00978210447816558
10750.0 0.009773913460389572
10755.0 0.00977017663485018
10760.0 0.009766432107933005
10765.0 0.009762679879638055
10770.0 0.009758919949965325
10775.0 0.00975515231891482
10780.0 0.009751376986486534
10785.0 0.009747593952680472
10790.0 0.009743803217496632
10795.0 0.009740004780935015
10800.0 0.00973619864299562
10805.0 0.009732384803678447
10810.0 0.009728563262983495
10815.0 0.009724734020910768
10820.0 0.00972089707746026
10825.0 0.009717052432631976
10830.0 0.009713200086425913
10835.0 0.009709340038842074
10840.0 0.009705472289880456
10845.0 0.00970159683954106
10850.0 0.009697713687823887
10855.0 0.009693822834728935
10860.0 0.009689924280256206
10865.0 0.009686018024405699
10870.0 0.009682104067177415
10875.0 0.00967818240857135
10880.0 0.009674253048587511
10885.0 0.009670315987225894
10890.0 0.009666371224486495
10895.0 0.009662418760369322
10900.0 0.00965845859487437
10905.0 0.009654490728001642
10910.0 0.009650515159751134
10915.0 0.009646531890122849
10920.0 0.009642540919116786
10925.0 0.009638542246732943
10930.0 0.009634535872971327
10935.0 0.009630521797831927
10940.0 0.009626500021314755
10945.0 0.009622470543419802
10950.0 0.009618433364147074
10955.0 0.009614388483496564
10960.0 0.009610335901468281
10965.0 0.009606275618062215
10970.0 0.009602207633278377
10975.0 0.009598131947116754
10980.0 0.00959404855957736
10985.0 0.009589957470660184
10990.0 0.009585858680365232
10995.0 0.009581752188692502
11000.0 0.009577637995641994
# u_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
2030.00 0.00000
2040.00 0.00000
2050.00 0.00000
2060.00 0.00000
2070.00 0.00000
2080.00 0.00000
2090.00 0.00000
2100.00 0.00000
2110.00 0.00000
2120.00 0.00000
2130.00 0.00000
2140.00 0.00000
2150.00 0.00000
2160.00 0.00000
2170.00 0.00000
2180.00 0.00000
2190.00 0.00000
2200.00 0.00000
2210.00 0.00000
2220.00 0.00000
2230.00 0.00000
2240.00 0.00000
2250.00 0.00000
2260.00 0.00000
2270.00 0.00000
2280.00 0.00000
2290.00 0.00000
2300.00 0.00000
2310.00 0.00000
2320.00 0.00000
2330.00 0.00000
2340.00 0.00000
2350.00 0.00000
2360.00 0.00000
2370.00 0.00000
2380.00 0.00000
2390.00 0.00000
2400.00 0.00000
2410.00 0.00000
2420.00 0.00000
2430.00 0.00000
2440.00 0.00000
2450.00 0.00000
2460.00 0.00000
2470.00 0.00000
2480.00 0.00000
2490.00 0.00000
2500.00 0.00000
2510.00 0.00000
2520.00 0.00000
2530.00 0.00000
2540.00 0.00000
2550.00 0.00000
2560.00 0.00000
2570.00 0.00000
2580.00 0.00000
2590.00 0.00000
2600.00 0.00000
2610.00 0.00000
2620.00 0.00000
2630.00 0.00000
2640.00 0.00000
2650.00 0.00000
2660.00 0.00000
2670.00 0.00000
2680.00 0.00000
2690.00 0.00000
2700.00 0.00000
2710.00 0.00000
2720.00 0.00000
2730.00 0.00000
2740.00 0.00000
2750.00 0.00000
2760.00 0.00000
2770.00 0.00000
2780.00 0.00000
2790.00 0.00000
2800.00 0.00000
2810.00 0.00000
2820.00 0.00000
2830.00 0.00000
2840.00 0.00000
2850.00 0.00000
2860.00 0.00000
2870.00 0.00000
2880.00 0.00000
2890.00 0.00000
2900.00 0.00000
2910.00 0.00000
2920.00 0.00000
2930.00 0.00000
2940.00 0.00000
2950.00 0.00000
2960.00 0.00000
2970.00 0.00000
2980.00 0.00000
2990.00 0.00000
3000.00 0.00000
3010.00 0.00000
3020.00 0.00000
3030.00 0.00000
3040.00 0.00000
3050.00 0.00000
3060.00 0.00000
3070.00 0.00001
3080.00 0.00001
3090.00 0.00003
3100.00 0.00007
3110.00 0.00014
3120.00 0.00028
3130.00 0.00056
3140.00 0.00110
3150.00 0.00223
3160.00 0.00472
3170.00 0.01042
3180.00 0.02190
3190.00 0.04190
3200.00 0.08056
3210.00 0.12185
3220.00 0.16669
3230.00 0.20778
3240.00 0.23999
3250.00 0.26389
3260.00 0.27898
3270.00 0.29519
3280.00 0.30854
3290.00 0.32894
3300.00 0.34872
3310.00 0.35846
3320.00 0.36782
3330.00 0.36385
3340.00 0.36002
3350.00 0.35646
3360.00 0.35286
3370.00 0.35634
3380.00 0.36011
3390.00 0.36259
3400.00 0.36459
3410.00 0.36476
3420.00 0.36386
3430.00 0.35734
3440.00 0.35107
3450.00 0.34668
3460.00 0.34357
3470.00 0.34944
3480.00 0.35524
3490.00 0.35529
3500.00 0.35436
3510.00 0.35182
3520.00 0.34861
3530.00 0.34490
3540.00 0.34165
3550.00 0.34203
3560.00 0.34307
3570.00 0.34341
3580.00 0.34401
3590.00 0.34655
3600.00 0.34841
3610.00 0.35149
3620.00 0.35432
3630.00 0.35415
3640.00 0.35463
3650.00 0.35643
3660.00 0.35858
3670.00 0.36209
3680.00 0.36554
3690.00 0.36682
3700.00 0.36791
3710.00 0.36581
3720.00 0.36333
3730.00 0.36299
3740.00 0.36246
3750.00 0.36867
3760.00 0.37511
3770.00 0.38015
3780.00 0.38586
3790.00 0.38633
3800.00 0.38714
3810.00 0.38734
3820.00 0.38673
3830.00 0.38847
3840.00 0.39011
3850.00 0.39062
3860.00 0.39202
3870.00 0.39367
3880.00 0.39491
3890.00 0.39554
3900.00 0.39594
3910.00 0.39508
3920.00 0.39452
3930.00 0.39304
3940.00 0.38925
3950.00 0.38325
3960.00 0.36781
3970.00 0.33940
3980.00 0.29857
3990.00 0.24542
4000.00 0.18812
4010.00 0.13345
4020.00 0.08722
4030.00 0.05312
4040.00 0.03033
4050.00 0.01673
4060.00 0.00939
4070.00 0.00539
4080.00 0.00315
4090.00 0.00188
4100.00 0.00115
4110.00 0.00074
4120.00 0.00049
4130.00 0.00033
4140.00 0.00023
4150.00 0.00016
4160.00 0.00011
4170.00 0.00008
4180.00 0.00005
4190.00 0.00004
4200.00 0.00002
4210.00 0.00002
4220.00 0.00001
4230.00 0.00001
4240.00 0.00001
4250.00 0.00000
4260.00 0.00000
4270.00 0.00000
4280.00 0.00000
4290.00 0.00000
4300.00 0.00000
4310.00 0.00000
4320.00 0.00000
4330.00 0.00000
4340.00 0.00000
4350.00 0.00000
4360.00 0.00000
4370.00 0.00000
4380.00 0.00000
4390.00 0.00000
4400.00 0.00000
4410.00 0.00000
4420.00 0.00000
4430.00 0.00000
4440.00 0.00000
4450.00 0.00000
4460.00 0.00000
4470.00 0.00000
4480.00 0.00000
4490.00 0.00000
4500.00 0.00000
4510.00 0.00000
4520.00 0.00000
4530.00 0.00000
4540.00 0.00000
4550.00 0.00000
4560.00 0.00000
4570.00 0.00000
4580.00 0.00000
4590.00 0.00000
4600.00 0.00000
4610.00 0.00000
4620.00 0.00000
4630.00 0.00000
4640.00 0.00000
4650.00 0.00000
4660.00 0.00000
4670.00 0.00000
4680.00 0.00000
4690.00 0.00000
4700.00 0.00000
4710.00 0.00000
4720.00 0.00000
4730.00 0.00000
4740.00 0.00000
4750.00 0.00000
4760.00 0.00000
4770.00 0.00000
4780.00 0.00000
4790.00 0.00000
4800.00 0.00000
4810.00 0.00000
4820.00 0.00000
4830.00 0.00000
4840.00 0.00000
4850.00 0.00000
4860.00 0.00000
4870.00 0.00000
4880.00 0.00000
4890.00 0.00000
4900.00 0.00000
4910.00 0.00000
4920.00 0.00000
4930.00 0.00000
4940.00 0.00000
4950.00 0.00000
4960.00 0.00000
4970.00 0.00000
4980.00 0.00000
4990.00 0.00000
5000.00 0.00000
5010.00 0.00000
5020.00 0.00000
5030.00 0.00000
5040.00 0.00000
5050.00 0.00000
5060.00 0.00000
5070.00 0.00000
5080.00 0.00000
5090.00 0.00000
5100.00 0.00000
5110.00 0.00000
5120.00 0.00000
5130.00 0.00000
5140.00 0.00000
5150.00 0.00000
5160.00 0.00000
5170.00 0.00000
5180.00 0.00000
5190.00 0.00000
5200.00 0.00000
5210.00 0.00000
5220.00 0.00000
5230.00 0.00000
5240.00 0.00000
5250.00 0.00000
5260.00 0.00000
5270.00 0.00000
5280.00 0.00000
5290.00 0.00000
5300.00 0.00000
5310.00 0.00000
5320.00 0.00000
5330.00 0.00000
5340.00 0.00000
5350.00 0.00000
5360.00 0.00000
5370.00 0.00000
5380.00 0.00000
5390.00 0.00000
5400.00 0.00000
5410.00 0.00000
5420.00 0.00000
5430.00 0.00000
5440.00 0.00000
5450.00 0.00000
5460.00 0.00000
5470.00 0.00000
5480.00 0.00000
5490.00 0.00000
5500.00 0.00000
5510.00 0.00000
5520.00 0.00000
5530.00 0.00000
5540.00 0.00000
5550.00 0.00000
5560.00 0.00000
5570.00 0.00000
5580.00 0.00000
5590.00 0.00000
5600.00 0.00000
5610.00 0.00000
5620.00 0.00000
5630.00 0.00000
5640.00 0.00000
5650.00 0.00000
5660.00 0.00000
5670.00 0.00000
5680.00 0.00000
5690.00 0.00000
5700.00 0.00000
5710.00 0.00000
5720.00 0.00000
5730.00 0.00000
5740.00 0.00000
5750.00 0.00000
5760.00 0.00000
5770.00 0.00000
5780.00 0.00000
5790.00 0.00000
5800.00 0.00000
5810.00 0.00000
5820.00 0.00000
5830.00 0.00000
5840.00 0.00000
5850.00 0.00000
5860.00 0.00000
5870.00 0.00000
5880.00 0.00000
5890.00 0.00000
5900.00 0.00000
5910.00 0.00000
5920.00 0.00000
5930.00 0.00000
5940.00 0.00000
5950.00 0.00000
5960.00 0.00000
5970.00 0.00000
5980.00 0.00000
5990.00 0.00000
6000.00 0.00000
6010.00 0.00000
6020.00 0.00000
6030.00 0.00000
6040.00 0.00000
6050.00 0.00000
6060.00 0.00000
6070.00 0.00000
6080.00 0.00000
6090.00 0.00000
6100.00 0.00000
6110.00 0.00000
6120.00 0.00000
6130.00 0.00000
6140.00 0.00000
6150.00 0.00000
6160.00 0.00000
6170.00 0.00000
6180.00 0.00000
6190.00 0.00000
6200.00 0.00000
6210.00 0.00000
6220.00 0.00000
6230.00 0.00000
6240.00 0.00000
6250.00 0.00000
6260.00 0.00000
6270.00 0.00000
6280.00 0.00000
6290.00 0.00000
6300.00 0.00000
6310.00 0.00000
6320.00 0.00000
6330.00 0.00000
6340.00 0.00000
6350.00 0.00000
6360.00 0.00000
6370.00 0.00000
6380.00 0.00000
6390.00 0.00000
6400.00 0.00000
6410.00 0.00000
6420.00 0.00000
6430.00 0.00000
6440.00 0.00000
6450.00 0.00000
6460.00 0.00000
6470.00 0.00000
6480.00 0.00000
6490.00 0.00000
6500.00 0.00000
6510.00 0.00000
6520.00 0.00000
6530.00 0.00000
6540.00 0.00000
6550.00 0.00000
6560.00 0.00000
6570.00 0.00000
6580.00 0.00000
6590.00 0.00000
6600.00 0.00000
6610.00 0.00000
6620.00 0.00000
6630.00 0.00000
6640.00 0.00000
6650.00 0.00000
6660.00 0.00000
6670.00 0.00000
6680.00 0.00000
6690.00 0.00000
6700.00 0.00000
6710.00 0.00000
6720.00 0.00000
6730.00 0.00000
6740.00 0.00000
6750.00 0.00000
6760.00 0.00000
6770.00 0.00000
6780.00 0.00000
6790.00 0.00000
6800.00 0.00000
6810.00 0.00000
6820.00 0.00000
6830.00 0.00000
6840.00 0.00000
6850.00 0.00000
6860.00 0.00000
6870.00 0.00000
6880.00 0.00000
6890.00 0.00000
6900.00 0.00000
6910.00 0.00000
6920.00 0.00000
6930.00 0.00000
6940.00 0.00000
6950.00 0.00000
6960.00 0.00000
6970.00 0.00000
6980.00 0.00000
6990.00 0.00000
7000.00 0.00000
7010.00 0.00000
7020.00 0.00000
7030.00 0.00000
7040.00 0.00000
7050.00 0.00000
7060.00 0.00000
7070.00 0.00000
7080.00 0.00000
7090.00 0.00000
7100.00 0.00000
7110.00 0.00000
7120.00 0.00000
7130.00 0.00000
7140.00 0.00000
7150.00 0.00000
7160.00 0.00000
7170.00 0.00000
7180.00 0.00000
7190.00 0.00000
7200.00 0.00000
7210.00 0.00000
7220.00 0.00000
7230.00 0.00000
7240.00 0.00000
7250.00 0.00000
7260.00 0.00000
7270.00 0.00000
7280.00 0.00000
7290.00 0.00000
7300.00 0.00000
7310.00 0.00000
7320.00 0.00000
7330.00 0.00000
7340.00 0.00000
7350.00 0.00000
7360.00 0.00000
7370.00 0.00000
7380.00 0.00000
7390.00 0.00000
7400.00 0.00000
7410.00 0.00000
7420.00 0.00000
7430.00 0.00000
7440.00 0.00001
7450.00 0.00001
7460.00 0.00001
7470.00 0.00001
7480.00 0.00001
7490.00 0.00001
7500.00 0.00001
7510.00 0.00001
7520.00 0.00001
7530.00 0.00001
7540.00 0.00002
7550.00 0.00002
7560.00 0.00001
7570.00 0.00001
7580.00 0.00001
7590.00 0.00001
7600.00 0.00001
7610.00 0.00000
7620.00 0.00000
7630.00 0.00000
7640.00 0.00000
7650.00 0.00000
7660.00 0.00000
7670.00 0.00000
7680.00 0.00000
7690.00 0.00000
7700.00 0.00000
7710.00 0.00000
7720.00 0.00000
7730.00 0.00000
7740.00 0.00000
7750.00 0.00000
7760.00 0.00001
7770.00 0.00001
7780.00 0.00002
7790.00 0.00004
7800.00 0.00007
7810.00 0.00010
7820.00 0.00010
7830.00 0.00009
7840.00 0.00006
7850.00 0.00003
7860.00 0.00001
7870.00 0.00001
7880.00 0.00001
7890.00 0.00000
7900.00 0.00000
7910.00 0.00000
7920.00 0.00000
7930.00 0.00000
7940.00 0.00000
7950.00 0.00000
7960.00 0.00000
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.00003
8010.00 0.00003
8020.00 0.00003
8030.00 0.00003
8040.00 0.00002
8050.00 0.00003
8060.00 0.00003
8070.00 0.00003
8080.00 0.00003
8090.00 0.00002
8100.00 0.00003
8110.00 0.00002
8120.00 0.00002
8130.00 0.00002
8140.00 0.00003
8150.00 0.00003
8160.00 0.00002
8170.00 0.00002
8180.00 0.00002
8190.00 0.00002
8200.00 0.00002
8210.00 0.00002
8220.00 0.00002
8230.00 0.00002
8240.00 0.00002
8250.00 0.00002
8260.00 0.00002
8270.00 0.00002
8280.00 0.00002
8290.00 0.00002
8300.00 0.00002
8310.00 0.00002
8320.00 0.00002
8330.00 0.00002
8340.00 0.00002
8350.00 0.00002
8360.00 0.00002
8370.00 0.00002
8380.00 0.00002
8390.00 0.00002
8400.00 0.00002
8410.00 0.00002
8420.00 0.00002
8430.00 0.00002
8440.00 0.00002
8450.00 0.00002
8460.00 0.00002
8470.00 0.00002
8480.00 0.00002
8490.00 0.00003
8500.00 0.00003
8510.00 0.00003
8520.00 0.00003
8530.00 0.00003
8540.00 0.00003
8550.00 0.00003
8560.00 0.00003
8570.00 0.00003
8580.00 0.00003
8590.00 0.00003
8600.00 0.00003
8610.00 0.00003
8620.00 0.00003
8630.00 0.00004
8640.00 0.00003
8650.00 0.00003
8660.00 0.00003
8670.00 0.00003
8680.00 0.00003
8690.00 0.00003
8700.00 0.00003
8710.00 0.00003
8720.00 0.00003
8730.00 0.00002
8740.00 0.00002
8750.00 0.00003
8760.00 0.00002
8770.00 0.00002
8780.00 0.00002
8790.00 0.00002
8800.00 0.00002
8810.00 0.00002
8820.00 0.00002
8830.00 0.00002
8840.00 0.00002
8850.00 0.00002
8860.00 0.00002
8870.00 0.00002
8880.00 0.00002
8890.00 0.00002
8900.00 0.00002
8910.00 0.00002
8920.00 0.00002
8930.00 0.00002
8940.00 0.00002
8950.00 0.00002
8960.00 0.00002
8970.00 0.00003
8980.00 0.00003
8990.00 0.00003
9000.00 0.00003
9010.00 0.00003
9020.00 0.00003
9030.00 0.00003
9040.00 0.00003
9050.00 0.00003
9060.00 0.00003
9070.00 0.00003
9080.00 0.00003
9090.00 0.00003
9100.00 0.00003
9110.00 0.00003
9120.00 0.00002
9130.00 0.00002
9140.00 0.00002
9150.00 0.00002
9160.00 0.00002
9170.00 0.00002
9180.00 0.00002
9190.00 0.00002
9200.00 0.00001
9210.00 0.00001
9220.00 0.00001
9230.00 0.00001
9240.00 0.00001
9250.00 0.00001
9260.00 0.00001
9270.00 0.00001
9280.00 0.00001
9290.00 0.00001
9300.00 0.00001
9310.00 0.00001
9320.00 0.00001
9330.00 0.00001
9340.00 0.00000
9350.00 0.00000
9360.00 0.00000
9370.00 0.00000
9380.00 0.00000
9390.00 0.00000
9400.00 0.00000
9410.00 0.00000
9420.00 0.00000
9430.00 0.00000
9440.00 0.00000
9450.00 0.00000
9460.00 0.00000
9470.00 0.00000
9480.00 0.00000
9490.00 0.00000
9500.00 0.00000
9510.00 0.00000
9520.00 0.00000
9530.00 0.00000
9540.00 0.00000
9550.00 0.00000
9560.00 0.00000
9570.00 0.00000
9580.00 0.00000
9590.00 0.00000
9600.00 0.00000
9610.00 0.00000
9620.00 0.00000
9630.00 0.00000
9640.00 0.00000
9650.00 0.00000
9660.00 0.00000
9670.00 0.00000
9680.00 0.00000
9690.00 0.00000
9700.00 0.00000
9710.00 0.00000
9720.00 0.00000
9730.00 0.00000
9740.00 0.00000
9750.00 0.00000
9760.00 0.00000
9770.00 0.00000
9780.00 0.00000
9790.00 0.00000
9800.00 0.00000
9810.00 0.00000
9820.00 0.00000
9830.00 0.00000
9840.00 0.00000
9850.00 0.00000
9860.00 0.00000
9870.00 0.00000
9880.00 0.00000
9890.00 0.00000
9900.00 0.00000
9910.00 0.00000
9920.00 0.00000
9930.00 0.00000
9940.00 0.00000
9950.00 0.00000
9960.00 0.00000
9970.00 0.00000
9980.00 0.00000
9990.00 0.00000
10000.00 0.00000
10010.00 0.00000
10020.00 0.00000
10030.00 0.00000
10040.00 0.00000
10050.00 0.00000
10060.00 0.00000
10070.00 0.00000
10080.00 0.00000
10090.00 0.00000
10100.00 0.00000
10110.00 0.00000
10120.00 0.00000
10130.00 0.00000
10140.00 0.00000
10150.00 0.00000
10160.00 0.00000
10170.00 0.00000
10180.00 0.00000
10190.00 0.00000
10200.00 0.00000
10210.00 0.00000
10220.00 0.00000
10230.00 0.00000
10240.00 0.00000
10250.00 0.00000
10260.00 0.00000
10270.00 0.00000
10280.00 0.00000
10290.00 0.00000
10300.00 0.00000
10310.00 0.00000
10320.00 0.00000
10330.00 0.00000
10340.00 0.00000
10350.00 0.00000
10360.00 0.00000
10370.00 0.00000
10380.00 0.00000
10390.00 0.00000
10400.00 0.00000
10410.00 0.00000
10420.00 0.00000
10430.00 0.00000
10440.00 0.00000
10450.00 0.00000
10460.00 0.00000
10470.00 0.00000
10480.00 0.00000
10490.00 0.00000
10500.00 0.00000
10510.00 0.00000
10520.00 0.00000
10530.00 0.00000
10540.00 0.00000
10550.00 0.00000
10560.00 0.00000
10570.00 0.00000
10580.00 0.00000
10590.00 0.00000
10600.00 0.00000
10610.00 0.00000
10620.00 0.00000
10630.00 0.00000
10640.00 0.00000
10650.00 0.00000
10660.00 0.00000
10670.00 0.00000
10680.00 0.00000
10690.00 0.00000
10700.00 0.00000
10710.00 0.00000
10720.00 0.00000
10730.00 0.00000
10740.00 0.00000
10750.00 0.00000
10760.00 0.00000
10770.00 0.00000
10780.00 0.00000
10790.00 0.00000
10800.00 0.00000
10810.00 0.00000
10820.00 0.00000
10830.00 0.00000
10840.00 0.00000
10850.00 0.00000
10860.00 0.00000
10870.00 0.00000
10880.00 0.00000
10890.00 0.00000
10900.00 0.00000
10910.00 0.00000
10920.00 0.00000
10930.00 0.00000
10940.00 0.00000
10950.00 0.00000
10960.00 0.00000
10970.00 0.00000
10980.00 0.00000
10990.00 0.00000
11000.00 0.00000
# y_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
2030.00 0.00000
2040.00 0.00000
2050.00 0.00000
2060.00 0.00000
2070.00 0.00000
2080.00 0.00000
2090.00 0.00000
2100.00 0.00000
2110.00 0.00000
2120.00 0.00000
2130.00 0.00000
2140.00 0.00000
2150.00 0.00000
2160.00 0.00000
2170.00 0.00000
2180.00 0.00000
2190.00 0.00000
2200.00 0.00000
2210.00 0.00000
2220.00 0.00000
2230.00 0.00000
2240.00 0.00000
2250.00 0.00000
2260.00 0.00000
2270.00 0.00000
2280.00 0.00000
2290.00 0.00000
2300.00 0.00000
2310.00 0.00000
2320.00 0.00000
2330.00 0.00000
2340.00 0.00000
2350.00 0.00000
2360.00 0.00000
2370.00 0.00000
2380.00 0.00000
2390.00 0.00000
2400.00 0.00000
2410.00 0.00000
2420.00 0.00000
2430.00 0.00000
2440.00 0.00000
2450.00 0.00000
2460.00 0.00000
2470.00 0.00000
2480.00 0.00000
2490.00 0.00000
2500.00 0.00000
2510.00 0.00000
2520.00 0.00000
2530.00 0.00000
2540.00 0.00000
2550.00 0.00000
2560.00 0.00000
2570.00 0.00000
2580.00 0.00000
2590.00 0.00000
2600.00 0.00000
2610.00 0.00000
2620.00 0.00000
2630.00 0.00000
2640.00 0.00000
2650.00 0.00000
2660.00 0.00000
2670.00 0.00000
2680.00 0.00000
2690.00 0.00000
2700.00 0.00000
2710.00 0.00000
2720.00 0.00000
2730.00 0.00000
2740.00 0.00000
2750.00 0.00000
2760.00 0.00000
2770.00 0.00000
2780.00 0.00000
2790.00 0.00000
2800.00 0.00000
2810.00 0.00000
2820.00 0.00000
2830.00 0.00000
2840.00 0.00000
2850.00 0.00000
2860.00 0.00000
2870.00 0.00000
2880.00 0.00000
2890.00 0.00000
2900.00 0.00000
2910.00 0.00000
2920.00 0.00000
2930.00 0.00000
2940.00 0.00000
2950.00 0.00000
2960.00 0.00000
2970.00 0.00000
2980.00 0.00000
2990.00 0.00000
3000.00 0.00000
3010.00 0.00000
3020.00 0.00000
3030.00 0.00000
3040.00 0.00000
3050.00 0.00000
3060.00 0.00000
3070.00 0.00000
3080.00 0.00000
3090.00 0.00000
3100.00 0.00000
3110.00 0.00000
3120.00 0.00000
3130.00 0.00000
3140.00 0.00000
3150.00 0.00000
3160.00 0.00000
3170.00 0.00000
3180.00 0.00000
3190.00 0.00000
3200.00 0.00000
3210.00 0.00000
3220.00 0.00000
3230.00 0.00000
3240.00 0.00000
3250.00 0.00000
3260.00 0.00000
3270.00 0.00000
3280.00 0.00000
3290.00 0.00000
3300.00 0.00000
3310.00 0.00000
3320.00 0.00000
3330.00 0.00000
3340.00 0.00000
3350.00 0.00000
3360.00 0.00000
3370.00 0.00000
3380.00 0.00000
3390.00 0.00000
3400.00 0.00000
3410.00 0.00000
3420.00 0.00000
3430.00 0.00000
3440.00 0.00000
3450.00 0.00000
3460.00 0.00000
3470.00 0.00000
3480.00 0.00000
3490.00 0.00000
3500.00 0.00000
3510.00 0.00000
3520.00 0.00000
3530.00 0.00000
3540.00 0.00000
3550.00 0.00000
3560.00 0.00000
3570.00 0.00000
3580.00 0.00000
3590.00 0.00000
3600.00 0.00000
3610.00 0.00000
3620.00 0.00000
3630.00 0.00000
3640.00 0.00000
3650.00 0.00000
3660.00 0.00000
3670.00 0.00000
3680.00 0.00000
3690.00 0.00000
3700.00 0.00000
3710.00 0.00000
3720.00 0.00000
3730.00 0.00000
3740.00 0.00000
3750.00 0.00000
3760.00 0.00000
3770.00 0.00000
3780.00 0.00000
3790.00 0.00000
3800.00 0.00000
3810.00 0.00000
3820.00 0.00000
3830.00 0.00000
3840.00 0.00000
3850.00 0.00000
3860.00 0.00000
3870.00 0.00000
3880.00 0.00000
3890.00 0.00000
3900.00 0.00000
3910.00 0.00000
3920.00 0.00000
3930.00 0.00000
3940.00 0.00000
3950.00 0.00000
3960.00 0.00000
3970.00 0.00000
3980.00 0.00000
3990.00 0.00000
4000.00 0.00000
4010.00 0.00000
4020.00 0.00000
4030.00 0.00000
4040.00 0.00000
4050.00 0.00000
4060.00 0.00000
4070.00 0.00000
4080.00 0.00000
4090.00 0.00000
4100.00 0.00000
4110.00 0.00000
4120.00 0.00000
4130.00 0.00000
4140.00 0.00000
4150.00 0.00000
4160.00 0.00000
4170.00 0.00000
4180.00 0.00000
4190.00 0.00000
4200.00 0.00000
4210.00 0.00000
4220.00 0.00000
4230.00 0.00000
4240.00 0.00000
4250.00 0.00000
4260.00 0.00000
4270.00 0.00000
4280.00 0.00000
4290.00 0.00000
4300.00 0.00000
4310.00 0.00000
4320.00 0.00000
4330.00 0.00000
4340.00 0.00000
4350.00 0.00000
4360.00 0.00000
4370.00 0.00000
4380.00 0.00000
4390.00 0.00000
4400.00 0.00000
4410.00 0.00000
4420.00 0.00000
4430.00 0.00000
4440.00 0.00000
4450.00 0.00000
4460.00 0.00000
4470.00 0.00000
4480.00 0.00000
4490.00 0.00000
4500.00 0.00000
4510.00 0.00000
4520.00 0.00000
4530.00 0.00000
4540.00 0.00000
4550.00 0.00000
4560.00 0.00000
4570.00 0.00000
4580.00 0.00000
4590.00 0.00000
4600.00 0.00000
4610.00 0.00000
4620.00 0.00000
4630.00 0.00000
4640.00 0.00000
4650.00 0.00000
4660.00 0.00000
4670.00 0.00000
4680.00 0.00000
4690.00 0.00000
4700.00 0.00000
4710.00 0.00000
4720.00 0.00001
4730.00 0.00001
4740.00 0.00001
4750.00 0.00001
4760.00 0.00001
4770.00 0.00001
4780.00 0.00002
4790.00 0.00002
4800.00 0.00002
4810.00 0.00002
4820.00 0.00002
4830.00 0.00001
4840.00 0.00001
4850.00 0.00000
4860.00 0.00000
4870.00 0.00000
4880.00 0.00000
4890.00 0.00000
4900.00 0.00000
4910.00 0.00000
4920.00 0.00000
4930.00 0.00000
4940.00 0.00000
4950.00 0.00000
4960.00 0.00000
4970.00 0.00000
4980.00 0.00000
4990.00 0.00000
5000.00 0.00000
5010.00 0.00000
5020.00 0.00000
5030.00 0.00000
5040.00 0.00000
5050.00 0.00000
5060.00 0.00000
5070.00 0.00000
5080.00 0.00000
5090.00 0.00000
5100.00 0.00000
5110.00 0.00000
5120.00 0.00000
5130.00 0.00001
5140.00 0.00001
5150.00 0.00001
5160.00 0.00001
5170.00 0.00001
5180.00 0.00001
5190.00 0.00000
5200.00 0.00000
5210.00 0.00000
5220.00 0.00000
5230.00 0.00000
5240.00 0.00000
5250.00 0.00000
5260.00 0.00000
5270.00 0.00000
5280.00 0.00000
5290.00 0.00000
5300.00 0.00000
5310.00 0.00000
5320.00 0.00000
5330.00 0.00000
5340.00 0.00000
5350.00 0.00000
5360.00 0.00000
5370.00 0.00000
5380.00 0.00000
5390.00 0.00000
5400.00 0.00000
5410.00 0.00000
5420.00 0.00000
5430.00 0.00000
5440.00 0.00000
5450.00 0.00000
5460.00 0.00001
5470.00 0.00001
5480.00 0.00001
5490.00 0.00002
5500.00 0.00003
5510.00 0.00003
5520.00 0.00003
5530.00 0.00003
5540.00 0.00003
5550.00 0.00002
5560.00 0.00001
5570.00 0.00001
5580.00 0.00001
5590.00 0.00000
5600.00 0.00000
5610.00 0.00000
5620.00 0.00000
5630.00 0.00000
5640.00 0.00000
5650.00 0.00000
5660.00 0.00000
5670.00 0.00000
5680.00 0.00000
5690.00 0.00001
5700.00 0.00001
5710.00 0.00001
5720.00 0.00001
5730.00 0.00001
5740.00 0.00001
5750.00 0.00001
5760.00 0.00001
5770.00 0.00001
5780.00 0.00001
5790.00 0.00002
5800.00 0.00002
5810.00 0.00002
5820.00 0.00002
5830.00 0.00001
5840.00 0.00001
5850.00 0.00000
5860.00 0.00000
5870.00 0.00000
5880.00 0.00000
5890.00 0.00000
5900.00 0.00000
5910.00 0.00000
5920.00 0.00000
5930.00 0.00000
5940.00 0.00000
5950.00 0.00000
5960.00 0.00000
5970.00 0.00000
5980.00 0.00001
5990.00 0.00001
6000.00 0.00000
6010.00 0.00000
6020.00 0.00000
6030.00 0.00000
6040.00 0.00000
6050.00 0.00000
6060.00 0.00000
6070.00 0.00000
6080.00 0.00000
6090.00 0.00000
6100.00 0.00000
6110.00 0.00000
6120.00 0.00000
6130.00 0.00000
6140.00 0.00000
6150.00 0.00000
6160.00 0.00000
6170.00 0.00000
6180.00 0.00000
6190.00 0.00000
6200.00 0.00000
6210.00 0.00000
6220.00 0.00000
6230.00 0.00000
6240.00 0.00000
6250.00 0.00000
6260.00 0.00000
6270.00 0.00000
6280.00 0.00000
6290.00 0.00000
6300.00 0.00000
6310.00 0.00000
6320.00 0.00000
6330.00 0.00000
6340.00 0.00000
6350.00 0.00000
6360.00 0.00000
6370.00 0.00001
6380.00 0.00001
6390.00 0.00001
6400.00 0.00001
6410.00 0.00001
6420.00 0.00001
6430.00 0.00001
6440.00 0.00000
6450.00 0.00000
6460.00 0.00000
6470.00 0.00000
6480.00 0.00000
6490.00 0.00000
6500.00 0.00000
6510.00 0.00000
6520.00 0.00000
6530.00 0.00001
6540.00 0.00001
6550.00 0.00001
6560.00 0.00001
6570.00 0.00001
6580.00 0.00001
6590.00 0.00001
6600.00 0.00001
6610.00 0.00001
6620.00 0.00001
6630.00 0.00000
6640.00 0.00000
6650.00 0.00000
6660.00 0.00000
6670.00 0.00000
6680.00 0.00000
6690.00 0.00000
6700.00 0.00000
6710.00 0.00000
6720.00 0.00000
6730.00 0.00000
6740.00 0.00000
6750.00 0.00000
6760.00 0.00000
6770.00 0.00000
6780.00 0.00000
6790.00 0.00000
6800.00 0.00000
6810.00 0.00000
6820.00 0.00000
6830.00 0.00000
6840.00 0.00000
6850.00 0.00000
6860.00 0.00000
6870.00 0.00000
6880.00 0.00000
6890.00 0.00000
6900.00 0.00000
6910.00 0.00000
6920.00 0.00000
6930.00 0.00000
6940.00 0.00000
6950.00 0.00000
6960.00 0.00000
6970.00 0.00000
6980.00 0.00000
6990.00 0.00000
7000.00 0.00000
7010.00 0.00000
7020.00 0.00000
7030.00 0.00000
7040.00 0.00000
7050.00 0.00000
7060.00 0.00000
7070.00 0.00000
7080.00 0.00000
7090.00 0.00000
7100.00 0.00000
7110.00 0.00000
7120.00 0.00000
7130.00 0.00000
7140.00 0.00000
7150.00 0.00000
7160.00 0.00000
7170.00 0.00000
7180.00 0.00000
7190.00 0.00000
7200.00 0.00000
7210.00 0.00000
7220.00 0.00000
7230.00 0.00000
7240.00 0.00000
7250.00 0.00000
7260.00 0.00000
7270.00 0.00000
7280.00 0.00000
7290.00 0.00000
7300.00 0.00000
7310.00 0.00000
7320.00 0.00000
7330.00 0.00000
7340.00 0.00000
7350.00 0.00000
7360.00 0.00000
7370.00 0.00000
7380.00 0.00000
7390.00 0.00000
7400.00 0.00000
7410.00 0.00000
7420.00 0.00000
7430.00 0.00000
7440.00 0.00000
7450.00 0.00000
7460.00 0.00000
7470.00 0.00000
7480.00 0.00000
7490.00 0.00000
7500.00 0.00000
7510.00 0.00000
7520.00 0.00000
7530.00 0.00000
7540.00 0.00000
7550.00 0.00000
7560.00 0.00000
7570.00 0.00000
7580.00 0.00000
7590.00 0.00000
7600.00 0.00000
7610.00 0.00000
7620.00 0.00000
7630.00 0.00000
7640.00 0.00000
7650.00 0.00000
7660.00 0.00000
7670.00 0.00000
7680.00 0.00000
7690.00 0.00000
7700.00 0.00000
7710.00 0.00000
7720.00 0.00000
7730.00 0.00000
7740.00 0.00000
7750.00 0.00000
7760.00 0.00000
7770.00 0.00000
7780.00 0.00000
7790.00 0.00000
7800.00 0.00000
7810.00 0.00000
7820.00 0.00000
7830.00 0.00001
7840.00 0.00001
7850.00 0.00001
7860.00 0.00001
7870.00 0.00001
7880.00 0.00000
7890.00 0.00000
7900.00 0.00000
7910.00 0.00000
7920.00 0.00000
7930.00 0.00000
7940.00 0.00000
7950.00 0.00000
7960.00 0.00000
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.00002
8010.00 0.00001
8020.00 0.00002
8030.00 0.00002
8040.00 0.00001
8050.00 0.00002
8060.00 0.00001
8070.00 0.00002
8080.00 0.00001
8090.00 0.00001
8100.00 0.00001
8110.00 0.00001
8120.00 0.00000
8130.00 0.00002
8140.00 0.00001
8150.00 0.00000
8160.00 0.00001
8170.00 0.00001
8180.00 0.00002
8190.00 0.00003
8200.00 0.00002
8210.00 0.00002
8220.00 0.00002
8230.00 0.00002
8240.00 0.00001
8250.00 0.00001
8260.00 0.00002
8270.00 0.00001
8280.00 0.00001
8290.00 0.00002
8300.00 0.00001
8310.00 0.00002
8320.00 0.00002
8330.00 0.00002
8340.00 0.00001
8350.00 0.00002
8360.00 0.00001
8370.00 0.00002
8380.00 0.00002
8390.00 0.00001
8400.00 0.00002
8410.00 0.00002
8420.00 0.00001
8430.00 0.00001
8440.00 0.00001
8450.00 0.00001
8460.00 0.00001
8470.00 0.00001
8480.00 0.00001
8490.00 0.00000
8500.00 0.00001
8510.00 0.00001
8520.00 0.00001
8530.00 0.00001
8540.00 0.00001
8550.00 0.00001
8560.00 0.00001
8570.00 0.00001
8580.00 0.00001
8590.00 0.00001
8600.00 0.00001
8610.00 0.00001
8620.00 0.00001
8630.00 0.00001
8640.00 0.00001
8650.00 0.00001
8660.00 0.00001
8670.00 0.00001
8680.00 0.00001
8690.00 0.00001
8700.00 0.00001
8710.00 0.00001
8720.00 0.00001
8730.00 0.00001
8740.00 0.00001
8750.00 0.00001
8760.00 0.00001
8770.00 0.00001
8780.00 0.00001
8790.00 0.00001
8800.00 0.00001
8810.00 0.00001
8820.00 0.00001
8830.00 0.00001
8840.00 0.00001
8850.00 0.00001
8860.00 0.00002
8870.00 0.00002
8880.00 0.00002
8890.00 0.00002
8900.00 0.00002
8910.00 0.00003
8920.00 0.00003
8930.00 0.00004
8940.00 0.00005
8950.00 0.00006
8960.00 0.00007
8970.00 0.00008
8980.00 0.00010
8990.00 0.00012
9000.00 0.00015
9010.00 0.00020
9020.00 0.00029
9030.00 0.00042
9040.00 0.00067
9050.00 0.00113
9060.00 0.00206
9070.00 0.00379
9080.00 0.00654
9090.00 0.01016
9100.00 0.01473
9110.00 0.02009
9120.00 0.02491
9130.00 0.02787
9140.00 0.03080
9150.00 0.03360
9160.00 0.03736
9170.00 0.04152
9180.00 0.04629
9190.00 0.05196
9200.00 0.05965
9210.00 0.06897
9220.00 0.08142
9230.00 0.09667
9240.00 0.11727
9250.00 0.14703
9260.00 0.18512
9270.00 0.22564
9280.00 0.25914
9290.00 0.27504
9300.00 0.27413
9310.00 0.26672
9320.00 0.25628
9330.00 0.25043
9340.00 0.25056
9350.00 0.25780
9360.00 0.26953
9370.00 0.28027
9380.00 0.29300
9390.00 0.30125
9400.00 0.30476
9410.00 0.30774
9420.00 0.30754
9430.00 0.30457
9440.00 0.30033
9450.00 0.29852
9460.00 0.29537
9470.00 0.29414
9480.00 0.29372
9490.00 0.29135
9500.00 0.29245
9510.00 0.29120
9520.00 0.29163
9530.00 0.28776
9540.00 0.28561
9550.00 0.28216
9560.00 0.27887
9570.00 0.27618
9580.00 0.27160
9590.00 0.26462
9600.00 0.25744
9610.00 0.25295
9620.00 0.24872
9630.00 0.24309
9640.00 0.24029
9650.00 0.23722
9660.00 0.23592
9670.00 0.23303
9680.00 0.23185
9690.00 0.22828
9700.00 0.22377
9710.00 0.22119
9720.00 0.21880
9730.00 0.21568
9740.00 0.21221
9750.00 0.20819
9760.00 0.20421
9770.00 0.19998
9780.00 0.19609
9790.00 0.19067
9800.00 0.18498
9810.00 0.18081
9820.00 0.17709
9830.00 0.17290
9840.00 0.16863
9850.00 0.16594
9860.00 0.16317
9870.00 0.15992
9880.00 0.15856
9890.00 0.15453
9900.00 0.15212
9910.00 0.14915
9920.00 0.14682
9930.00 0.14462
9940.00 0.14245
9950.00 0.14032
9960.00 0.13813
9970.00 0.13557
9980.00 0.13274
9990.00 0.12956
10000.00 0.12631
10010.00 0.12358
10020.00 0.12131
10030.00 0.11828
10040.00 0.11527
10050.00 0.11281
10060.00 0.10998
10070.00 0.10693
10080.00 0.10413
10090.00 0.10062
10100.00 0.09759
10110.00 0.09418
10120.00 0.09121
10130.00 0.08794
10140.00 0.08498
10150.00 0.08236
10160.00 0.07916
10170.00 0.07608
10180.00 0.07280
10190.00 0.06992
10200.00 0.06690
10210.00 0.06474
10220.00 0.06270
10230.00 0.06034
10240.00 0.05816
10250.00 0.05627
10260.00 0.05452
10270.00 0.05255
10280.00 0.05035
10290.00 0.04810
10300.00 0.04589
10310.00 0.04451
10320.00 0.04310
10330.00 0.04172
10340.00 0.04014
10350.00 0.03859
10360.00 0.03726
10370.00 0.03553
10380.00 0.03402
10390.00 0.03240
10400.00 0.03080
10410.00 0.02982
10420.00 0.02864
10430.00 0.02743
10440.00 0.02619
10450.00 0.02501
10460.00 0.02386
10470.00 0.02278
10480.00 0.02160
10490.00 0.02026
10500.00 0.01900
10510.00 0.01866
10520.00 0.01823
10530.00 0.01788
10540.00 0.01745
10550.00 0.01709
10560.00 0.01676
10570.00 0.01634
10580.00 0.01602
10590.00 0.01561
10600.00 0.01526
10610.00 0.01482
10620.00 0.01446
10630.00 0.01407
10640.00 0.01371
10650.00 0.01330
10660.00 0.01291
10670.00 0.01258
10680.00 0.01224
10690.00 0.01185
10700.00 0.01138
10710.00 0.01100
10720.00 0.01064
10730.00 0.01024
10740.00 0.00984
10750.00 0.00948
10760.00 0.00916
10770.00 0.00871
10780.00 0.00837
10790.00 0.00797
10800.00 0.00749
10810.00 0.00714
10820.00 0.00671
10830.00 0.00631
10840.00 0.00590
10850.00 0.00547
10860.00 0.00504
10870.00 0.00463
10880.00 0.00418
10890.00 0.00374
10900.00 0.00327
10910.00 0.00283
10920.00 0.00241
10930.00 0.00199
10940.00 0.00159
10950.00 0.00123
10960.00 0.00090
10970.00 0.00061
10980.00 0.00037
10990.00 0.00017
11000.00 0.00000
# z_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
2030.00 0.00000
2040.00 0.00000
2050.00 0.00000
2060.00 0.00000
2070.00 0.00000
2080.00 0.00000
2090.00 0.00000
2100.00 0.00000
2110.00 0.00000
2120.00 0.00000
2130.00 0.00000
2140.00 0.00000
2150.00 0.00000
2160.00 0.00000
2170.00 0.00000
2180.00 0.00000
2190.00 0.00000
2200.00 0.00000
2210.00 0.00000
2220.00 0.00000
2230.00 0.00000
2240.00 0.00000
2250.00 0.00000
2260.00 0.00000
2270.00 0.00000
2280.00 0.00000
2290.00 0.00000
2300.00 0.00000
2310.00 0.00000
2320.00 0.00000
2330.00 0.00000
2340.00 0.00000
2350.00 0.00000
2360.00 0.00000
2370.00 0.00000
2380.00 0.00000
2390.00 0.00000
2400.00 0.00000
2410.00 0.00000
2420.00 0.00000
2430.00 0.00000
2440.00 0.00000
2450.00 0.00000
2460.00 0.00000
2470.00 0.00000
2480.00 0.00000
2490.00 0.00000
2500.00 0.00000
2510.00 0.00000
2520.00 0.00000
2530.00 0.00000
2540.00 0.00000
2550.00 0.00000
2560.00 0.00000
2570.00 0.00000
2580.00 0.00000
2590.00 0.00000
2600.00 0.00000
2610.00 0.00000
2620.00 0.00000
2630.00 0.00000
2640.00 0.00000
2650.00 0.00000
2660.00 0.00000
2670.00 0.00000
2680.00 0.00000
2690.00 0.00000
2700.00 0.00000
2710.00 0.00000
2720.00 0.00000
2730.00 0.00000
2740.00 0.00000
2750.00 0.00000
2760.00 0.00000
2770.00 0.00000
2780.00 0.00000
2790.00 0.00000
2800.00 0.00000
2810.00 0.00000
2820.00 0.00000
2830.00 0.00000
2840.00 0.00000
2850.00 0.00000
2860.00 0.00000
2870.00 0.00000
2880.00 0.00000
2890.00 0.00000
2900.00 0.00000
2910.00 0.00000
2920.00 0.00000
2930.00 0.00000
2940.00 0.00000
2950.00 0.00000
2960.00 0.00000
2970.00 0.00000
2980.00 0.00000
2990.00 0.00000
3000.00 0.00000
3010.00 0.00000
3020.00 0.00000
3030.00 0.00000
3040.00 0.00000
3050.00 0.00000
3060.00 0.00000
3070.00 0.00000
3080.00 0.00000
3090.00 0.00000
3100.00 0.00000
3110.00 0.00000
3120.00 0.00000
3130.00 0.00000
3140.00 0.00000
3150.00 0.00000
3160.00 0.00000
3170.00 0.00000
3180.00 0.00000
3190.00 0.00000
3200.00 0.00000
3210.00 0.00000
3220.00 0.00000
3230.00 0.00000
3240.00 0.00000
3250.00 0.00000
3260.00 0.00000
3270.00 0.00000
3280.00 0.00000
3290.00 0.00000
3300.00 0.00000
3310.00 0.00000
3320.00 0.00000
3330.00 0.00000
3340.00 0.00000
3350.00 0.00000
3360.00 0.00000
3370.00 0.00000
3380.00 0.00000
3390.00 0.00000
3400.00 0.00000
3410.00 0.00000
3420.00 0.00000
3430.00 0.00000
3440.00 0.00000
3450.00 0.00000
3460.00 0.00000
3470.00 0.00000
3480.00 0.00000
3490.00 0.00000
3500.00 0.00000
3510.00 0.00000
3520.00 0.00000
3530.00 0.00000
3540.00 0.00000
3550.00 0.00000
3560.00 0.00000
3570.00 0.00000
3580.00 0.00000
3590.00 0.00000
3600.00 0.00000
3610.00 0.00000
3620.00 0.00000
3630.00 0.00000
3640.00 0.00000
3650.00 0.00000
3660.00 0.00000
3670.00 0.00000
3680.00 0.00000
3690.00 0.00000
3700.00 0.00000
3710.00 0.00000
3720.00 0.00000
3730.00 0.00000
3740.00 0.00000
3750.00 0.00000
3760.00 0.00000
3770.00 0.00000
3780.00 0.00000
3790.00 0.00000
3800.00 0.00000
3810.00 0.00000
3820.00 0.00000
3830.00 0.00000
3840.00 0.00000
3850.00 0.00000
3860.00 0.00000
3870.00 0.00000
3880.00 0.00000
3890.00 0.00000
3900.00 0.00000
3910.00 0.00000
3920.00 0.00000
3930.00 0.00000
3940.00 0.00000
3950.00 0.00000
3960.00 0.00000
3970.00 0.00000
3980.00 0.00000
3990.00 0.00000
4000.00 0.00000
4010.00 0.00000
4020.00 0.00000
4030.00 0.00000
4040.00 0.00000
4050.00 0.00000
4060.00 0.00000
4070.00 0.00000
4080.00 0.00000
4090.00 0.00000
4100.00 0.00000
4110.00 0.00000
4120.00 0.00000
4130.00 0.00000
4140.00 0.00000
4150.00 0.00000
4160.00 0.00000
4170.00 0.00000
4180.00 0.00000
4190.00 0.00000
4200.00 0.00000
4210.00 0.00000
4220.00 0.00000
4230.00 0.00000
4240.00 0.00000
4250.00 0.00000
4260.00 0.00000
4270.00 0.00000
4280.00 0.00000
4290.00 0.00000
4300.00 0.00000
4310.00 0.00000
4320.00 0.00000
4330.00 0.00000
4340.00 0.00000
4350.00 0.00000
4360.00 0.00000
4370.00 0.00000
4380.00 0.00000
4390.00 0.00000
4400.00 0.00000
4410.00 0.00000
4420.00 0.00000
4430.00 0.00000
4440.00 0.00000
4450.00 0.00000
4460.00 0.00000
4470.00 0.00000
4480.00 0.00000
4490.00 0.00000
4500.00 0.00000
4510.00 0.00000
4520.00 0.00000
4530.00 0.00000
4540.00 0.00000
4550.00 0.00000
4560.00 0.00000
4570.00 0.00000
4580.00 0.00000
4590.00 0.00000
4600.00 0.00000
4610.00 0.00000
4620.00 0.00000
4630.00 0.00000
4640.00 0.00000
4650.00 0.00000
4660.00 0.00000
4670.00 0.00000
4680.00 0.00000
4690.00 0.00000
4700.00 0.00000
4710.00 0.00000
4720.00 0.00000
4730.00 0.00000
4740.00 0.00001
4750.00 0.00001
4760.00 0.00001
4770.00 0.00001
4780.00 0.00002
4790.00 0.00003
4800.00 0.00004
4810.00 0.00004
4820.00 0.00005
4830.00 0.00004
4840.00 0.00003
4850.00 0.00002
4860.00 0.00001
4870.00 0.00000
4880.00 0.00000
4890.00 0.00000
4900.00 0.00000
4910.00 0.00000
4920.00 0.00000
4930.00 0.00000
4940.00 0.00000
4950.00 0.00000
4960.00 0.00000
4970.00 0.00000
4980.00 0.00000
4990.00 0.00000
5000.00 0.00000
5010.00 0.00000
5020.00 0.00000
5030.00 0.00000
5040.00 0.00000
5050.00 0.00000
5060.00 0.00000
5070.00 0.00000
5080.00 0.00000
5090.00 0.00000
5100.00 0.00000
5110.00 0.00000
5120.00 0.00000
5130.00 0.00000
5140.00 0.00000
5150.00 0.00000
5160.00 0.00000
5170.00 0.00000
5180.00 0.00000
5190.00 0.00000
5200.00 0.00000
5210.00 0.00000
5220.00 0.00000
5230.00 0.00000
5240.00 0.00000
5250.00 0.00000
5260.00 0.00000
5270.00 0.00000
5280.00 0.00000
5290.00 0.00000
5300.00 0.00000
5310.00 0.00000
5320.00 0.00000
5330.00 0.00000
5340.00 0.00000
5350.00 0.00000
5360.00 0.00000
5370.00 0.00000
5380.00 0.00000
5390.00 0.00000
5400.00 0.00000
5410.00 0.00000
5420.00 0.00000
5430.00 0.00000
5440.00 0.00000
5450.00 0.00000
5460.00 0.00000
5470.00 0.00000
5480.00 0.00000
5490.00 0.00000
5500.00 0.00001
5510.00 0.00001
5520.00 0.00002
5530.00 0.00002
5540.00 0.00002
5550.00 0.00002
5560.00 0.00002
5570.00 0.00001
5580.00 0.00001
5590.00 0.00001
5600.00 0.00000
5610.00 0.00000
5620.00 0.00000
5630.00 0.00000
5640.00 0.00000
5650.00 0.00000
5660.00 0.00000
5670.00 0.00000
5680.00 0.00000
5690.00 0.00000
5700.00 0.00000
5710.00 0.00000
5720.00 0.00000
5730.00 0.00001
5740.00 0.00001
5750.00 0.00001
5760.00 0.00001
5770.00 0.00002
5780.00 0.00002
5790.00 0.00003
5800.00 0.00004
5810.00 0.00004
5820.00 0.00004
5830.00 0.00003
5840.00 0.00002
5850.00 0.00001
5860.00 0.00001
5870.00 0.00000
5880.00 0.00000
5890.00 0.00000
5900.00 0.00000
5910.00 0.00000
5920.00 0.00000
5930.00 0.00000
5940.00 0.00000
5950.00 0.00000
5960.00 0.00000
5970.00 0.00000
5980.00 0.00000
5990.00 0.00000
6000.00 0.00000
6010.00 0.00000
6020.00 0.00000
6030.00 0.00000
6040.00 0.00000
6050.00 0.00000
6060.00 0.00000
6070.00 0.00000
6080.00 0.00000
6090.00 0.00000
6100.00 0.00000
6110.00 0.00000
6120.00 0.00000
6130.00 0.00000
6140.00 0.00000
6150.00 0.00000
6160.00 0.00000
6170.00 0.00000
6180.00 0.00000
6190.00 0.00000
6200.00 0.00000
6210.00 0.00000
6220.00 0.00000
6230.00 0.00000
6240.00 0.00000
6250.00 0.00000
6260.00 0.00000
6270.00 0.00000
6280.00 0.00000
6290.00 0.00000
6300.00 0.00000
6310.00 0.00000
6320.00 0.00000
6330.00 0.00000
6340.00 0.00000
6350.00 0.00000
6360.00 0.00000
6370.00 0.00000
6380.00 0.00000
6390.00 0.00000
6400.00 0.00000
6410.00 0.00000
6420.00 0.00000
6430.00 0.00000
6440.00 0.00000
6450.00 0.00000
6460.00 0.00000
6470.00 0.00000
6480.00 0.00000
6490.00 0.00000
6500.00 0.00000
6510.00 0.00000
6520.00 0.00000
6530.00 0.00000
6540.00 0.00000
6550.00 0.00000
6560.00 0.00000
6570.00 0.00000
6580.00 0.00000
6590.00 0.00000
6600.00 0.00000
6610.00 0.00000
6620.00 0.00000
6630.00 0.00000
6640.00 0.00000
6650.00 0.00000
6660.00 0.00000
6670.00 0.00000
6680.00 0.00000
6690.00 0.00000
6700.00 0.00000
6710.00 0.00000
6720.00 0.00000
6730.00 0.00000
6740.00 0.00000
6750.00 0.00000
6760.00 0.00000
6770.00 0.00000
6780.00 0.00000
6790.00 0.00000
6800.00 0.00000
6810.00 0.00000
6820.00 0.00000
6830.00 0.00000
6840.00 0.00000
6850.00 0.00000
6860.00 0.00000
6870.00 0.00000
6880.00 0.00000
6890.00 0.00000
6900.00 0.00000
6910.00 0.00000
6920.00 0.00000
6930.00 0.00000
6940.00 0.00000
6950.00 0.00000
6960.00 0.00000
6970.00 0.00000
6980.00 0.00000
6990.00 0.00000
7000.00 0.00000
7010.00 0.00000
7020.00 0.00000
7030.00 0.00000
7040.00 0.00000
7050.00 0.00000
7060.00 0.00000
7070.00 0.00000
7080.00 0.00000
7090.00 0.00000
7100.00 0.00000
7110.00 0.00000
7120.00 0.00000
7130.00 0.00000
7140.00 0.00000
7150.00 0.00000
7160.00 0.00000
7170.00 0.00000
7180.00 0.00000
7190.00 0.00000
7200.00 0.00000
7210.00 0.00000
7220.00 0.00000
7230.00 0.00000
7240.00 0.00000
7250.00 0.00000
7260.00 0.00000
7270.00 0.00000
7280.00 0.00000
7290.00 0.00000
7300.00 0.00000
7310.00 0.00000
7320.00 0.00000
7330.00 0.00000
7340.00 0.00000
7350.00 0.00000
7360.00 0.00000
7370.00 0.00000
7380.00 0.00000
7390.00 0.00000
7400.00 0.00000
7410.00 0.00000
7420.00 0.00000
7430.00 0.00000
7440.00 0.00000
7450.00 0.00000
7460.00 0.00000
7470.00 0.00000
7480.00 0.00000
7490.00 0.00000
7500.00 0.00000
7510.00 0.00000
7520.00 0.00000
7530.00 0.00000
7540.00 0.00000
7550.00 0.00000
7560.00 0.00000
7570.00 0.00000
7580.00 0.00000
7590.00 0.00000
7600.00 0.00000
7610.00 0.00000
7620.00 0.00000
7630.00 0.00000
7640.00 0.00000
7650.00 0.00000
7660.00 0.00000
7670.00 0.00000
7680.00 0.00000
7690.00 0.00000
7700.00 0.00000
7710.00 0.00000
7720.00 0.00000
7730.00 0.00000
7740.00 0.00000
7750.00 0.00000
7760.00 0.00000
7770.00 0.00000
7780.00 0.00000
7790.00 0.00000
7800.00 0.00000
7810.00 0.00000
7820.00 0.00000
7830.00 0.00000
7840.00 0.00000
7850.00 0.00000
7860.00 0.00000
7870.00 0.00000
7880.00 0.00000
7890.00 0.00000
7900.00 0.00000
7910.00 0.00000
7920.00 0.00000
7930.00 0.00000
7940.00 0.00000
7950.00 0.00000
7960.00 0.00000
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.00002
8010.00 0.00003
8020.00 0.00003
8030.00 0.00003
8040.00 0.00003
8050.00 0.00004
8060.00 0.00004
8070.00 0.00005
8080.00 0.00007
8090.00 0.00008
8100.00 0.00009
8110.00 0.00013
8120.00 0.00018
8130.00 0.00026
8140.00 0.00040
8150.00 0.00065
8160.00 0.00112
8170.00 0.00185
8180.00 0.00305
8190.00 0.00475
8200.00 0.00704
8210.00 0.00994
8220.00 0.01366
8230.00 0.01820
8240.00 0.02345
8250.00 0.03058
8260.00 0.03900
8270.00 0.04796
8280.00 0.05876
8290.00 0.07147
8300.00 0.08580
8310.00 0.10118
8320.00 0.11803
8330.00 0.13528
8340.00 0.15451
8350.00 0.17500
8360.00 0.19415
8370.00 0.21555
8380.00 0.23737
8390.00 0.26134
8400.00 0.28959
8410.00 0.31549
8420.00 0.34437
8430.00 0.37460
8440.00 0.40913
8450.00 0.43985
8460.00 0.46810
8470.00 0.50016
8480.00 0.52985
8490.00 0.53965
8500.00 0.54721
8510.00 0.55913
8520.00 0.56785
8530.00 0.57017
8540.00 0.57030
8550.00 0.56308
8560.00 0.56262
8570.00 0.55976
8580.00 0.56087
8590.00 0.56322
8600.00 0.56420
8610.00 0.57465
8620.00 0.58293
8630.00 0.58455
8640.00 0.58646
8650.00 0.58652
8660.00 0.59005
8670.00 0.59086
8680.00 0.59135
8690.00 0.59191
8700.00 0.59066
8710.00 0.58680
8720.00 0.58734
8730.00 0.58443
8740.00 0.58584
8750.00 0.58551
8760.00 0.58631
8770.00 0.57497
8780.00 0.56742
8790.00 0.56521
8800.00 0.56529
8810.00 0.56261
8820.00 0.55838
8830.00 0.55504
8840.00 0.55008
8850.00 0.54926
8860.00 0.55300
8870.00 0.55054
8880.00 0.54841
8890.00 0.54389
8900.00 0.54021
8910.00 0.53897
8920.00 0.53684
8930.00 0.53275
8940.00 0.52614
8950.00 0.52261
8960.00 0.51701
8970.00 0.51777
8980.00 0.51666
8990.00 0.50958
9000.00 0.50227
9010.00 0.49876
9020.00 0.49809
9030.00 0.49215
9040.00 0.48671
9050.00 0.48609
9060.00 0.48684
9070.00 0.48709
9080.00 0.48235
9090.00 0.47727
9100.00 0.47371
9110.00 0.47099
9120.00 0.46685
9130.00 0.46190
9140.00 0.45953
9150.00 0.45711
9160.00 0.45402
9170.00 0.44954
9180.00 0.44596
9190.00 0.43748
9200.00 0.43258
9210.00 0.42686
9220.00 0.42501
9230.00 0.41694
9240.00 0.41017
9250.00 0.40690
9260.00 0.40273
9270.00 0.40115
9280.00 0.39850
9290.00 0.39300
9300.00 0.38771
9310.00 0.38511
9320.00 0.38115
9330.00 0.37657
9340.00 0.37304
9350.00 0.37035
9360.00 0.36799
9370.00 0.36361
9380.00 0.36175
9390.00 0.35653
9400.00 0.35207
9410.00 0.34870
9420.00 0.34540
9430.00 0.34000
9440.00 0.33454
9450.00 0.33118
9460.00 0.32608
9470.00 0.32235
9480.00 0.31854
9490.00 0.31280
9500.00 0.30897
9510.00 0.30432
9520.00 0.30050
9530.00 0.29516
9540.00 0.29060
9550.00 0.28636
9560.00 0.28360
9570.00 0.28103
9580.00 0.27826
9590.00 0.27258
9600.00 0.26635
9610.00 0.26313
9620.00 0.26024
9630.00 0.25426
9640.00 0.25093
9650.00 0.24715
9660.00 0.24534
9670.00 0.24135
9680.00 0.23866
9690.00 0.23333
9700.00 0.22699
9710.00 0.22368
9720.00 0.21986
9730.00 0.21567
9740.00 0.21298
9750.00 0.20891
9760.00 0.20503
9770.00 0.20208
9780.00 0.19933
9790.00 0.19468
9800.00 0.19016
9810.00 0.18628
9820.00 0.18377
9830.00 0.18008
9840.00 0.17676
9850.00 0.17416
9860.00 0.17185
9870.00 0.16854
9880.00 0.16681
9890.00 0.16231
9900.00 0.15922
9910.00 0.15595
9920.00 0.15261
9930.00 0.14979
9940.00 0.14714
9950.00 0.14405
9960.00 0.14113
9970.00 0.13766
9980.00 0.13428
9990.00 0.13036
10000.00 0.12687
10010.00 0.12353
10020.00 0.12086
10030.00 0.11805
10040.00 0.11487
10050.00 0.11219
10060.00 0.10946
10070.00 0.10670
10080.00 0.10390
10090.00 0.10063
10100.00 0.09769
10110.00 0.09469
10120.00 0.09182
10130.00 0.08876
10140.00 0.08596
10150.00 0.08345
10160.00 0.08038
10170.00 0.07757
10180.00 0.07454
10190.00 0.07143
10200.00 0.06847
10210.00 0.06625
10220.00 0.06415
10230.00 0.06172
10240.00 0.05948
10250.00 0.05752
10260.00 0.05559
10270.00 0.05342
10280.00 0.05111
10290.00 0.04861
10300.00 0.04624
10310.00 0.04473
10320.00 0.04323
10330.00 0.04159
10340.00 0.03990
10350.00 0.03836
10360.00 0.03685
10370.00 0.03495
10380.00 0.03347
10390.00 0.03179
10400.00 0.03022
10410.00 0.02922
10420.00 0.02809
10430.00 0.02687
10440.00 0.02562
10450.00 0.02458
10460.00 0.02340
10470.00 0.02243
10480.00 0.02127
10490.00 0.01998
10500.00 0.01877
10510.00 0.01843
10520.00 0.01806
10530.00 0.01774
10540.00 0.01732
10550.00 0.01701
10560.00 0.01671
10570.00 0.01628
10580.00 0.01597
10590.00 0.01558
10600.00 0.01522
10610.00 0.01479
10620.00 0.01442
10630.00 0.01400
10640.00 0.01363
10650.00 0.01319
10660.00 0.01273
10670.00 0.01234
10680.00 0.01193
10690.00 0.01143
10700.00 0.01087
10710.00 0.01034
10720.00 0.00980
10730.00 0.00922
10740.00 0.00860
10750.00 0.00802
10760.00 0.00742
10770.00 0.00671
10780.00 0.00610
10790.00 0.00546
10800.00 0.00478
10810.00 0.00421
10820.00 0.00366
10830.00 0.00314
10840.00 0.00267
10850.00 0.00226
10860.00 0.00189
10870.00 0.00157
10880.00 0.00130
10890.00 0.00106
10900.00 0.00085
10910.00 0.00068
10920.00 0.00054
10930.00 0.00042
10940.00 0.00032
10950.00 0.00024
10960.00 0.00017
10970.00 0.00011
10980.00 0.00007
10990.00 0.00003
11000.00 0.00000
-5.6762217e-02 -1.1179007e+00 -2.0436628e+00 -2.8425037e+00 -3.5228787e+00 -4.0932431e+00 -4.5620519e+00 -4.9377604e+00 -5.2288239e+00 -5.4436975e+00 -5.5984256e+00 -5.7394089e+00 -5.9206373e+00 -6.1961006e+00 -6.6197888e+00 -7.2212055e+00 -7.9319101e+00 -8.6589761e+00 -9.3094766e+00 -9.7904850e+00 -1.0035258e+01 -1.0081788e+01 -9.9942484e+00 -9.8368156e+00 -9.6736641e+00 -9.5573981e+00 -9.4943368e+00 -9.4792287e+00 -9.5068220e+00 -9.5718652e+00 -9.6654976e+00 -9.7644232e+00 -9.8417369e+00 -9.8705338e+00 -9.8239087e+00 -9.6906665e+00 -9.5224502e+00 -9.3866128e+00 -9.3505071e+00 -9.4814861e+00 -9.8469024e+00 -1.0514109e+01 -1.1550459e+01 -1.3023305e+01 -1.5000000e+01
-5.6565136e-02 -1.1151415e+00 -2.0405204e+00 -2.8405001e+00 -3.5228787e+00 -4.0954548e+00 -4.5660264e+00 -4.9423918e+00 -5.2323494e+00 -5.4436975e+00 -5.5924387e+00 -5.7273935e+00 -5.9055868e+00 -6.1840436e+00 -6.6197888e+00 -7.2437066e+00 -7.9821192e+00 -8.7352080e+00 -9.4031545e+00 -9.8861402e+00 -1.0113397e+01 -1.0130361e+01 -1.0011518e+01 -9.8313537e+00 -9.6643546e+00 -9.5696097e+00 -9.5446213e+00 -9.5714945e+00 -9.6323346e+00 -9.7092467e+00 -9.7850940e+00 -9.8457719e+00 -9.8779333e+00 -9.8682317e+00 -9.8033200e+00 -9.6816702e+00 -9.5490287e+00 -9.4629605e+00 -9.4810307e+00 -9.6608043e+00 -1.0059846e+01 -1.0735722e+01 -1.1745996e+01 -1.3148234e+01 -1.5000000e+01
-5.6388704e-02 -1.1126715e+00 -2.0377073e+00 -2.8387063e+00 -3.5228787e+00 -4.0974347e+00 -4.5695844e+00 -4.9465380e+00 -5.2355056e+00 -5.4436975e+00 -5.5870791e+00 -5.7166370e+00 -5.8921133e+00 -6.1732499e+00 -6.6197888e+00 -7.2638482e+00 -8.0270519e+00 -8.8034000e+00 -9.4868924e+00 -9.9715293e+00 -1.0182945e+01 -1.0173315e+01 -1.0026446e+01 -9.8261467e+00 -9.6562267e+00 -9.5816195e+00 -9.5917603e+00 -9.6572096e+00 -9.7485279e+00 -9.8362757e+00 -9.8957676e+00 -9.9213351e+00 -9.9120638e+00 -9.8670391e+00 -9.7853468e+00 -9.6743218e+00 -9.5742972e+00 -9.5338552e+00 -9.6015784e+00 -9.8260490e+00 -1.0255850e+01 -1.0939563e+01 -1.1925770e+01 -1.3263055e+01 -1.5000000e+01
-5.6232254e-02 -1.1104812e+00 -2.0352128e+00 -2.8371158e+00 -3.5228787e+00 -4.0991904e+00 -4.5727395e+00 -4.9502145e+00 -5.2383043e+00 -5.4436975e+00 -5.5823265e+00 -5.7070988e+00 -5.8801658e+00 -6.1636787e+00 -6.6197888e+00 -7.2817066e+00 -8.0668792e+00 -8.8638132e+00 -9.5610148e+00 -1.0046990e+01 -1.0244191e+01 -1.0210845e+01 -1.0039125e+01 -9.8212036e+00 -9.6492544e+00 -9.5934349e+00 -9.6358423e+00 -9.7365586e+00 -9.8556661e+00 -9.9532467e+00 -9.9977731e+00 -9.9912794e+00 -9.9441899e+00 -9.8669292e+00 -9.7699219e+00 -9.6685851e+00 -9.5983077e+00 -9.5994710e+00 -9.7124565e+00 -9.9776458e+00 -1.0435420e+01 -1.1126161e+01 -1.2090251e+01 -1.3368070e+01 -1.5000000e+01
-5.6095120e-02 -1.1085613e+00 -2.0330263e+00 -2.8357216e+00 -3.5228787e+00 -4.1007294e+00 -4.5755050e+00 -4.9534372e+00 -5.2407575e+00 -5.4436975e+00 -5.5781606e+00 -5.6987382e+00 -5.8696933e+00 -6.1552891e+00 -6.6197888e+00 -7.2973579e+00 -8.1017720e+00 -8.9167088e+00 -9.6258462e+00 -1.0112862e+01 -1.0297422e+01 -1.0243148e+01 -1.0049649e+01 -9.8165337e+00 -9.6434115e+00 -9.6050633e+00 -9.6769555e+00 -9.8097261e+00 -9.9540131e+00 -1.0060454e+01 -1.0091365e+01 -1.0055771e+01 -9.9743735e+00 -9.8678750e+00 -9.7569779e+00 -9.6644239e+00 -9.6211123e+00 -9.6599819e+00 -9.8139715e+00 -1.0116020e+01 -1.0599066e+01 -1.1296048e+01 -1.2239905e+01 -1.3463576e+01 -1.5000000e+01
-5.5976633e-02 -1.1069025e+00 -2.0311371e+00 -2.8345169e+00 -3.5228787e+00 -4.1020591e+00 -4.5778945e+00 -4.9562216e+00 -5.2428771e+00 -5.4436975e+00 -5.5745613e+00 -5.6915144e+00 -5.8606448e+00 -6.1480403e+00 -6.6197888e+00 -7.3108787e+00 -8.1319012e+00 -8.9623480e+00 -9.6817109e+00 -1.0169482e+01 -1.0342928e+01 -1.0270422e+01 -1.0058112e+01 -9.8121462e+00 -9.6386719e+00 -9.6165122e+00 -9.7151885e+00 -9.8768968e+00 -1.0043833e+01 -1.0158193e+01 -1.0176799e+01 -1.0114977e+01 -1.0002676e+01 -9.8698495e+00 -9.7464477e+00 -9.6618020e+00 -9.6427632e+00 -9.7155622e+00 -9.9064297e+00 -1.0241597e+01 -1.0747294e+01 -1.1449752e+01 -1.2375202e+01 -1.3549874e+01 -1.5000000e+01
-5.5876127e-02 -1.1054954e+00 -2.0295345e+00 -2.8334951e+00 -3.5228787e+00 -4.1031870e+00 -4.5799214e+00 -4.9585835e+00 -5.2446751e+00 -5.4436975e+00 -5.5715081e+00 -5.6853869e+00 -5.8529695e+00 -6.1418916e+00 -6.6197888e+00 -7.3223450e+00 -8.1574376e+00 -9.0009919e+00 -9.7289336e+00 -1.0217188e+01 -1.0380997e+01 -1.0292864e+01 -1.0064608e+01 -9.8080503e+00 -9.6350093e+00 -9.6277891e+00 -9.7506297e+00 -9.9382553e+00 -1.0125390e+01 -1.0246758e+01 -1.0254329e+01 -1.0169062e+01 -1.0029160e+01 -9.8728258e+00 -9.7382640e+00 -9.6606832e+00 -9.6633125e+00 -9.7663858e+00 -9.9901375e+00 -1.0354801e+01 -1.0880612e+01 -1.1587803e+01 -1.2496608e+01 -1.3627263e+01 -1.5000000e+01
-5.5792935e-02 -1.1043307e+00 -2.0282081e+00 -2.8326493e+00 -3.5228787e+00 -4.1041206e+00 -4.5815991e+00 -4.9605386e+00 -5.2461633e+00 -5.4436975e+00 -5.5689809e+00 -5.6803150e+00 -5.8466164e+00 -6.1368021e+00 -6.6197888e+00 -7.3318332e+00 -8.1785521e+00 -9.0329017e+00 -9.7678388e+00 -1.0256320e+01 -1.0411917e+01 -1.0310669e+01 -1.0069231e+01 -9.8042552e+00 -9.6323976e+00 -9.6389014e+00 -9.7833675e+00 -9.9939862e+00 -1.0198948e+01 -1.0326442e+01 -1.0324211e+01 -1.0218195e+01 -1.0053886e+01 -9.8767769e+00 -9.7323595e+00 -9.6610314e+00 -9.6828122e+00 -9.8126270e+00 -1.0065401e+01 -1.0456060e+01 -1.0999528e+01 -1.1710731e+01 -1.2604594e+01 -1.3696042e+01 -1.5000000e+01
-5.5726389e-02 -1.1033991e+00 -2.0271471e+00 -2.8319728e+00 -3.5228787e+00 -4.1048674e+00 -4.5829411e+00 -4.9621024e+00 -5.2473537e+00 -5.4436975e+00 -5.5669594e+00 -5.6762579e+00 -5.8415345e+00 -6.1327309e+00 -6.6197888e+00 -7.3394197e+00 -8.1954156e+00 -9.0583386e+00 -9.7987508e+00 -1.0287214e+01 -1.0435977e+01 -1.0324036e+01 -1.0072073e+01 -9.8007702e+00 -9.6308107e+00 -9.6498566e+00 -9.8134904e+00 -1.0044274e+01 -1.0264771e+01 -1.0397542e+01 -1.0386698e+01 -1.0262540e+01 -1.0076916e+01 -9.8816759e+00 -9.7286670e+00 -9.6628103e+00 -9.7013144e+00 -9.8544599e+00 -1.0132527e+01 -1.0545797e+01 -1.1104550e+01 -1.1819066e+01 -1.2699626e+01 -1.3756510e+01 -1.5000000e+01
-5.5675822e-02 -1.1026911e+00 -2.0263408e+00 -2.8314587e+00 -3.5228787e+00 -4.1054348e+00 -4.5839608e+00 -4.9632907e+00 -5.2482583e+00 -5.4436975e+00 -5.5654233e+00 -5.6731750e+00 -5.8376729e+00 -6.1296374e+00 -6.6197888e+00 -7.3451806e+00 -8.2081991e+00 -9.0775638e+00 -9.8219941e+00 -1.0310210e+01 -1.0453466e+01 -1.0333160e+01 -1.0073229e+01 -9.7976045e+00 -9.6302224e+00 -9.6606622e+00 -9.8410867e+00 -1.0089304e+01 -1.0323123e+01 -1.0460351e+01 -1.0442046e+01 -1.0302265e+01 -1.0098313e+01 -9.8874958e+00 -9.7271192e+00 -9.6659838e+00 -9.7188714e+00 -9.8920585e+00 -1.0191822e+01 -1.0624438e+01 -1.1196184e+01 -1.1913337e+01 -1.2782173e+01 -1.3808968e+01 -1.5000000e+01
-5.5640568e-02 -1.1021976e+00 -2.0257787e+00 -2.8311003e+00 -3.5228787e+00 -4.1058305e+00 -4.5846718e+00 -4.9641192e+00 -5.2488889e+00 -5.4436975e+00 -5.5643524e+00 -5.6710257e+00 -5.8349807e+00 -6.1274806e+00 -6.6197888e+00 -7.3491922e+00 -8.2170733e+00 -9.0908383e+00 -9.8378934e+00 -1.0325645e+01 -1.0464671e+01 -1.0338240e+01 -1.0072792e+01 -9.7947672e+00 -9.6306064e+00 -9.6713256e+00 -9.8662449e+00 -1.0129260e+01 -1.0374268e+01 -1.0515163e+01 -1.0490510e+01 -1.0337536e+01 -1.0118137e+01 -9.8942098e+00 -9.7276488e+00 -9.6705157e+00 -9.7355351e+00 -9.9255970e+00 -1.0243592e+01 -1.0692409e+01 -1.1274940e+01 -1.1994075e+01 -1.2852703e+01 -1.3853714e+01 -1.5000000e+01
-5.5619959e-02 -1.1019090e+00 -2.0254501e+00 -2.8308908e+00 -3.5228787e+00 -4.1060617e+00 -4.5850874e+00 -4.9646035e+00 -5.2492576e+00 -5.4436975e+00 -5.5637263e+00 -5.6697692e+00 -5.8334068e+00 -6.1262198e+00 -6.6197888e+00 -7.3515309e+00 -8.2222093e+00 -9.0984234e+00 -9.8467729e+00 -1.0333857e+01 -1.0469881e+01 -1.0339471e+01 -1.0070856e+01 -9.7922676e+00 -9.6319367e+00 -9.6818544e+00 -9.8890535e+00 -1.0164328e+01 -1.0418470e+01 -1.0562274e+01 -1.0532344e+01 -1.0368519e+01 -1.0136451e+01 -9.9017907e+00 -9.7301886e+00 -9.6763699e+00 -9.7513576e+00 -9.9552495e+00 -1.0288143e+01 -1.0750135e+01 -1.1341325e+01 -1.2061808e+01 -1.2911684e+01 -1.3891048e+01 -1.5000000e+01
-5.5613327e-02 -1.1018162e+00 -2.0253443e+00 -2.8308233e+00 -3.5228787e+00 -4.1061362e+00 -4.5852212e+00 -4.9647593e+00 -5.2493763e+00 -5.4436975e+00 -5.5635248e+00 -5.6693649e+00 -5.8329004e+00 -6.1258141e+00 -6.6197888e+00 -7.3522729e+00 -8.2237778e+00 -9.1005803e+00 -9.8489573e+00 -1.0335186e+01 -1.0469386e+01 -1.0337050e+01 -1.0067515e+01 -9.7901149e+00 -9.6341872e+00 -9.6922558e+00 -9.9096008e+00 -1.0194690e+01 -1.0455993e+01 -1.0601978e+01 -1.0567803e+01 -1.0395381e+01 -1.0153316e+01 -9.9102118e+00 -9.7346713e+00 -9.6835100e+00 -9.7663912e+00 -9.9811900e+00 -1.0325782e+01 -1.0798042e+01 -1.1395845e+01 -1.2117068e+01 -1.2959584e+01 -1.3921270e+01 -1.5000000e+01
-5.5620006e-02 -1.1019097e+00 -2.0254508e+00 -2.8308912e+00 -3.5228787e+00 -4.1060612e+00 -4.5850865e+00 -4.9646024e+00 -5.2492568e+00 -5.4436975e+00 -5.5637277e+00 -5.6697721e+00 -5.8334104e+00 -6.1262227e+00 -6.6197888e+00 -7.3514946e+00 -8.2219498e+00 -9.0975700e+00 -9.8447710e+00 -1.0329968e+01 -1.0463473e+01 -1.0331175e+01 -1.0062862e+01 -9.7883183e+00 -9.6373315e+00 -9.7025376e+00 -9.9279752e+00 -1.0220534e+01 -1.0487102e+01 -1.0634570e+01 -1.0597142e+01 -1.0418288e+01 -1.0168794e+01 -9.9194460e+00 -9.7410298e+00 -9.6919001e+00 -9.7806878e+00 -1.0003593e+01 -1.0356815e+01 -1.0836554e+01 -1.1439010e+01 -1.2160383e+01 -1.2996872e+01 -1.3944678e+01 -1.5000000e+01
-5.5639328e-02 -1.1021802e+00 -2.0257589e+00 -2.8310877e+00 -3.5228787e+00 -4.1058444e+00 -4.5846968e+00 -4.9641483e+00 -5.2489111e+00 -5.4436975e+00 -5.5643147e+00 -5.6709501e+00 -5.8348860e+00 -6.1274048e+00 -6.6197888e+00 -7.3492721e+00 -8.2168961e+00 -9.0896539e+00 -9.8345384e+00 -1.0318543e+01 -1.0452430e+01 -1.0322042e+01 -1.0056991e+01 -9.7868871e+00 -9.6413436e+00 -9.7127070e+00 -9.9442653e+00 -1.0242042e+01 -1.0512060e+01 -1.0660343e+01 -1.0620615e+01 -1.0437406e+01 -1.0182946e+01 -9.9294664e+00 -9.7491966e+00 -9.7015038e+00 -9.7942996e+00 -1.0022632e+01 -1.0381549e+01 -1.0866097e+01 -1.1471326e+01 -1.2192283e+01 -1.3024016e+01 -1.3961572e+01 -1.5000000e+01
-5.5670627e-02 -1.1026184e+00 -2.0262580e+00 -2.8314059e+00 -3.5228787e+00 -4.1054931e+00 -4.5840656e+00 -4.9634128e+00 -5.2483512e+00 -5.4436975e+00 -5.5652655e+00 -5.6728583e+00 -5.8372762e+00 -6.1293196e+00 -6.6197888e+00 -7.3456818e+00 -8.2087877e+00 -9.0770930e+00 -9.8185842e+00 -1.0301248e+01 -1.0436547e+01 -1.0309848e+01 -1.0049995e+01 -9.7858304e+00 -9.6461973e+00 -9.7227716e+00 -9.9585594e+00 -1.0259400e+01 -1.0531131e+01 -1.0679593e+01 -1.0638478e+01 -1.0452903e+01 -1.0195835e+01 -9.9402461e+00 -9.7591046e+00 -9.7122850e+00 -9.8072787e+00 -1.0038481e+01 -1.0400289e+01 -1.0887097e+01 -1.1493302e+01 -1.2213299e+01 -1.3041484e+01 -1.3972252e+01 -1.5000000e+01
-5.5713235e-02 -1.1032149e+00 -2.0269373e+00 -2.8318391e+00 -3.5228787e+00 -4.1050150e+00 -4.5832064e+00 -4.9624115e+00 -5.2475890e+00 -5.4436975e+00 -5.5665598e+00 -5.6754559e+00 -5.8405300e+00 -6.1319262e+00 -6.6197888e+00 -7.3408001e+00 -8.1977954e+00 -9.0601485e+00 -9.7972327e+00 -1.0278422e+01 -1.0416112e+01 -1.0294791e+01 -1.0041969e+01 -9.7851574e+00 -9.6518664e+00 -9.7327388e+00 -9.9709460e+00 -1.0272792e+01 -1.0544580e+01 -1.0692614e+01 -1.0650986e+01 -1.0464944e+01 -1.0207522e+01 -9.9517580e+00 -9.7706865e+00 -9.7242075e+00 -9.8196771e+00 -1.0051316e+01 -1.0413343e+01 -1.0899979e+01 -1.1505445e+01 -1.2223959e+01 -1.3049743e+01 -1.3977017e+01 -1.5000000e+01
-5.5766485e-02 -1.1039604e+00 -2.0277864e+00 -2.8323804e+00 -3.5228787e+00 -4.1044174e+00 -4.5821325e+00 -4.9611601e+00 -5.2466364e+00 -5.4436975e+00 -5.5681774e+00 -5.6787024e+00 -5.8445965e+00 -6.1351839e+00 -6.6197888e+00 -7.3347030e+00 -8.1840902e+00 -9.0390815e+00 -9.7708084e+00 -1.0250402e+01 -1.0391413e+01 -1.0277066e+01 -1.0033006e+01 -9.7848773e+00 -9.6583248e+00 -9.7426161e+00 -9.9815135e+00 -1.0282403e+01 -1.0552670e+01 -1.0699700e+01 -1.0658393e+01 -1.0473695e+01 -1.0218069e+01 -9.9639753e+00 -9.7838750e+00 -9.7372351e+00 -9.8315471e+00 -1.0061308e+01 -1.0421016e+01 -1.0905168e+01 -1.1508262e+01 -1.2224794e+01 -1.3049263e+01 -1.3976166e+01 -1.5000000e+01
-5.5829710e-02 -1.1048456e+00 -2.0287944e+00 -2.8330232e+00 -3.5228787e+00 -4.1037079e+00 -4.5808575e+00 -4.9596743e+00 -5.2455054e+00 -5.4436975e+00 -5.5700981e+00 -5.6825570e+00 -5.8494248e+00 -6.1390519e+00 -6.6197888e+00 -7.3274671e+00 -8.1678429e+00 -9.0141534e+00 -9.7396358e+00 -1.0217527e+01 -1.0362738e+01 -1.0256871e+01 -1.0023199e+01 -9.7849995e+00 -9.6655462e+00 -9.7524109e+00 -9.9903503e+00 -1.0288417e+01 -1.0555665e+01 -1.0701147e+01 -1.0660953e+01 -1.0479324e+01 -1.0227537e+01 -9.9768710e+00 -9.7986029e+00 -9.7513317e+00 -9.8429406e+00 -1.0068634e+01 -1.0423616e+01 -1.0903090e+01 -1.1502261e+01 -1.2216334e+01 -1.3040512e+01 -1.3969999e+01 -1.5000000e+01
-5.5902242e-02 -1.1058610e+00 -2.0299509e+00 -2.8337606e+00 -3.5228787e+00 -4.1028939e+00 -4.5793947e+00 -4.9579698e+00 -5.2442079e+00 -5.4436975e+00 -5.5723014e+00 -5.6869791e+00 -5.8549638e+00 -6.1434892e+00 -6.6197888e+00 -7.3191684e+00 -8.1492243e+00 -8.9856251e+00 -9.7040394e+00 -1.0180136e+01 -1.0330377e+01 -1.0234402e+01 -1.0012643e+01 -9.7855330e+00 -9.6735047e+00 -9.7621308e+00 -9.9975448e+00 -1.0291020e+01 -1.0553830e+01 -1.0697248e+01 -1.0658922e+01 -1.0481996e+01 -1.0235989e+01 -9.9904182e+00 -9.8148029e+00 -9.7664610e+00 -9.8539098e+00 -1.0073466e+01 -1.0421447e+01 -1.0894170e+01 -1.1487951e+01 -1.2199108e+01 -1.3023957e+01 -1.3958815e+01 -1.5000000e+01
-5.5983415e-02 -1.1069974e+00 -2.0312452e+00 -2.8345859e+00 -3.5228787e+00 -4.1019830e+00 -4.5777577e+00 -4.9560623e+00 -5.2427558e+00 -5.4436975e+00 -5.5747673e+00 -5.6919279e+00 -5.8611627e+00 -6.1484552e+00 -6.6197888e+00 -7.3098834e+00 -8.1284055e+00 -8.9537580e+00 -9.6643437e+00 -1.0138566e+01 -1.0294618e+01 -1.0209857e+01 -1.0001431e+01 -9.7864872e+00 -9.6821739e+00 -9.7717832e+00 -1.0003185e+01 -1.0290396e+01 -1.0547428e+01 -1.0688299e+01 -1.0652555e+01 -1.0481879e+01 -1.0243485e+01 -1.0004590e+01 -9.8324078e+00 -9.7825869e+00 -9.8645068e+00 -1.0075980e+01 -1.0414818e+01 -1.0878833e+01 -1.1465838e+01 -1.2173645e+01 -1.3000066e+01 -1.3942914e+01 -1.5000000e+01
-5.6072561e-02 -1.1082455e+00 -2.0326666e+00 -2.8354922e+00 -3.5228787e+00 -4.1009825e+00 -4.5759600e+00 -4.9539673e+00 -5.2411611e+00 -5.4436975e+00 -5.5774753e+00 -5.6973628e+00 -5.8679705e+00 -6.1539090e+00 -6.6197888e+00 -7.2996883e+00 -8.1055572e+00 -8.9188130e+00 -9.6208732e+00 -1.0093155e+01 -1.0255749e+01 -1.0183432e+01 -9.9896562e+00 -9.7878711e+00 -9.6915277e+00 -9.7813755e+00 -1.0007361e+01 -1.0286729e+01 -1.0536724e+01 -1.0674593e+01 -1.0642106e+01 -1.0479137e+01 -1.0250088e+01 -1.0019359e+01 -9.8513502e+00 -9.7996733e+00 -9.8747837e+00 -1.0076348e+01 -1.0404033e+01 -1.0857505e+01 -1.1436431e+01 -1.2140477e+01 -1.2969309e+01 -1.3922595e+01 -1.5000000e+01
-5.6169013e-02 -1.1095958e+00 -2.0342045e+00 -2.8364728e+00 -3.5228787e+00 -4.0999001e+00 -4.5740148e+00 -4.9517007e+00 -5.2394356e+00 -5.4436975e+00 -5.5804054e+00 -5.7032432e+00 -5.8753362e+00 -6.1598097e+00 -6.6197888e+00 -7.2886594e+00 -8.0808504e+00 -8.8810516e+00 -9.5739523e+00 -1.0044242e+01 -1.0214058e+01 -1.0155325e+01 -9.9774128e+00 -9.7896941e+00 -9.7015399e+00 -9.7909153e+00 -1.0010159e+01 -1.0280204e+01 -1.0521982e+01 -1.0656426e+01 -1.0627830e+01 -1.0473939e+01 -1.0255860e+01 -1.0034699e+01 -9.8715631e+00 -9.8176838e+00 -9.8847927e+00 -1.0074746e+01 -1.0389400e+01 -1.0830611e+01 -1.1400236e+01 -1.2100131e+01 -1.2932153e+01 -1.3898157e+01 -1.5000000e+01
-5.6272104e-02 -1.1110391e+00 -2.0358482e+00 -2.8375209e+00 -3.5228787e+00 -4.0987432e+00 -4.5719358e+00 -4.9492781e+00 -5.2375915e+00 -5.4436975e+00 -5.5835370e+00 -5.7095283e+00 -5.8832090e+00 -6.1661166e+00 -6.6197888e+00 -7.2768729e+00 -8.0544560e+00 -8.8407346e+00 -9.5239056e+00 -9.9921656e+00 -1.0169835e+01 -1.0125731e+01 -9.9647945e+00 -9.7919653e+00 -9.7121845e+00 -9.8004099e+00 -1.0011669e+01 -1.0271006e+01 -1.0503465e+01 -1.0634091e+01 -1.0609982e+01 -1.0466450e+01 -1.0260862e+01 -1.0050582e+01 -9.8929790e+00 -9.8365824e+00 -9.8945857e+00 -1.0071347e+01 -1.0371225e+01 -1.0798577e+01 -1.1357763e+01 -1.2053140e+01 -1.2889066e+01 -1.3869900e+01 -1.5000000e+01
-5.6381167e-02 -1.1125660e+00 -2.0375871e+00 -2.8386297e+00 -3.5228787e+00 -4.0975193e+00 -4.5697364e+00 -4.9467151e+00 -5.2356404e+00 -5.4436975e+00 -5.5868501e+00 -5.7161775e+00 -5.8915378e+00 -6.1727888e+00 -6.6197888e+00 -7.2644053e+00 -8.0265448e+00 -8.7981235e+00 -9.4710575e+00 -9.9372628e+00 -1.0123368e+01 -1.0094849e+01 -9.9518947e+00 -9.7946939e+00 -9.7234351e+00 -9.8098670e+00 -1.0011979e+01 -1.0259319e+01 -1.0481438e+01 -1.0607884e+01 -1.0588816e+01 -1.0456836e+01 -1.0265155e+01 -1.0066983e+01 -9.9155307e+00 -9.8563328e+00 -9.9042149e+00 -1.0066326e+01 -1.0349814e+01 -1.0761828e+01 -1.1309518e+01 -1.2000031e+01 -1.2840516e+01 -1.3838123e+01 -1.5000000e+01
-5.6495535e-02 -1.1141671e+00 -2.0394107e+00 -2.8397924e+00 -3.5228787e+00 -4.0962358e+00 -4.5674300e+00 -4.9440274e+00 -5.2335945e+00 -5.4436975e+00 -5.5903244e+00 -5.7231502e+00 -5.9002716e+00 -6.1797856e+00 -6.6197888e+00 -7.2513327e+00 -7.9972878e+00 -8.7534793e+00 -9.4157324e+00 -9.8798724e+00 -1.0074945e+01 -1.0062874e+01 -9.9388073e+00 -9.7978893e+00 -9.7352657e+00 -9.8192938e+00 -1.0011177e+01 -1.0245328e+01 -1.0456164e+01 -1.0578098e+01 -1.0564588e+01 -1.0445265e+01 -1.0268802e+01 -1.0083873e+01 -9.9391510e+00 -9.8768989e+00 -9.9137324e+00 -1.0059856e+01 -1.0325473e+01 -1.0720789e+01 -1.1256008e+01 -1.1941335e+01 -1.2786972e+01 -1.3803126e+01 -1.5000000e+01
-5.6614540e-02 -1.1158332e+00 -2.0413081e+00 -2.8410023e+00 -3.5228787e+00 -4.0949003e+00 -4.5650300e+00 -4.9412308e+00 -5.2314657e+00 -5.4436975e+00 -5.5939395e+00 -5.7304055e+00 -5.9093597e+00 -6.1870661e+00 -6.6197888e+00 -7.2377314e+00 -7.9668557e+00 -8.7070632e+00 -9.3582550e+00 -9.8203325e+00 -1.0024854e+01 -1.0030004e+01 -9.9256259e+00 -9.8015605e+00 -9.7476501e+00 -9.8286979e+00 -1.0009351e+01 -1.0229219e+01 -1.0427908e+01 -1.0545029e+01 -1.0537553e+01 -1.0431902e+01 -1.0271864e+01 -1.0101226e+01 -9.9637726e+00 -9.8982445e+00 -9.9231904e+00 -1.0052112e+01 -1.0298510e+01 -1.0675886e+01 -1.1197743e+01 -1.1877581e+01 -1.2728902e+01 -1.3765208e+01 -1.5000000e+01
-5.6737516e-02 -1.1175548e+00 -2.0432689e+00 -2.8422526e+00 -3.5228787e+00 -4.0935203e+00 -4.5625500e+00 -4.9383409e+00 -5.2292658e+00 -5.4436975e+00 -5.5976752e+00 -5.7379029e+00 -5.9187509e+00 -6.1945894e+00 -6.6197888e+00 -7.2236777e+00 -7.9354196e+00 -8.6591363e+00 -9.2989496e+00 -9.7589813e+00 -9.9733845e+00 -9.9964360e+00 -9.9124441e+00 -9.8057168e+00 -9.7605621e+00 -9.8380868e+00 -1.0006591e+01 -1.0211174e+01 -1.0396934e+01 -1.0508971e+01 -1.0507964e+01 -1.0416914e+01 -1.0274403e+01 -1.0119014e+01 -9.9893283e+00 -9.9203335e+00 -9.9326408e+00 -1.0043267e+01 -1.0269229e+01 -1.0627544e+01 -1.1135229e+01 -1.1809300e+01 -1.2666774e+01 -1.3724669e+01 -1.5000000e+01
-5.6863795e-02 -1.1193228e+00 -2.0452824e+00 -2.8435364e+00 -3.5228787e+00 -4.0921031e+00 -4.5600034e+00 -4.9353733e+00 -5.2270068e+00 -5.4436975e+00 -5.6015113e+00 -5.7456017e+00 -5.9283944e+00 -6.2023149e+00 -6.6197888e+00 -7.2092480e+00 -7.9031503e+00 -8.6099598e+00 -9.2381407e+00 -9.6961570e+00 -9.9208247e+00 -9.9623661e+00 -9.8993556e+00 -9.8103673e+00 -9.7739756e+00 -9.8474678e+00 -1.0002985e+01 -1.0191379e+01 -1.0363506e+01 -1.0470219e+01 -1.0476077e+01 -1.0400467e+01 -1.0276481e+01 -1.0137212e+01 -1.0015751e+01 -9.9431295e+00 -9.9421359e+00 -1.0033497e+01 -1.0237939e+01 -1.0576189e+01 -1.1068974e+01 -1.1737021e+01 -1.2601056e+01 -1.3681807e+01 -1.5000000e+01
-5.6992709e-02 -1.1211276e+00 -2.0473378e+00 -2.8448471e+00 -3.5228787e+00 -4.0906564e+00 -4.5574036e+00 -4.9323439e+00 -5.2247006e+00 -5.4436975e+00 -5.6054274e+00 -5.7534612e+00 -5.9382392e+00 -6.2102016e+00 -6.6197888e+00 -7.1945185e+00 -7.8702187e+00 -8.5597950e+00 -9.1761529e+00 -9.6321979e+00 -9.8674630e+00 -9.9279915e+00 -9.8864541e+00 -9.8155214e+00 -9.7878644e+00 -9.8568486e+00 -9.9986200e+00 -1.0170020e+01 -1.0327888e+01 -1.0429066e+01 -1.0442147e+01 -1.0382728e+01 -1.0278160e+01 -1.0155791e+01 -1.0042973e+01 -9.9665965e+00 -9.9517277e+00 -1.0022974e+01 -1.0204944e+01 -1.0522245e+01 -1.0999486e+01 -1.1661274e+01 -1.2532217e+01 -1.3636923e+01 -1.5000000e+01
-5.7123593e-02 -1.1229599e+00 -2.0494247e+00 -2.8461777e+00 -3.5228787e+00 -4.0891876e+00 -4.5547641e+00 -4.9292681e+00 -5.2223593e+00 -5.4436975e+00 -5.6094034e+00 -5.7614408e+00 -5.9482343e+00 -6.2182088e+00 -6.6197888e+00 -7.1795654e+00 -7.8367957e+00 -8.5089029e+00 -9.1133106e+00 -9.5674420e+00 -9.8135880e+00 -9.8935091e+00 -9.8738332e+00 -9.8211883e+00 -9.8022023e+00 -9.8662365e+00 -9.9935859e+00 -1.0147279e+01 -1.0290344e+01 -1.0385809e+01 -1.0406428e+01 -1.0363863e+01 -1.0279500e+01 -1.0174726e+01 -1.0070927e+01 -9.9906982e+00 -9.9614683e+00 -1.0011874e+01 -1.0170552e+01 -1.0466139e+01 -1.0927272e+01 -1.1582588e+01 -1.2460724e+01 -1.3590315e+01 -1.5000000e+01
-5.7255778e-02 -1.1248105e+00 -2.0515323e+00 -2.8475216e+00 -3.5228787e+00 -4.0877042e+00 -4.5520984e+00 -4.9261617e+00 -5.2199946e+00 -5.4436975e+00 -5.6134189e+00 -5.7694997e+00 -5.9583289e+00 -6.2262956e+00 -6.6197888e+00 -7.1644651e+00 -7.8030521e+00 -8.4575448e+00 -9.0499382e+00 -9.5022276e+00 -9.7594880e+00 -9.8591157e+00 -9.8615866e+00 -9.8273771e+00 -9.8169632e+00 -9.8756390e+00 -9.9879707e+00 -1.0123342e+01 -1.0251137e+01 -1.0340740e+01 -1.0369176e+01 -1.0344039e+01 -1.0280565e+01 -1.0193989e+01 -1.0099546e+01 -1.0015399e+01 -9.9714098e+00 -1.0000370e+01 -1.0135069e+01 -1.0408296e+01 -1.0852841e+01 -1.1501494e+01 -1.2387045e+01 -1.3542284e+01 -1.5000000e+01
-5.7388598e-02 -1.1266700e+00 -2.0536501e+00 -2.8488719e+00 -3.5228787e+00 -4.0862137e+00 -4.5494199e+00 -4.9230405e+00 -5.2176186e+00 -5.4436975e+00 -5.6174536e+00 -5.7775972e+00 -5.9684719e+00 -6.2344212e+00 -6.6197888e+00 -7.1492939e+00 -7.7691589e+00 -8.4059817e+00 -8.9863604e+00 -9.4368928e+00 -9.7054517e+00 -9.8250082e+00 -9.8498080e+00 -9.8340970e+00 -9.8321208e+00 -9.8850637e+00 -9.9818628e+00 -1.0098394e+01 -1.0210533e+01 -1.0294155e+01 -1.0330644e+01 -1.0323422e+01 -1.0281415e+01 -1.0213553e+01 -1.0128763e+01 -1.0040661e+01 -9.9816044e+00 -9.9886362e+00 -1.0098800e+01 -1.0349140e+01 -1.0776699e+01 -1.1418521e+01 -1.2311649e+01 -1.3493128e+01 -1.5000000e+01
-5.7521385e-02 -1.1285290e+00 -2.0557673e+00 -2.8502219e+00 -3.5228787e+00 -4.0847235e+00 -4.5467420e+00 -4.9199200e+00 -5.2152432e+00 -5.4436975e+00 -5.6214874e+00 -5.7856928e+00 -5.9786124e+00 -6.2425448e+00 -6.6197888e+00 -7.1341280e+00 -7.7352869e+00 -8.3544749e+00 -8.9229015e+00 -9.3717760e+00 -9.6517675e+00 -9.7913835e+00 -9.8385911e+00 -9.8413573e+00 -9.8476491e+00 -9.8945178e+00 -9.9753506e+00 -1.0072619e+01 -1.0168794e+01 -1.0246348e+01 -1.0291089e+01 -1.0302178e+01 -1.0282112e+01 -1.0233391e+01 -1.0158511e+01 -1.0066450e+01 -9.9921041e+00 -9.9768469e+00 -1.0062053e+01 -1.0289098e+01 -1.0699355e+01 -1.1334199e+01 -1.2235005e+01 -1.3443147e+01 -1.5000000e+01
-5.7653472e-02 -1.1303782e+00 -2.0578733e+00 -2.8515648e+00 -3.5228787e+00 -4.0832412e+00 -4.5440782e+00 -4.9168159e+00 -5.2128803e+00 -5.4436975e+00 -5.6254999e+00 -5.7937457e+00 -5.9886995e+00 -6.2506256e+00 -6.6197888e+00 -7.1190438e+00 -7.7016071e+00 -8.3032856e+00 -8.8598860e+00 -9.3072152e+00 -9.5987239e+00 -9.7584385e+00 -9.8280295e+00 -9.8491671e+00 -9.8635219e+00 -9.9040090e+00 -9.9685226e+00 -1.0046202e+01 -1.0126186e+01 -1.0197614e+01 -1.0250764e+01 -1.0280473e+01 -1.0282719e+01 -1.0253476e+01 -1.0188721e+01 -1.0092729e+01 -1.0002961e+01 -9.9651763e+00 -1.0025134e+01 -1.0228594e+01 -1.0621316e+01 -1.1249058e+01 -1.2157579e+01 -1.3392640e+01 -1.5000000e+01
-5.7784193e-02 -1.1322083e+00 -2.0599576e+00 -2.8528938e+00 -3.5228787e+00 -4.0817742e+00 -4.5414420e+00 -4.9137440e+00 -5.2105419e+00 -5.4436975e+00 -5.6294709e+00 -5.8017153e+00 -5.9986821e+00 -6.2586228e+00 -6.6197888e+00 -7.1041174e+00 -7.6682903e+00 -8.2526749e+00 -8.7976385e+00 -9.2435487e+00 -9.5466093e+00 -9.7263700e+00 -9.8182168e+00 -9.8575358e+00 -9.8797130e+00 -9.9135446e+00 -9.9614672e+00 -1.0019327e+01 -1.0082972e+01 -1.0148247e+01 -1.0209924e+01 -1.0258475e+01 -1.0283296e+01 -1.0273781e+01 -1.0219328e+01 -1.0119462e+01 -1.0014227e+01 -9.9537983e+00 -9.9883495e+00 -1.0168055e+01 -1.0543089e+01 -1.1163627e+01 -1.2079841e+01 -1.3341908e+01 -1.5000000e+01
-5.7912879e-02 -1.1340099e+00 -2.0620094e+00 -2.8542021e+00 -3.5228787e+00 -4.0803301e+00 -4.5388469e+00 -4.9107199e+00 -5.2082398e+00 -5.4436975e+00 -5.6333801e+00 -5.8095609e+00 -6.0085095e+00 -6.2664955e+00 -6.6197888e+00 -7.0894253e+00 -7.6355075e+00 -8.2029039e+00 -8.7364833e+00 -9.1811146e+00 -9.4957123e+00 -9.6953749e+00 -9.8092468e+00 -9.8664725e+00 -9.8961963e+00 -9.9231322e+00 -9.9542727e+00 -9.9921798e+00 -1.0039415e+01 -1.0098542e+01 -1.0168825e+01 -1.0236350e+01 -1.0283905e+01 -1.0294280e+01 -1.0250264e+01 -1.0146613e+01 -1.0025955e+01 -9.9428872e+00 -9.9520053e+00 -1.0107905e+01 -1.0465184e+01 -1.1078436e+01 -1.2002259e+01 -1.3291248e+01 -1.5000000e+01
-5.8038864e-02 -1.1357737e+00 -2.0640182e+00 -2.8554830e+00 -3.5228787e+00 -4.0789163e+00 -4.5363062e+00 -4.9077592e+00 -5.2059861e+00 -5.4436975e+00 -5.6372073e+00 -5.8172418e+00 -6.0181305e+00 -6.2742030e+00 -6.6197888e+00 -7.0750437e+00 -7.6034294e+00 -8.1542338e+00 -8.6767451e+00 -9.1202512e+00 -9.4463213e+00 -9.6656500e+00 -9.8012131e+00 -9.8759864e+00 -9.9129455e+00 -9.9327792e+00 -9.9470278e+00 -9.9649441e+00 -9.9957815e+00 -1.0048793e+01 -1.0127721e+01 -1.0214263e+01 -1.0284609e+01 -1.0314945e+01 -1.0281461e+01 -1.0174145e+01 -1.0038196e+01 -9.9326170e+00 -9.9164081e+00 -1.0048571e+01 -1.0388106e+01 -1.0994015e+01 -1.1925300e+01 -1.3240961e+01 -1.5000000e+01
-5.8161480e-02 -1.1374903e+00 -2.0659732e+00 -2.8567296e+00 -3.5228787e+00 -4.0775402e+00 -4.5338334e+00 -4.9048777e+00 -5.2037926e+00 -5.4436975e+00 -5.6409321e+00 -5.8247173e+00 -6.0274943e+00 -6.2817044e+00 -6.6197888e+00 -7.0610488e+00 -7.5722270e+00 -8.1069259e+00 -8.6187482e+00 -9.0612966e+00 -9.3987249e+00 -9.6373923e+00 -9.7942094e+00 -9.8860867e+00 -9.9299346e+00 -9.9424931e+00 -9.9398206e+00 -9.9378049e+00 -9.9523338e+00 -9.9992951e+00 -1.0086866e+01 -1.0192382e+01 -1.0285469e+01 -1.0335750e+01 -1.0312852e+01 -1.0202022e+01 -1.0051003e+01 -9.9231618e+00 -9.8818641e+00 -9.9904762e+00 -1.0312364e+01 -1.0910894e+01 -1.1849433e+01 -1.3191346e+01 -1.5000000e+01
-5.8280061e-02 -1.1391505e+00 -2.0678639e+00 -2.8579351e+00 -3.5228787e+00 -4.0762095e+00 -4.5314420e+00 -4.9020911e+00 -5.2016713e+00 -5.4436975e+00 -5.6445343e+00 -5.8319468e+00 -6.0365499e+00 -6.2889589e+00 -6.6197888e+00 -7.0475170e+00 -7.5420712e+00 -8.0612413e+00 -8.5628172e+00 -9.0045890e+00 -9.3532115e+00 -9.6107986e+00 -9.7883294e+00 -9.8967826e+00 -9.9471373e+00 -9.9522813e+00 -9.9327398e+00 -9.9109467e+00 -9.9093363e+00 -9.9503426e+00 -1.0046516e+01 -1.0170873e+01 -1.0286546e+01 -1.0356667e+01 -1.0344370e+01 -1.0230208e+01 -1.0064428e+01 -9.9146958e+00 -9.8486799e+00 -9.9340475e+00 -1.0238466e+01 -1.0829603e+01 -1.1775126e+01 -1.3142703e+01 -1.5000000e+01
-5.8393939e-02 -1.1407448e+00 -2.0696797e+00 -2.8590929e+00 -3.5228787e+00 -4.0749315e+00 -4.5291455e+00 -4.8994150e+00 -5.1996342e+00 -5.4436975e+00 -5.6479937e+00 -5.8388895e+00 -6.0452464e+00 -6.2959257e+00 -6.6197888e+00 -7.0345246e+00 -7.5131329e+00 -8.0174411e+00 -8.5092765e+00 -8.9504667e+00 -9.3100696e+00 -9.5860658e+00 -9.7836667e+00 -9.9080835e+00 -9.9645274e+00 -9.9621514e+00 -9.9258737e+00 -9.8845543e+00 -9.8670531e+00 -9.9022301e+00 -1.0006926e+01 -1.0149902e+01 -1.0287903e+01 -1.0377670e+01 -1.0375948e+01 -1.0258668e+01 -1.0078522e+01 -9.9073931e+00 -9.8171617e+00 -9.8797099e+00 -1.0166919e+01 -1.0750671e+01 -1.1702847e+01 -1.3095330e+01 -1.5000000e+01
-5.8502447e-02 -1.1422639e+00 -2.0714098e+00 -2.8601961e+00 -3.5228787e+00 -4.0737138e+00 -4.5269573e+00 -4.8968650e+00 -5.1976931e+00 -5.4436975e+00 -5.6512899e+00 -5.8455049e+00 -6.0535328e+00 -6.3025640e+00 -6.6197888e+00 -7.0221478e+00 -7.4855829e+00 -7.9757865e+00 -8.4584507e+00 -8.8992678e+00 -9.2695877e+00 -9.5633907e+00 -9.7803149e+00 -9.9199983e+00 -9.9820790e+00 -9.9721107e+00 -9.9193107e+00 -9.8588122e+00 -9.8257483e+00 -9.8552521e+00 -9.9683492e+00 -1.0129636e+01 -1.0289600e+01 -1.0398731e+01 -1.0407518e+01 -1.0287364e+01 -1.0093339e+01 -9.9014277e+00 -9.7876160e+00 -9.8278887e+00 -1.0098231e+01 -1.0674628e+01 -1.1633065e+01 -1.3049527e+01 -1.5000000e+01
-5.8604918e-02 -1.1436985e+00 -2.0730436e+00 -2.8612378e+00 -3.5228787e+00 -4.0725639e+00 -4.5248908e+00 -4.8944570e+00 -5.1958600e+00 -5.4436975e+00 -5.6544027e+00 -5.8517522e+00 -6.0613582e+00 -6.3088329e+00 -6.6197888e+00 -7.0104629e+00 -7.4595922e+00 -7.9365387e+00 -8.4106641e+00 -8.8513305e+00 -9.2320543e+00 -9.5429702e+00 -9.7783679e+00 -9.9325365e+00 -9.9997656e+00 -9.9821667e+00 -9.9131393e+00 -9.8339051e+00 -9.7856858e+00 -9.8097031e+00 -9.9310419e+00 -1.0110241e+01 -1.0291701e+01 -1.0419824e+01 -1.0439013e+01 -1.0316260e+01 -1.0108929e+01 -9.8969738e+00 -9.7603490e+00 -9.7790094e+00 -1.0032909e+01 -1.0602004e+01 -1.1566248e+01 -1.3005595e+01 -1.5000000e+01
-5.8700684e-02 -1.1450392e+00 -2.0745705e+00 -2.8622115e+00 -3.5228787e+00 -4.0714892e+00 -4.5229595e+00 -4.8922064e+00 -5.1941469e+00 -5.4436975e+00 -5.6573119e+00 -5.8575908e+00 -6.0686715e+00 -6.3146917e+00 -6.6197888e+00 -6.9995462e+00 -7.4353316e+00 -7.8999588e+00 -8.3662414e+00 -8.8069930e+00 -9.1977578e+00 -9.5250013e+00 -9.7779191e+00 -9.9457072e+00 -1.0017561e+01 -9.9923269e+00 -9.9074479e+00 -9.8100177e+00 -9.7471298e+00 -9.7658777e+00 -9.8952583e+00 -1.0091883e+01 -1.0294266e+01 -1.0440922e+01 -1.0470366e+01 -1.0345322e+01 -1.0125346e+01 -9.8942056e+00 -9.7356672e+00 -9.7334973e+00 -9.9714622e+00 -1.0533328e+01 -1.1502863e+01 -1.2963831e+01 -1.5000000e+01
-5.8789079e-02 -1.1462767e+00 -2.0759800e+00 -2.8631101e+00 -3.5228787e+00 -4.0704972e+00 -4.5211768e+00 -4.8901292e+00 -5.1925656e+00 -5.4436975e+00 -5.6599971e+00 -5.8629799e+00 -6.0754220e+00 -6.3200995e+00 -6.6197888e+00 -6.9894740e+00 -7.4129721e+00 -7.8663080e+00 -8.3255069e+00 -8.7665936e+00 -9.1669869e+00 -9.5096806e+00 -9.7790623e+00 -9.9595196e+00 -1.0035440e+01 -1.0002599e+01 -9.9023250e+00 -9.7873346e+00 -9.7103442e+00 -9.7240703e+00 -9.8612533e+00 -1.0074729e+01 -1.0297357e+01 -1.0461998e+01 -1.0501510e+01 -1.0374511e+01 -1.0142641e+01 -9.8932970e+00 -9.7138770e+00 -9.6917778e+00 -9.9143969e+00 -1.0469131e+01 -1.1443379e+01 -1.2924536e+01 -1.5000000e+01
-5.8869436e-02 -1.1474017e+00 -2.0772612e+00 -2.8639271e+00 -3.5228787e+00 -4.0695954e+00 -4.5195563e+00 -4.8882408e+00 -5.1911281e+00 -5.4436975e+00 -5.6624382e+00 -5.8678790e+00 -6.0815585e+00 -6.3250156e+00 -6.6197888e+00 -6.9803226e+00 -7.3926844e+00 -7.8358476e+00 -8.2887851e+00 -8.7304703e+00 -9.1400299e+00 -9.4972052e+00 -9.7818912e+00 -9.9739828e+00 -1.0053375e+01 -1.0012990e+01 -9.8978589e+00 -9.7660404e+00 -9.6755932e+00 -9.6845757e+00 -9.8292816e+00 -1.0058945e+01 -1.0301036e+01 -1.0483024e+01 -1.0532377e+01 -1.0403792e+01 -1.0160866e+01 -9.8944223e+00 -9.6952846e+00 -9.6542763e+00 -9.8622211e+00 -1.0409942e+01 -1.1388264e+01 -1.2888008e+01 -1.5000000e+01
-5.8941086e-02 -1.1484048e+00 -2.0784036e+00 -2.8646556e+00 -3.5228787e+00 -4.0687913e+00 -4.5181114e+00 -4.8865570e+00 -5.1898463e+00 -5.4436975e+00 -5.6646148e+00 -5.8722473e+00 -6.0870303e+00 -6.3293990e+00 -6.6197888e+00 -6.9721682e+00 -7.3746396e+00 -7.8088385e+00 -8.2564006e+00 -8.6989614e+00 -9.1171753e+00 -9.4877719e+00 -9.7864994e+00 -9.9891063e+00 -1.0071341e+01 -1.0023508e+01 -9.8941380e+00 -9.7463198e+00 -9.6431406e+00 -9.6476882e+00 -9.7995982e+00 -1.0044699e+01 -1.0305365e+01 -1.0503974e+01 -1.0562901e+01 -1.0433129e+01 -1.0180074e+01 -9.8977556e+00 -9.6801965e+00 -9.6214182e+00 -9.8154426e+00 -1.0356291e+01 -1.1337986e+01 -1.2854548e+01 -1.5000000e+01
-5.9003364e-02 -1.1492767e+00 -2.0793966e+00 -2.8652887e+00 -3.5228787e+00 -4.0680924e+00 -4.5168554e+00 -4.8850935e+00 -5.1887323e+00 -5.4436975e+00 -5.6665066e+00 -5.8760441e+00 -6.0917862e+00 -6.3332090e+00 -6.6197888e+00 -6.9650872e+00 -7.3590085e+00 -7.7855421e+00 -8.2286778e+00 -8.6724051e+00 -9.0987117e+00 -9.4815775e+00 -9.7929807e+00 -1.0004899e+01 -1.0089311e+01 -1.0034159e+01 -9.8912509e+00 -9.7283574e+00 -9.6132507e+00 -9.6137024e+00 -9.7724577e+00 -1.0032155e+01 -1.0310405e+01 -1.0524821e+01 -1.0593013e+01 -1.0462486e+01 -1.0200316e+01 -9.9034708e+00 -9.6689190e+00 -9.5936289e+00 -9.7745690e+00 -1.0308708e+01 -1.1293014e+01 -1.2824455e+01 -1.5000000e+01
-5.9055602e-02 -1.1500081e+00 -2.0802295e+00 -2.8658198e+00 -3.5228787e+00 -4.0675062e+00 -4.5158020e+00 -4.8838659e+00 -5.1877978e+00 -5.4436975e+00 -5.6680935e+00 -5.8792289e+00 -6.0957754e+00 -6.3364048e+00 -6.6197888e+00 -6.9591559e+00 -7.3459619e+00 -7.7662195e+00 -8.2059412e+00 -8.6511395e+00 -9.0849275e+00 -9.4788190e+00 -9.8014285e+00 -1.0021370e+01 -1.0107259e+01 -1.0044953e+01 -9.8892860e+00 -9.7123380e+00 -9.5861873e+00 -9.5829128e+00 -9.7481149e+00 -1.0021481e+01 -1.0316219e+01 -1.0545538e+01 -1.0622647e+01 -1.0491827e+01 -1.0221645e+01 -9.9117423e+00 -9.6617585e+00 -9.5713337e+00 -9.7401081e+00 -1.0267722e+01 -1.1253815e+01 -1.2798028e+01 -1.5000000e+01
-5.9097132e-02 -1.1505895e+00 -2.0808917e+00 -2.8662420e+00 -3.5228787e+00 -4.0670401e+00 -4.5149644e+00 -4.8828899e+00 -5.1870549e+00 -5.4436975e+00 -5.6693551e+00 -5.8817609e+00 -6.0989469e+00 -6.3389455e+00 -6.6197888e+00 -6.9544505e+00 -7.3356709e+00 -7.7511319e+00 -8.1885153e+00 -8.6355030e+00 -9.0761112e+00 -9.4796932e+00 -9.8119367e+00 -1.0038529e+01 -1.0125159e+01 -1.0055895e+01 -9.8883315e+00 -9.6984460e+00 -9.5622146e+00 -9.5556141e+00 -9.7268247e+00 -1.0012842e+01 -1.0322867e+01 -1.0566098e+01 -1.0651735e+01 -1.0521114e+01 -1.0244113e+01 -9.9227440e+00 -9.6590213e+00 -9.5549580e+00 -9.7125675e+00 -1.0233863e+01 -1.1220858e+01 -1.2775566e+01 -1.5000000e+01
-5.9127288e-02 -1.1510117e+00 -2.0813725e+00 -2.8665486e+00 -3.5228787e+00 -4.0667017e+00 -4.5143563e+00 -4.8821813e+00 -5.1865154e+00 -5.4436975e+00 -5.6702712e+00 -5.8835994e+00 -6.1012498e+00 -6.3407904e+00 -6.6197888e+00 -6.9510472e+00 -7.3283062e+00 -7.7405403e+00 -8.1767245e+00 -8.6258336e+00 -9.0725513e+00 -9.4843969e+00 -9.8245989e+00 -1.0056386e+01 -1.0142985e+01 -1.0066993e+01 -9.8884761e+00 -9.6868662e+00 -9.5415967e+00 -9.5321006e+00 -9.7088418e+00 -1.0006407e+01 -1.0330412e+01 -1.0586474e+01 -1.0680211e+01 -1.0550313e+01 -1.0267772e+01 -9.9366502e+00 -9.6610139e+00 -9.5449272e+00 -9.6924548e+00 -1.0207661e+01 -1.1194611e+01 -1.2757369e+01 -1.5000000e+01
-5.9145402e-02 -1.1512653e+00 -2.0816613e+00 -2.8667328e+00 -3.5228787e+00 -4.0664984e+00 -4.5139910e+00 -4.8817556e+00 -5.1861914e+00 -5.4436975e+00 -5.6708214e+00 -5.8847037e+00 -6.1026332e+00 -6.3418986e+00 -6.6197888e+00 -6.9490225e+00 -7.3240387e+00 -7.7347061e+00 -8.1708934e+00 -8.6224696e+00 -9.0745363e+00 -9.4931271e+00 -9.8395088e+00 -1.0074948e+01 -1.0160711e+01 -1.0078256e+01 -9.8898082e+00 -9.6777832e+00 -9.5245974e+00 -9.5126671e+00 -9.6944211e+00 -1.0002339e+01 -1.0338915e+01 -1.0606639e+01 -1.0708006e+01 -1.0579387e+01 -1.0292673e+01 -9.9536349e+00 -9.6680426e+00 -9.5416668e+00 -9.6802778e+00 -1.0189646e+01 -1.1175542e+01 -1.2743737e+01 -1.5000000e+01
-5.9150808e-02 -1.1513409e+00 -2.0817475e+00 -2.8667877e+00 -3.5228787e+00 -4.0664378e+00 -4.5138820e+00 -4.8816285e+00 -5.1860947e+00 -5.4436975e+00 -5.6709857e+00 -5.8850333e+00 -6.1030460e+00 -6.3422293e+00 -6.6197888e+00 -6.9484526e+00 -7.3230394e+00 -7.7338903e+00 -8.1713464e+00 -8.6257491e+00 -9.0823546e+00 -9.5060806e+00 -9.8567600e+00 -1.0094226e+01 -1.0178310e+01 -1.0089690e+01 -9.8924160e+00 -9.6713816e+00 -9.5114809e+00 -9.4976079e+00 -9.6838174e+00 -1.0000808e+01 -1.0348438e+01 -1.0626567e+01 -1.0735054e+01 -1.0608299e+01 -1.0318870e+01 -9.9738721e+00 -9.6804137e+00 -9.5456020e+00 -9.6765442e+00 -1.0180348e+01 -1.1164120e+01 -1.2734968e+01 -1.5000000e+01
-5.9142837e-02 -1.1512293e+00 -2.0816204e+00 -2.8667067e+00 -3.5228787e+00 -4.0665272e+00 -4.5140427e+00 -4.8818158e+00 -5.1862372e+00 -5.4436975e+00 -5.6707435e+00 -5.8845474e+00 -6.1024373e+00 -6.3417417e+00 -6.6197888e+00 -6.9494137e+00 -7.3254791e+00 -7.7383541e+00 -8.1784081e+00 -8.6360103e+00 -9.0962948e+00 -9.5234543e+00 -9.8764462e+00 -1.0114228e+01 -1.0195757e+01 -1.0101303e+01 -9.8963881e+00 -9.6678462e+00 -9.5025113e+00 -9.4872177e+00 -9.6772853e+00 -1.0001977e+01 -1.0359042e+01 -1.0646229e+01 -1.0761287e+01 -1.0637015e+01 -1.0346414e+01 -9.9975362e+00 -9.6984337e+00 -9.5571582e+00 -9.6817615e+00 -1.0180296e+01 -1.1160812e+01 -1.2731363e+01 -1.5000000e+01
-5.9120824e-02 -1.1509212e+00 -2.0812694e+00 -2.8664829e+00 -3.5228787e+00 -4.0667743e+00 -4.5144867e+00 -4.8823332e+00 -5.1866310e+00 -5.4436975e+00 -5.6700748e+00 -5.8832053e+00 -6.1007562e+00 -6.3403949e+00 -6.6197888e+00 -6.9519822e+00 -7.3315287e+00 -7.7483587e+00 -8.1924028e+00 -8.6535915e+00 -9.1166454e+00 -9.5454451e+00 -9.8986611e+00 -1.0134964e+01 -1.0213025e+01 -1.0113102e+01 -9.9018130e+00 -9.6673614e+00 -9.4979525e+00 -9.4817910e+00 -9.6750798e+00 -1.0006015e+01 -1.0370790e+01 -1.0665600e+01 -1.0786638e+01 -1.0665496e+01 -1.0375357e+01 -1.0024801e+01 -9.7224089e+00 -9.5767609e+00 -9.6964375e+00 -1.0190019e+01 -1.1166087e+01 -1.2733220e+01 -1.5000000e+01
-5.9084100e-02 -1.1504070e+00 -2.0806839e+00 -2.8661095e+00 -3.5228787e+00 -4.0671864e+00 -4.5152272e+00 -4.8831962e+00 -5.1872880e+00 -5.4436975e+00 -5.6689592e+00 -5.8809663e+00 -6.0979517e+00 -6.3381482e+00 -6.6197888e+00 -6.9562344e+00 -7.3413591e+00 -7.7641653e+00 -8.2136551e+00 -8.6788308e+00 -9.1436948e+00 -9.5722497e+00 -9.9234983e+00 -1.0156443e+01 -1.0230087e+01 -1.0125095e+01 -9.9087790e+00 -9.6701121e+00 -9.4980686e+00 -9.4816222e+00 -9.6774557e+00 -1.0013087e+01 -1.0383744e+01 -1.0684652e+01 -1.0811040e+01 -1.0693708e+01 -1.0405751e+01 -1.0055841e+01 -9.7526456e+00 -9.6048354e+00 -9.7210799e+00 -1.0210049e+01 -1.1180412e+01 -1.2740839e+01 -1.5000000e+01
-5.9031999e-02 -1.1496776e+00 -2.0798532e+00 -2.8655798e+00 -3.5228787e+00 -4.0677711e+00 -4.5162780e+00 -4.8844206e+00 -5.1882200e+00 -5.4436975e+00 -5.6673765e+00 -5.8777899e+00 -6.0939729e+00 -6.3349608e+00 -6.6197888e+00 -6.9622465e+00 -7.3551413e+00 -7.7860350e+00 -8.2424895e+00 -8.7120665e+00 -9.1777316e+00 -9.6040652e+00 -9.9510515e+00 -1.0178675e+01 -1.0246919e+01 -1.0137290e+01 -9.9173745e+00 -9.6762828e+00 -9.5031236e+00 -9.4870060e+00 -9.6846676e+00 -1.0023360e+01 -1.0397964e+01 -1.0703359e+01 -1.0834425e+01 -1.0721613e+01 -1.0437650e+01 -1.0090830e+01 -9.7894502e+00 -9.6418071e+00 -9.7561963e+00 -1.0240914e+01 -1.1204257e+01 -1.2754520e+01 -1.5000000e+01
-5.8963853e-02 -1.1487236e+00 -2.0787666e+00 -2.8648870e+00 -3.5228787e+00 -4.0685358e+00 -4.5176522e+00 -4.8860220e+00 -5.1894391e+00 -5.4436975e+00 -5.6653064e+00 -5.8736353e+00 -6.0887688e+00 -6.3307918e+00 -6.6197888e+00 -6.9700947e+00 -7.3730460e+00 -7.8142290e+00 -8.2792304e+00 -8.7536367e+00 -9.2190441e+00 -9.6410883e+00 -9.9814144e+00 -1.0201668e+01 -1.0263494e+01 -1.0149693e+01 -9.9276880e+00 -9.6860582e+00 -9.5133816e+00 -9.4982369e+00 -9.6969705e+00 -1.0037000e+01 -1.0413512e+01 -1.0721693e+01 -1.0856727e+01 -1.0749177e+01 -1.0471103e+01 -1.0129942e+01 -9.8331292e+00 -9.6881013e+00 -9.8022945e+00 -1.0283145e+01 -1.1238088e+01 -1.2774561e+01 -1.5000000e+01
-5.8878995e-02 -1.1475356e+00 -2.0774136e+00 -2.8640243e+00 -3.5228787e+00 -4.0694881e+00 -4.5193635e+00 -4.8880161e+00 -5.1909571e+00 -5.4436975e+00 -5.6627286e+00 -5.8684618e+00 -6.0822886e+00 -6.3256004e+00 -6.6197888e+00 -6.9798555e+00 -7.3952442e+00 -7.8490085e+00 -8.3242023e+00 -8.8038795e+00 -9.2679210e+00 -9.6835159e+00 -1.0014681e+01 -1.0225431e+01 -1.0279784e+01 -1.0162312e+01 -9.9398079e+00 -9.6996229e+00 -9.5291067e+00 -9.5156095e+00 -9.7146190e+00 -1.0054174e+01 -1.0430451e+01 -1.0739627e+01 -1.0877878e+01 -1.0776362e+01 -1.0506165e+01 -1.0173351e+01 -9.8839888e+00 -9.7441436e+00 -9.8598820e+00 -1.0337270e+01 -1.1282375e+01 -1.2801263e+01 -1.5000000e+01
-5.8776759e-02 -1.1461042e+00 -2.0757835e+00 -2.8629849e+00 -3.5228787e+00 -4.0706354e+00 -4.5214253e+00 -4.8904187e+00 -5.1927860e+00 -5.4436975e+00 -5.6596229e+00 -5.8622288e+00 -6.0744811e+00 -6.3193458e+00 -6.6197888e+00 -6.9916051e+00 -7.4219067e+00 -7.8906346e+00 -8.3777298e+00 -8.8631333e+00 -9.3246506e+00 -9.7315449e+00 -1.0050944e+01 -1.0249975e+01 -1.0295766e+01 -1.0175155e+01 -9.9538227e+00 -9.7171615e+00 -9.5505628e+00 -9.5394181e+00 -9.7378681e+00 -1.0075048e+01 -1.0448842e+01 -1.0757135e+01 -1.0897811e+01 -1.0803133e+01 -1.0542886e+01 -1.0221232e+01 -9.9423354e+00 -9.8103591e+00 -9.9294665e+00 -1.0403821e+01 -1.1337586e+01 -1.2834924e+01 -1.5000000e+01
-5.8656476e-02 -1.1444203e+00 -2.0738657e+00 -2.8617620e+00 -3.5228787e+00 -4.0719853e+00 -4.5238510e+00 -4.8932453e+00 -5.1949377e+00 -5.4436975e+00 -5.6559690e+00 -5.8548955e+00 -6.0652955e+00 -6.3119872e+00 -6.6197888e+00 -7.0054198e+00 -7.4532045e+00 -7.9393685e+00 -8.4401372e+00 -8.9317362e+00 -9.3895216e+00 -9.7853722e+00 -1.0090298e+01 -1.0275308e+01 -1.0311411e+01 -1.0188229e+01 -9.9698208e+00 -9.7388588e+00 -9.5780139e+00 -9.5699575e+00 -9.7669725e+00 -1.0099789e+01 -1.0468747e+01 -1.0774190e+01 -1.0916458e+01 -1.0829453e+01 -1.0581319e+01 -1.0273758e+01 -1.0008475e+01 -9.8871735e+00 -1.0011556e+01 -1.0483326e+01 -1.1404188e+01 -1.2875845e+01 -1.5000000e+01
-5.8517480e-02 -1.1424743e+00 -2.0716495e+00 -2.8603489e+00 -3.5228787e+00 -4.0735451e+00 -4.5266541e+00 -4.8965117e+00 -5.1974242e+00 -5.4436975e+00 -5.6517466e+00 -5.8464214e+00 -6.0546809e+00 -6.3034837e+00 -6.6197888e+00 -7.0213758e+00 -7.4893085e+00 -7.9954714e+00 -8.5117492e+00 -9.0100264e+00 -9.4628223e+00 -9.8451947e+00 -1.0132836e+01 -1.0301439e+01 -1.0326695e+01 -1.0201541e+01 -9.9878905e+00 -9.7648993e+00 -9.6117243e+00 -9.6075222e+00 -9.8021870e+00 -1.0128562e+01 -1.0490227e+01 -1.0790764e+01 -1.0933752e+01 -1.0855286e+01 -1.0621516e+01 -1.0331104e+01 -1.0082715e+01 -9.9750119e+00 -1.0106658e+01 -1.0576316e+01 -1.1482650e+01 -1.2924324e+01 -1.5000000e+01
-5.8359104e-02 -1.1402571e+00 -2.0691242e+00 -2.8587387e+00 -3.5228787e+00 -4.0753224e+00 -4.5298480e+00 -4.9002336e+00 -5.2002574e+00 -5.4436975e+00 -5.6469355e+00 -5.8367657e+00 -6.0425862e+00 -6.2937946e+00 -6.6197888e+00 -7.0395495e+00 -7.5303895e+00 -8.0592044e+00 -8.5928900e+00 -9.0983421e+00 -9.5448413e+00 -9.9112091e+00 -1.0178652e+01 -1.0328377e+01 -1.0341590e+01 -1.0215100e+01 -1.0008120e+01 -9.7954677e+00 -9.6519577e+00 -9.6524065e+00 -9.8437663e+00 -1.0161534e+01 -1.0513345e+01 -1.0806831e+01 -1.0949627e+01 -1.0880596e+01 -1.0663529e+01 -1.0393444e+01 -1.0165361e+01 -1.0074300e+01 -1.0215279e+01 -1.0683320e+01 -1.1573440e+01 -1.2980660e+01 -1.5000000e+01
-5.8180680e-02 -1.1377591e+00 -2.0662794e+00 -2.8569248e+00 -3.5228787e+00 -4.0773248e+00 -4.5334462e+00 -4.9044265e+00 -5.2034492e+00 -5.4436975e+00 -5.6415153e+00 -5.8258878e+00 -6.0289606e+00 -6.2828790e+00 -6.6197888e+00 -7.0600171e+00 -7.5766184e+00 -8.1308287e+00 -8.6838844e+00 -9.1970214e+00 -9.6358670e+00 -9.9836125e+00 -1.0227840e+01 -1.0356132e+01 -1.0356071e+01 -1.0228912e+01 -1.0030599e+01 -9.8307486e+00 -9.6989784e+00 -9.7049053e+00 -9.8919654e+00 -1.0198873e+01 -1.0538161e+01 -1.0822364e+01 -1.0964014e+01 -1.0905347e+01 -1.0707411e+01 -1.0460952e+01 -1.0256720e+01 -1.0185463e+01 -1.0337929e+01 -1.0804867e+01 -1.1677026e+01 -1.3045154e+01 -1.5000000e+01
-5.7981542e-02 -1.1349712e+00 -2.0631042e+00 -2.8549002e+00 -3.5228787e+00 -4.0795595e+00 -4.5374622e+00 -4.9091063e+00 -5.2070115e+00 -5.4436975e+00 -5.6354659e+00 -5.8137470e+00 -6.0137530e+00 -6.2706962e+00 -6.6197888e+00 -7.0828549e+00 -7.6281661e+00 -8.2106055e+00 -8.7850566e+00 -9.3064026e+00 -9.7361880e+00 -1.0062602e+01 -1.0280493e+01 -1.0384714e+01 -1.0370112e+01 -1.0242985e+01 -1.0055414e+01 -9.8709267e+00 -9.7530504e+00 -9.7653128e+00 -9.9470389e+00 -1.0240743e+01 -1.0564738e+01 -1.0837335e+01 -1.0976846e+01 -1.0929503e+01 -1.0753212e+01 -1.0533801e+01 -1.0357097e+01 -1.0308926e+01 -1.0475114e+01 -1.0941489e+01 -1.1793877e+01 -1.3118105e+01 -1.5000000e+01
-5.7761021e-02 -1.1318839e+00 -2.0595881e+00 -2.8526582e+00 -3.5228787e+00 -4.0820343e+00 -4.5419093e+00 -4.9142885e+00 -5.2109564e+00 -5.4436975e+00 -5.6287670e+00 -5.8003026e+00 -5.9969126e+00 -6.2572052e+00 -6.6197888e+00 -7.1081392e+00 -7.6852035e+00 -8.2987960e+00 -8.8967313e+00 -9.4268239e+00 -9.8460926e+00 -1.0148373e+01 -1.0336706e+01 -1.0414130e+01 -1.0383686e+01 -1.0257327e+01 -1.0082655e+01 -9.9161867e+00 -9.8144376e+00 -9.8339237e+00 -1.0009242e+01 -1.0287312e+01 -1.0593137e+01 -1.0851718e+01 -1.0988057e+01 -1.0953027e+01 -1.0800986e+01 -1.0612167e+01 -1.0466800e+01 -1.0445114e+01 -1.0627342e+01 -1.1093714e+01 -1.1924460e+01 -1.3199812e+01 -1.5000000e+01
-5.7518451e-02 -1.1284879e+00 -2.0557205e+00 -2.8501921e+00 -3.5228787e+00 -4.0847564e+00 -4.5468012e+00 -4.9199889e+00 -5.2152957e+00 -5.4436975e+00 -5.6213983e+00 -5.7855140e+00 -5.9783884e+00 -6.2423653e+00 -6.6197888e+00 -7.1359464e+00 -7.7479014e+00 -8.3956612e+00 -9.0192328e+00 -9.5586234e+00 -9.9658695e+00 -1.0241124e+01 -1.0396571e+01 -1.0444391e+01 -1.0396767e+01 -1.0271944e+01 -1.0112410e+01 -9.9667131e+00 -9.8834042e+00 -9.9110326e+00 -1.0078829e+01 -1.0338746e+01 -1.0623421e+01 -1.0865486e+01 -1.0997579e+01 -1.0975883e+01 -1.0850785e+01 -1.0696223e+01 -1.0586134e+01 -1.0594454e+01 -1.0795121e+01 -1.1262072e+01 -1.2069244e+01 -1.3290575e+01 -1.5000000e+01
-5.7253166e-02 -1.1247739e+00 -2.0514907e+00 -2.8474950e+00 -3.5228787e+00 -4.0877335e+00 -4.5521511e+00 -4.9262231e+00 -5.2200414e+00 -5.4436975e+00 -5.6133395e+00 -5.7693404e+00 -5.9581294e+00 -6.2261357e+00 -6.6197888e+00 -7.1663526e+00 -7.8164309e+00 -8.5014624e+00 -9.1528857e+00 -9.7021394e+00 -1.0095807e+01 -1.0341052e+01 -1.0460182e+01 -1.0475505e+01 -1.0409330e+01 -1.0286845e+01 -1.0144766e+01 -1.0022691e+01 -9.9602142e+00 -9.9969339e+00 -1.0156054e+01 -1.0395212e+01 -1.0655650e+01 -1.0878613e+01 -1.1005344e+01 -1.0998035e+01 -1.0902660e+01 -1.0786143e+01 -1.0715406e+01 -1.0757370e+01 -1.0978959e+01 -1.1447094e+01 -1.2228697e+01 -1.3390692e+01 -1.5000000e+01
-5.6964496e-02 -1.1207326e+00 -2.0468880e+00 -2.8445602e+00 -3.5228787e+00 -4.0909730e+00 -4.5579726e+00 -4.9330069e+00 -5.2252053e+00 -5.4436975e+00 -5.6045704e+00 -5.7517412e+00 -5.9360847e+00 -6.2084756e+00 -6.6197888e+00 -7.1994341e+00 -7.8909627e+00 -8.6164608e+00 -9.2980145e+00 -9.8577101e+00 -1.0236194e+01 -1.0448353e+01 -1.0527633e+01 -1.0507482e+01 -1.0421347e+01 -1.0302037e+01 -1.0179814e+01 -1.0084304e+01 -1.0045132e+01 -1.0091922e+01 -1.0241174e+01 -1.0456875e+01 -1.0689886e+01 -1.0891070e+01 -1.1011286e+01 -1.1019447e+01 -1.0956664e+01 -1.0882102e+01 -1.0854922e+01 -1.0934288e+01 -1.1179362e+01 -1.1649308e+01 -1.2403287e+01 -1.3500464e+01 -1.5000000e+01
-5.6651777e-02 -1.1163545e+00 -2.0419018e+00 -2.8413809e+00 -3.5228787e+00 -4.0944825e+00 -4.5642791e+00 -4.9403558e+00 -5.2307995e+00 -5.4436975e+00 -5.5950706e+00 -5.7326757e+00 -5.9122033e+00 -6.1893441e+00 -6.6197888e+00 -7.2352674e+00 -7.9716678e+00 -8.7409174e+00 -9.4549436e+00 -1.0025674e+01 -1.0387318e+01 -1.0563224e+01 -1.0599018e+01 -1.0540332e+01 -1.0432793e+01 -1.0317527e+01 -1.0217641e+01 -1.0151738e+01 -1.0138420e+01 -1.0196292e+01 -1.0334442e+01 -1.0523902e+01 -1.0726192e+01 -1.0902831e+01 -1.1015337e+01 -1.1040082e+01 -1.1012849e+01 -1.0984273e+01 -1.1004989e+01 -1.1125633e+01 -1.1396840e+01 -1.1869244e+01 -1.2593482e+01 -1.3620189e+01 -1.5000000e+01
-5.6314339e-02 -1.1116304e+00 -2.0365216e+00 -2.8379503e+00 -3.5228787e+00 -4.0982693e+00 -4.5710841e+00 -4.9482856e+00 -5.2368359e+00 -5.4436975e+00 -5.5848200e+00 -5.7121032e+00 -5.8864343e+00 -6.1687004e+00 -6.6197888e+00 -7.2739285e+00 -8.0587170e+00 -8.8750936e+00 -9.6239975e+00 -1.0206368e+01 -1.0549469e+01 -1.0685861e+01 -1.0674431e+01 -1.0574062e+01 -1.0443641e+01 -1.0333323e+01 -1.0258335e+01 -1.0225176e+01 -1.0240345e+01 -1.0310338e+01 -1.0436113e+01 -1.0596460e+01 -1.0764629e+01 -1.0913869e+01 -1.1017430e+01 -1.1059905e+01 -1.1071267e+01 -1.1092831e+01 -1.1165914e+01 -1.1331831e+01 -1.1631898e+01 -1.2107433e+01 -1.2799751e+01 -1.3750168e+01 -1.5000000e+01
-5.5951517e-02 -1.1065509e+00 -2.0307366e+00 -2.8342616e+00 -3.5228787e+00 -4.1023409e+00 -4.5784010e+00 -4.9568119e+00 -5.2433264e+00 -5.4436975e+00 -5.5737983e+00 -5.6899832e+00 -5.8587268e+00 -6.1465038e+00 -6.6197888e+00 -7.3154939e+00 -8.1522813e+00 -9.0192504e+00 -9.8055007e+00 -1.0400132e+01 -1.0722934e+01 -1.0816463e+01 -1.0753964e+01 -1.0608683e+01 -1.0453866e+01 -1.0349432e+01 -1.0301985e+01 -1.0304805e+01 -1.0351169e+01 -1.0434355e+01 -1.0546442e+01 -1.0674715e+01 -1.0805258e+01 -1.0924158e+01 -1.1017498e+01 -1.1078880e+01 -1.1131970e+01 -1.1207950e+01 -1.1338001e+01 -1.1553306e+01 -1.1885047e+01 -1.2364404e+01 -1.3022561e+01 -1.3890699e+01 -1.5000000e+01
-5.5562642e-02 -1.1011066e+00 -2.0245362e+00 -2.8303080e+00 -3.5228787e+00 -4.1067050e+00 -4.5862433e+00 -4.9659504e+00 -5.2502830e+00 -5.4436975e+00 -5.5619852e+00 -5.6662748e+00 -5.8290297e+00 -6.1227133e+00 -6.6197888e+00 -7.3600398e+00 -8.2525315e+00 -9.1736490e+00 -9.9997778e+00 -1.0607303e+01 -1.0908003e+01 -1.0955225e+01 -1.0837712e+01 -1.0644204e+01 -1.0463442e+01 -1.0365861e+01 -1.0348680e+01 -1.0390808e+01 -1.0471156e+01 -1.0568636e+01 -1.0665684e+01 -1.0758833e+01 -1.0848142e+01 -1.0933669e+01 -1.1015473e+01 -1.1096969e+01 -1.1195010e+01 -1.1329803e+01 -1.1521559e+01 -1.1790485e+01 -1.2156791e+01 -1.2640687e+01 -1.3262381e+01 -1.4042082e+01 -1.5000000e+01
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
// #include"StrayLight.h"
#include<iostream>
#include<string>
#include<fstream>
#include<cmath>
#include<string>
#include<ctime>
#include<iomanip>
#include<sstream>
#include<string.h>
#include"ephcom_wrapper.hpp"
using namespace std;
#define PI acos(-1)
#define Es 1367.0
#define Em 0.0044
#define Re 6371.0//地球半径
#define Re2 Re*Re
#define Swide 2.44//2023年4月1日结构设定为2.4425m,以后还可能变化,为方便计算设为2.44,不会有数量级误差
#define Slong 3.01//2023年4月1日结构设定为3.01m
#define Rd 1.1//2023年4月1日结构设定为1.128m,以后还可能变化,为方便计算设为1.1,不会有数量级误差
#define Plank 6.626e-34 //普朗克常数J*s
#define AU 149597870.7 //天文单位km
#define AU2 AU*AU
const double Es_fil[7] = {27.01477,86.82985,281.07176,255.6571,193.52574,200.77139,123.77403};
const double Em_fil[7] = {8.695317e-05,0.00027948159,0.0009046933,0.00082289045,0.00062290655,0.00064622833,0.00039839482};
const double PlanetsAbsMag[8][7]={2.231,0.782,-0.419,-0.773,-0.798,-0.718,-0.672,//水星
-3.367,-3.872,-4.410,-4.512,-4.398,-4.212,-4.117,//金星
1.130,0.101,-1.523,-2.520,-2.650,-2.503,-2.358,//火星
-8.528,-9.033,-9.402,-9.386,-9.047,-8.448,-8.421,//木星
-8.708,-9.213,-9.708,-9.764,-9.396,-8.608,-8.368,//土星
-6.346,-6.851,-7.197,-6.673,-5.336,-4.912,-5.317,//天王星
-5.933,-6.438,-6.900,-6.659,-5.470,-4.837,-5.081,//海王星
0.664,0.159,-0.719,-1.188,-1.196,-0.974,-0.891};//冥王星
const double EM0 = 2.8e-8;//0星等的照度值,公式:double E0 = 1365.08 / pow(100, 26.72 / 5);
//const double PlanetsAbsE[8][7]={3.58722e-09,1.36257e-08,4.11868e-08,5.70635e-08,5.83926e-08,5.42448e-08,5.19946e-08,
//6.2224e-07,9.90736e-07,1.62614e-06,1.78631e-06,1.60827e-06,1.35506e-06,1.24153e-06,
//9.88913e-09,2.55128e-08,1.13857e-07,2.85206e-07,3.21483e-07,2.80775e-07,2.45673e-07,
//7.21702e-05,0.00011491,0.00016142,0.000159059,0.000116401,6.70437e-05,6.5397e-05,
//8.5184e-05,0.000135631,0.000213973,0.000225298,0.000160531,7.76887e-05,6.22814e-05,
//9.67293e-06,1.54013e-05,2.11816e-05,1.30725e-05,3.81556e-06,2.58201e-06,3.74937e-06,
//6.61238e-06,1.05283e-05,1.61123e-05,1.2905e-05,4.31676e-06,2.40967e-06,3.01688e-06,
//1.519e-08,2.41857e-08,5.42948e-08,8.36292e-08,8.42477e-08,6.86686e-08,6.36148e-08};//水金火木土天海冥的绝对星等对应辐照度
const double PlanetsAbsE[8][7]={1.25183e-09,3.49052e-09,1.10171e-08,8.90266e-09,6.1621e-09,5.74084e-09,3.38622e-09,2.1714345e-07,2.5379912e-07,4.3497813e-07,2.7868908e-07,1.6971832e-07,1.4340872e-07,8.085651e-08,3.45101e-09,6.53567e-09,3.045562e-08,4.44959e-08,3.392569e-08,2.971499e-08,1.599982e-08,2.518527664e-05,2.94367667e-05,4.317848695e-05,2.481532382e-05,1.228368626e-05,7.0953786e-06,4.259072e-06,2.972670174e-05,3.474482318e-05,5.72357555e-05,3.514956436e-05,1.694059717e-05,8.22196406e-06,4.05615911e-06,3.37556695e-06,3.94539151e-06,5.66588062e-06,2.03948233e-06,4.0265094e-07,2.7325969e-07,2.4418275e-07,2.30752665e-06,2.69705688e-06,4.30990224e-06,2.0133531e-06,4.5554231e-07,2.5502078e-07,1.9647848e-07,5.30086e-09,6.1957e-09,1.452337e-08,1.304728e-08,8.89055e-09,7.26734e-09,4.143e-09};//水金火木土天海冥的绝对星等对应辐照度
const double PlanetsE_AU2[8][7]={28015446.582343537,78116167.85424984,246557514.80383125,199237356.53256097,137904849.78902856,128477299.08430137,75781955.27849847,4859566726.294486,5679903143.209061,9734602982.59355,6236928580.011572,3798214956.1848063,3209418842.794384,1809530078.5522048,77232047.71057059,146265173.2621918,681582206.1057857,995796902.2089956,759240802.5227964,665007277.5659081,358068244.0283927,563634475859.0736,658780794948.3726,966313938206.4478,555355108216.219,274903038143.9954,158791188059.1252,95315999534.81744,665269402821.2107,777572566648.6147,1280908901968.4758,786630481203.9672,379122482579.8927,184003633079.88455,90774905710.84904,75543577847.78088,88295979751.68683,126799705213.53505,45642641530.34039,9011135901.611265,6115421532.435761,5464693473.842928,51641345572.125656,60358846283.05587,96453556060.02104,45057881748.61057,10194819466.938034,5707243446.332199,4397094572.220029,118630824.75843115,138656722.37423745,325026105.3318717,291991877.7040579,198966307.20634192,162639637.65618783,92718373.92902023};//八个行星辐照度乘以一个天文单位的平方,便于事后计算实际场景辐照度
const double SunRatio[7] ={0.07209039,0.1050749,0.26816488,0.22462947,0.18818067,0.1100292,0.03183049};
const double MoonRatio[7]={0.07199216,0.10505516,0.26823942,0.22467527,0.18816909,0.11004074,0.03182816};
const int Planets[8]={MERCURY,VENUS,MARS,JUPITER,SATURN,URANUS,NEPTUNE,PLUTO};
extern "C"{
class XYZ//三维坐标类
{
public:
double X;
double Y;
double Z;
double Length;
XYZ()
{
X = Y = Z = Length = 0;
}
XYZ(double x, double y, double z)
{
X = x, Y = y, Z = z, Length = Model();
}
XYZ(double a[3])
{
X=a[0],Y=a[1],Z=a[2],Length=Model();
}
double Model()//模
{
return sqrt(X*X + Y*Y + Z*Z);
}
double Square()
{
return X*X + Y*Y + Z*Z;
}
double Cos(XYZ A)//夹角的cos值
{
return (X*A.X + Y*A.Y + Z*A.Z) / (Model()*A.Model());
}
double Angle(XYZ A)//夹角弧度
{
double a = X*A.X + Y*A.Y + Z*A.Z;
double b = Model()*A.Model();
double c = a / b;
if (c > 1)return 0;
else if (c < -1)return acos(-1);
else return acos(c);
}
double Azimuth(XYZ A, XYZ py)//方位夹角弧度
{
double coefficient = (X*A.X + Y*A.Y + Z*A.Z) / (X*X + Y*Y + Z*Z);
XYZ az = XYZ(A.X - X*coefficient, A.Y - Y*coefficient, A.Z - Z*coefficient);
double c = az.Cos(py);
return acos(c);
}
XYZ Cross(XYZ A)
{
return XYZ(Y*A.Z - Z*A.Y, Z*A.X - X*A.Z, X*A.Y - Y*A.X);
}
XYZ Normalize()
{
return XYZ(X / Length, Y / Length, Z / Length);
}
XYZ operator+(XYZ a)
{
return XYZ(X + a.X, Y + a.Y, Z + a.Z);
}
XYZ operator-(XYZ a)
{
return XYZ(X - a.X, Y - a.Y, Z - a.Z);
}
double operator*(XYZ a)
{
return X*a.X + Y*a.Y + Z*a.Z;
}
};
class YZ//二维坐标类
{
public:
double Y;
double Z;
YZ()
{
Y=Z=0;
}
YZ(double y,double z)
{
Y=y,Z=z;
}
double Model()//模
{
return sqrt(Y*Y+Z*Z);
}
double Square()
{
return Y*Y+Z*Z;
}
double Angle(YZ a)//夹角弧度
{
return acos((Y*a.Y+Z*a.Z)/(Model()*a.Model()));
}
};
void Init();
double PST(double Azimuth,double Angle);//73*45,行是方位角角5度一分,列是夹角2度一分,PST每个数占16字符,每行720+2字符
XYZ Spherical2Cartesian(double latitude,double longitude);//天球转三维,参数为弧度
void Cartesian2Spherical(XYZ car, double sph[2]);//所得sph是纬度经度的弧度
XYZ Ecliptic2Equatorial(XYZ Ecl);//黄道转赤道
XYZ Equatorial2Ecliptic(XYZ Equ);//赤道转黄道
double ShelterEarth(XYZ sat,XYZ star);//卫星是否会被地球遮挡
double ShelterPlate(XYZ sp,XYZ ob,XYZ py,double fai,double op,double sum);//亮星是否会被盖板遮挡
void PointSource(double jd, double sat[3], double ob[3], double py[3], double E[7]);
void EarthShine(double ju, double sat[3], double ob[3], double py[3], double E[7]);
void Zodiacal(double ju, double ob[3], double E[7]);//琢磨半晌形参还是用赤道坐标系吧,内部再转换黄道!
void Calculate(double ju, double sat[3], double ob[3], double py[3], double E[7]);
void ComposeY(double ob[3], double py1[3], double py2[3]);
void Watt2Photon(double E[7], double P[7]);//照度w/m2转光子数ph/(s*100um2)
double Pst[73][45];
const int Rrow = 180, Rcol = 288;
double R[Rrow][Rcol];
double ZL[37][19];
string de405("DE405");
Ephcom ephcom(de405);
void Init()
{
ifstream infile("PST");
string s;
for (int i = 0; i < 73; i++)
{
getline(infile, s);
stringstream ss(s);
for (int j = 0; j < 45; j++)
{
ss >> Pst[i][j];
}
}
infile.close();
infile.open("R");
for (int i = 0; i < Rrow; i++)
{
for (int j = 0; j < Rcol; j++)
{
infile >> R[i][j];
}
}
infile.close();
infile.open("Zodiacal");
for (int i = 0; i < 37; i++)
{
for (int j = 0; j < 19; j++)
{
infile >> ZL[i][j];
}
}
infile.close();
}
double PST(double Azimuth,double Angle)//73*45,行是方位角角5度一分,列是夹角2度一分,PST每个数占16字符,每行720+2字符
{
double daz=Azimuth*36/PI;
double dan=Angle*90/PI;
int az=daz;
int an=dan;
if(an==0)return 0;
double pst=Pst[az][an-1]*(az+1-daz)*(an+1-dan)+Pst[az][an]*(az+1-daz)*(dan-an)+Pst[az+1][an-1]*(daz-az)*(an+1-dan)+Pst[az+1][an]*(daz-az)*(dan-an);
return pst;
}
XYZ Spherical2Cartesian(double latitude,double longitude)//天球转三维,参数为弧度
{
return XYZ(cos(latitude)*cos(longitude),cos(latitude)*sin(longitude),sin(latitude));
}
void Cartesian2Spherical(XYZ car, double sph[2])//所得sph是纬度经度的弧度
{
sph[0] = asin(car.Z / car.Length);
sph[1] = acos(car.X / sqrt(car.X*car.X + car.Y*car.Y));
if (car.Y < 0)sph[1] = -sph[1];
}
XYZ Ecliptic2Equatorial(XYZ Ecl)//黄道转赤道
{
double cosa = 0.917392;
double sina =-0.397983;
return XYZ(Ecl.X,Ecl.Y * cosa + Ecl.Z * sina,-Ecl.Y * sina + Ecl.Z * cosa);
}
XYZ Equatorial2Ecliptic(XYZ Equ)//赤道转黄道
{
double cosa = 0.917392;
double sina = 0.397983;
return XYZ(Equ.X, Equ.Y * cosa + Equ.Z * sina, -Equ.Y * sina + Equ.Z * cosa);
}
double ShelterEarth(XYZ sat,XYZ star)//卫星是否会被地球遮挡
{
double angle=star.Angle(sat);
if(angle>PI/2)
{
double dis=sat.Model()*sin(angle);
if(dis<Re)
{
return 0;
}
else
{
return 1;
}
}
else
{
return 1;
}
}
double ShelterPlate(XYZ sp,XYZ ob,XYZ py,double fai,double op,double sum)//亮星是否会被盖板遮挡
{
double theta=sp.Angle(ob);
double faisp=ob.Azimuth(sp,py);
double faidiff=faisp-fai;
if(theta<op||abs(faidiff)>=PI/2)
{
return 1;
}
else
{
double a=cos(theta);
double b=sin(theta)*cos(faidiff);
double c=sin(theta)*sin(faidiff);
XYZ S=XYZ(a,b,c);
double sumin=0;
for(double y=-Rd; y<=Rd; y+=0.1)
{
for(double z=-sqrt(Rd*Rd-y*y); z<=sqrt(Rd*Rd-y*y); z+=0.1)
{
if((Slong*cos(op)-a/b*(Slong*sin(op)+Rd-y)>=0)&&(abs(z+(c*cos(op)*(Rd-y))/(b*cos(op)-a*sin(op)))<=Swide/2))
{
sumin++;
}
}
}
return 1-sumin/sum;
}
}
void PointSource(double ju, double sat[3], double ob[3], double py[3], double E[7])
{
XYZ SAT = XYZ(sat[0], sat[1], sat[2]);
XYZ OB = XYZ(ob[0], ob[1], ob[2]);
XYZ PY = XYZ(py[0], py[1], py[2]);
double pos[3], vel[3];
ephcom.getPosVel(SUN, ju, pos, vel);
XYZ sun = XYZ(pos[0], pos[1], pos[2]);
double thetasun = OB.Angle(sun);
if (thetasun < PI * 5 / 18)
{
cout << "观测方向与太阳夹角不可小于50度!目前只有" << thetasun * 180 / PI << "度!";
return;
}
double faisun = OB.Azimuth(sun, PY);
double fai, op;//盖板方位角,盖板打开角度-90°
if (thetasun >= PI * 5 / 18 && thetasun < PI * 65 / 180)
{
op = 15 * PI / 180;
fai = faisun;
}
else if (thetasun >= PI * 65 / 180 && thetasun < PI * 11 / 18)
{
op = 45 * PI / 180;
fai = faisun;
}
else
{
op = 45 * PI / 180;
fai = 0;
}
ephcom.getPosVel(MOON, ju, pos, vel);
XYZ moon = XYZ(pos[0], pos[1], pos[2]);
double thetamoon = OB.Angle(moon);
double faimoon = OB.Azimuth(moon, PY);
double moonphase = sun.Angle(moon) / PI;
double E1[7] = { 0, 0, 0, 0, 0, 0, 0 };
double pstsun, pstmoon;
if (thetasun <= PI / 2)
{
pstsun = pow(10, PST(faisun, thetasun));
}
else
{
pstsun = 0;
}
if (thetamoon <= PI / 2 && thetamoon >= PI / 90)
{
pstmoon = pow(10, PST(faimoon, thetamoon));
}
else
{
pstmoon = 0;
}
double sum = 411;
double Sheltersun, Sheltermoon;
Sheltersun = ShelterEarth(SAT, sun)*ShelterPlate(sun, OB, PY, fai, op, sum);
Sheltermoon = ShelterEarth(SAT, moon)*ShelterPlate(moon, OB, PY, fai, op, sum);
// double Esun = Es*pstsun*Sheltersun, Emoon = Em*pstmoon*moonphase*Sheltermoon;
for (int i = 0; i < 7; i++)
{
E1[i] = Es_fil[i]*pstsun*Sheltersun*SunRatio[i] + Em_fil[i]*pstmoon*moonphase*Sheltermoon*MoonRatio[i];
}
for (int i = 0; i < 2; i++)
{
ephcom.getPosVel(Planets[i], ju, pos, vel);
XYZ planet = XYZ(pos[0], pos[1], pos[2]);
double thetap = OB.Angle(planet);
if (abs(thetap) < 0.008726646259971648){
continue;
}
double faip = OB.Azimuth(planet, PY);
double pstp = pow(10, PST(faip, thetap));
double shelterp = ShelterEarth(SAT, planet)*ShelterPlate(planet, OB, PY, fai, op, sum);
double planetphase = sun.Angle(planet) / PI;
double proportion = pstp*shelterp*planetphase/planet.Square();
for (int j = 0; j < 7; j++)
{
E1[j] += PlanetsE_AU2[i][j] * proportion;
}
}
for (int i = 2; i < 8; i++)
{
ephcom.getPosVel(Planets[i], ju, pos, vel);
XYZ planet = XYZ(pos[0], pos[1], pos[2]);
double thetap = OB.Angle(planet);
if (abs(thetap) < 0.008726646259971648){
continue;
}
double faip = OB.Azimuth(planet, PY);
double pstp = pow(10, PST(faip, thetap));
double shelterp = ShelterEarth(SAT, planet)*ShelterPlate(planet, OB, PY, fai, op, sum);
double proportion = pstp*shelterp/planet.Square();
for (int j = 0; j < 7; j++)
{
E1[j] += PlanetsE_AU2[i][j] * proportion;
}
}
string s;
double Estar[7] = { 0, 0, 0, 0, 0, 0, 0 };
ifstream infile("BrightGaia_with_csst_mag");
while (getline(infile, s))
{
stringstream ss(s);
double x, y, z, d[7];
ss >> x;
ss >> y;
ss >> z;
for (int i = 0; i < 7; i++)
{
ss >> d[i];
}
XYZ star = XYZ(x, y, z);
double theta = OB.Angle(star);
if (abs(theta) < 0.008726646259971648){
continue;
}
if (theta<PI / 2 && theta>PI / 90)
{
double faistar = OB.Azimuth(star, PY);
double pst = pow(10, PST(faistar, theta));
double shelter = ShelterEarth(SAT, star)*ShelterPlate(star,OB,PY,fai,op,sum);//太费时间了
double proportion = pst*shelter;
for (int i = 0; i < 7; i++)
{
Estar[i] += d[i] * proportion;
}
}
}
infile.close();
// cout << "点源杂散光:";
for (int i = 0; i < 7; i++)
{
E[i] = E1[i] + Estar[i];
// cout << E[i] << " ";
}
// cout << endl;
}
void EarthShine(double ju, double sat[3], double ob[3], double py[3], double E[7])
{
XYZ SAT = XYZ(sat[0], sat[1], sat[2]);
XYZ OB = XYZ(ob[0], ob[1], ob[2]);
XYZ PY = XYZ(py[0], py[1], py[2]);
double pos[3], vel[3];
ephcom.getPosVel(SUN, ju, pos, vel);
XYZ sun = XYZ(pos[0], pos[1], pos[2]);
ephcom.getPosVel(MOON, ju, pos, vel);
XYZ moon = XYZ(pos[0], pos[1], pos[2]);
double moonphase = sun.Angle(moon) / PI;
double S[Rrow][Rcol];
double wd = -PI / 2, jd = -PI, dwd = PI / 180, djd = PI / 150;
double x[Rrow][Rcol], y[Rrow][Rcol], z[Rrow][Rcol], sunangle[Rrow][Rcol], moonangle[Rrow][Rcol];
double Ese[Rrow][Rcol], Eme[Rrow][Rcol], Ee[Rrow][Rcol];
for (int i = 0; i < Rrow; i++)
{
jd = -PI;
for (int j = 0; j < Rcol; j++)
{
S[i][j] = Re2*cos(wd)*dwd*djd;
x[i][j] = Re*cos(wd)*cos(jd);
y[i][j] = Re*cos(wd)*sin(jd);
z[i][j] = Re*sin(wd);
XYZ v = XYZ(x[i][j], y[i][j], z[i][j]);
sunangle[i][j] = v.Angle(sun);
moonangle[i][j] = v.Angle(moon);
if (sunangle[i][j] < PI / 2)
{
Ese[i][j] = Es*cos(sunangle[i][j])*R[i][j] * S[i][j];
Eme[i][j] = 0;
}
else
{
Ese[i][j] = 0;
if (moonangle[i][j] < PI / 2)
{
Eme[i][j] = Em*moonphase*cos(moonangle[i][j])*R[i][j] * S[i][j];
}
else
{
Eme[i][j] = 0;
}
}
Ee[i][j] = Ese[i][j] + Eme[i][j];
jd += djd;
}
wd += dwd;
}
double thetasun = OB.Angle(sun);
double faisun = OB.Azimuth(sun, PY);
double fai, op;
if (thetasun < PI * 5 / 18)
{
cout << "观测方向与太阳夹角不可小于50度!目前只有" << thetasun * 180 / PI << "度!";
return;
}
else if (thetasun >= PI * 5 / 18 && thetasun < PI * 65 / 180)
{
op = 15 * PI / 180;
fai = faisun;
}
else if (thetasun >= PI * 65 / 180 && thetasun < PI * 11 / 18)
{
op = 45 * PI / 180;
fai = faisun;
}
else
{
op = 45 * PI / 180;
fai = 0;
}
OB = OB.Normalize();
PY = PY.Normalize();
XYZ zccst = OB.Cross(PY);
XYZ sfa = XYZ(sin(op), -cos(op)*cos(fai), -cos(op)*sin(fai));//盖板法向量
double sw = -1.1, sl = 0.1, dlw = 0.2, dlw2 = 0.04;//盖板z轴、y轴坐标和小块长度、小块面积
int shieldW=Swide/dlw,shieldL=Slong/dlw;//盖板z轴\y轴方向,也就是宽\长方向,的小块数量;
double xs[shieldW][shieldL], ys[shieldW][shieldL], zs[shieldW][shieldL], Eshield[shieldW][shieldL];//盖板小块坐标和接收照度
double Rd2 = Rd*Rd;
for (int w = 0; w < shieldW; w++)
{
for (int l = 0; l < shieldL; l++)
{
Eshield[w][l] = 0;
}
}
for (int i = 0; i < Rrow; i++)
{
for (int j = 0; j < Rcol; j++)
{
XYZ v = XYZ(x[i][j] - SAT.X, y[i][j] - SAT.Y, z[i][j] - SAT.Z);//设施到地块
if (XYZ(x[i][j], y[i][j], z[i][j])*v < 0)//判断地块是否为地球本身遮挡
{
XYZ vp = XYZ(v*OB, v*PY, v*zccst);//设施到地块转化为设施坐标系
double Rv = v.Model();//设施到地块距离
double Rv2 = v.Square();
double coses = sfa*vp / Rv;//俩向量夹角的cos
if (coses > 0)
{
sw = -1.1;
for (int w = 0; w < shieldW; w++)
{
sl = 0.1;
for (int l = 0; l<shieldL; l++)
{
double y0 = Rd + sl*sin(op);
double z0 = sw;
double R0 = sqrt(y0*y0 + z0*z0);
double fai0 = asin(z0 / R0);
xs[w][l] = sl*cos(op);
ys[w][l] = R0*cos(fai0 + fai);
zs[w][l] = R0*sin(fai0 + fai);
double yjd = ys[w][l] - xs[w][l] * vp.Y / vp.X;
double zjd = zs[w][l] - xs[w][l] * vp.Z / vp.X;
if (yjd*yjd + zjd*zjd>Rd2)
{
Eshield[w][l] += Ee[i][j] * coses*dlw2 / 2 / PI / Rv2;
}
sl += dlw;
}
sw += dlw;
}
}
}
}
}
double dlr = 0.1, dlt = 0.5*PI;//镜筒分块的半径和角度差
int Mrow=Rd/dlr,Mcol=2*PI/dlt;
double ye[Mrow][Mcol], ze[Mrow][Mcol];//镜筒分块的y坐标和z坐标,x必为0,故可省略
double SM[Mrow][Mcol];//镜筒每个小块的面积
double Econe[Mrow][Mcol];
double Ealbedo1 = 0, Ealbedo2 = 0;//盖板反射进的地气光,直接射入的地气光
for (int i = 0; i < Mrow; i++)
{
for (int j = 0; j < Mcol; j++)
{
ye[i][j] = dlr*(i+0.5)*cos(dlt*j);
ze[i][j] = dlr*(i+0.5)*sin(dlt*j);
SM[i][j]=dlr*(i+0.5)*dlt*dlr;//分块中心弧长乘以分块半径,约等于梯形面积
Econe[i][j]=0;
for (int w = 0; w < shieldW; w++)
{
for (int l = 0; l < shieldL; l++)
{
XYZ ves = XYZ(xs[w][l], ys[w][l] - ye[i][j], zs[w][l] - ze[i][j]);//镜头分块到盖板小块
double tyj = acos(ves.X / ves.Length);
double fwj = acos(ves.Y / (sqrt(ves.Y*ves.Y + ves.Z*ves.Z)));
double ppp = pow(10, PST(fwj, tyj));
Econe[i][j] += Eshield[w][l] / 2 / PI / ves.Square()*0.03*pow(10, PST(fwj, tyj));
}
}
Econe[i][j]*=SM[i][j];
Ealbedo1+=Econe[i][j];
}
}
Ealbedo1=Ealbedo1/Rd2/PI;
for (int i = 0; i < Rrow; i++)
{
for (int j = 0; j < Rcol; j++)
{
XYZ v = XYZ(x[i][j] - SAT.X, y[i][j] - SAT.Y, z[i][j] - SAT.Z);//设施到地块
double earthangle = OB.Angle(v);//观测方向与设施到地块方向的夹角
double faie = OB.Azimuth(v, PY);//观测方向与设施到地块方向的方位角
if (earthangle < PI / 2 && XYZ(x[i][j], y[i][j], z[i][j])*v < 0)
{
double faie2 = faie - fai;
if (earthangle < op || abs(faie2)>PI / 2)
{
Ealbedo2 += pow(10, PST(faie, earthangle))*Ee[i][j] / 2 / PI / v.Square();
}
else
{
double D = 39961, J = 0;
for (double yn = -Rd; yn < Rd; yn += 0.01)
{
for (double zn = -Rd; zn < Rd; zn += 0.01)
{
if (yn*yn + zn*zn < Rd2)
{
double a = cos(earthangle);
double b = sin(earthangle)*cos(faie2);
double c = sin(earthangle)*sin(faie2);
if ((Slong*cos(op) >= a / b*(Slong*sin(op) - yn + Rd)) && (abs(zn + c*cos(op)*(zn - Rd) / (a*sin(op) - b*cos(op))) <= Swide / 2))
{
J++;
}
}
}
}
Ealbedo2 += pow(10, PST(faie, earthangle))*Ee[i][j] / 2 / PI / v.Square()*(1 - J / D);
}
}
}
}
double Ealbedo = Ealbedo1 + Ealbedo2;
// cout << "地气杂散光:";
for (int i = 0; i < 7; i++)
{
E[i] = Ealbedo*SunRatio[i];
// cout << E[i] << " ";
}
// cout << endl;
}
void Zodiacal(double ju, double ob[3], double E[7])
{
XYZ OB = XYZ(ob[0], ob[1], ob[2]);
double pos[3], vel[3];
ephcom.getPosVel(SUN, ju, pos, vel);
XYZ sun = XYZ(pos[0], pos[1], pos[2]);
double sph[2];
OB = Equatorial2Ecliptic(OB);
Cartesian2Spherical(OB, sph);
double latitude = sph[0] / PI * 180, longitude = sph[1] / PI * 180;
sun = Equatorial2Ecliptic(sun);
Cartesian2Spherical(sun, sph);
latitude = abs(latitude);
longitude -= sph[1] / PI * 180;
longitude = abs(longitude);
if (longitude > 180)longitude = 360 - longitude;
int lo, la;
double lor, lar;
lo = longitude / 5;
lor = longitude / 5.0 - lo;
la = latitude / 5;
lar = latitude / 5.0 - la;
double zl = ZL[lo][la] * (1 - lor)*(1 - lar) + ZL[lo][la + 1] * (1 - lor)*lar + ZL[lo + 1][la] * lor*(1 - lar) + ZL[lo + 1][la + 1] * lor*lar;
zl*=PI / 784 * 1e-11;
double u[7]= {132.3,106.944,110.541,43.8336,19.3065,6.54026,1.5624};
// cout << "黄道弥散光:";
for(int i=0; i<7; i++)
{
E[i]=zl*u[i];
// cout << E[i] << " ";
}
// cout << endl;
}
void Calculate(double ju, double sat[3], double ob[3], double py[3], double E[7])
{
double Ep[7],Ee[7],Ez[7];
PointSource(ju, sat,ob,py,Ep);
EarthShine(ju, sat,ob,py,Ee);
Zodiacal(ju,ob,Ez);
// cout << "总杂散光:";
for(int i=0; i<7; i++)
{
E[i]=Ep[i]+Ee[i]+Ez[i];
// cout<<E[i]<<" ";
}
// cout << endl;
}
void ComposeY(double ob[3], double py1[3], double py2[3])
{
XYZ OB=XYZ(ob);
XYZ Eclob = Equatorial2Ecliptic(OB);
double sph[2];
Cartesian2Spherical(Eclob, sph);
if (abs(abs(sph[0]) - PI / 2) < 1e-6)
{
cout << "光轴不可指向极点";
return;
}
double decy1 = sph[0] + PI / 2, decy2 = sph[0] - PI / 2;
double ray1, ray2;
if (decy1 > PI / 2)
{
decy1 = PI - decy1;
ray1 = sph[1] + PI;
}
else ray1 = sph[1];
if (decy2 > -PI / 2)ray2 = sph[1];
else
{
decy2 = -decy2 - PI;
ray2 = sph[1] + PI;
}
XYZ eclpy1 = Spherical2Cartesian(decy1, ray1);
XYZ eclpy2 = Spherical2Cartesian(decy2, ray2);
XYZ PY1 = Ecliptic2Equatorial(eclpy1);
XYZ PY2 = Ecliptic2Equatorial(eclpy2);
py1[0]=PY1.X,py1[1]=PY1.Y,py1[2]=PY1.Z;
py2[0]=PY2.X,py2[1]=PY2.Y,py2[2]=PY2.Z;
}
void Watt2Photon(double E[7], double P[7])//照度w/m2转光子数ph/(s*100um2)
{
double c = 3e8;
double lamda[7]= {275e-9,354e-9,475e-9,622e-9,763e-9,900e-9,990e-9};
double co=1e-10/Plank/c;//m2到100um2的系数
//cout << "各谱段在单个像元的光子数:";
for(int i=0; i<7; i++)
{
P[i]=E[i]*lamda[i]*co;
//cout<<P[i]<<" ";
}
//cout << endl;
}
void Zodiacal1(double lonlat[2], double E[7])
{
double latitude = abs(lonlat[1]);
double longitude = abs(lonlat[0]);
if (longitude > 180)longitude = 360 - longitude;
int lo, la;
double lor, lar;
lo = longitude / 5;
lor = longitude / 5.0 - lo;
la = latitude / 5;
lar = latitude / 5.0 - la;
double zl = ZL[lo][la] * (1 - lor)*(1 - lar) + ZL[lo][la + 1] * (1 - lor)*lar + ZL[lo + 1][la] * lor*(1 - lar) + ZL[lo + 1][la + 1] * lor*lar;
zl*=PI / 784 * 1e-11;
double u[7]={132.3,106.944,110.541,43.8336,19.3065,6.54026,1.5624};
// cout << "黄道弥散光:";
for(int i=0;i<7;i++)
{
E[i]=zl*u[i];
// cout << E[i] << " ";
}
// cout << endl;
}
}
30000 15000 7000 3140 1610 985 640 439.106795917950 332.953759944373 275 227.040718244473 184.215493793075 150 126.619219993047 111.295375994437 100 88.7046240055627 73.3807800069534 50
20000 12000 6000 2940 1540 945 625 434.136797758554 329.872405260036 271 223.547334192282 182.480458923860 150 127.340532138986 111.872425711189 100 88.1275742888112 72.6594678610140 50
16000 8000 4740 2470 1370 865 590 424.924281880506 325.703844589420 264 216.192536238306 177.535146441613 148 127.046313907011 112.081495570053 100 87.6962822077246 72.0647972041002 50.0000000000000
11500 6780 3440 1860 1110 755 525 379.404487437312 298.581196755993 251 210.819373149455 174.952207929139 146 125.577279224129 111.350712268192 100 88.2048432873637 72.6449429980935 50
6400 4480 2410 1410 910 635 454 340.751783794961 276.748855303552 237 201.241198619320 168.117212939671 141 122.135273579611 109.263774419244 99 87.9584478029781 72.7536153092783 50
3840 2830 1730 1100 749 545 410 320.344426947347 262.847445764680 223 188.949910583017 159.472507970269 136 119.263338127992 107.188448280172 97 85.9226628309394 71.1811063164520 50
2480 1870 1220 845 615 467 365 293.396992658036 243.591181463075 207 176.533897785140 151.075388060617 131 116.245193979181 104.996155183345 95 84.0038448166554 69.7548060208193 50
1650 1270 910 680 510 397 320 264.610999197860 224.242861979717 193 166.095447800706 143.176731474096 125 111.822024414131 101.902063975749 93 82.8757138020283 69.2890866969798 50
1180 940 700 530 416 338 282 239.383076216900 206.105287077371 179 155.528255539422 135.661786794464 120 108.689086810597 100.062380559589 92 82.3820638848555 69.0886909671804 50
910 730 555 442 356 292 250 217.177087096913 189.491057165516 166 145.936910467127 129.234403723928 116 106.038233997541 97.9416983091442 90 80.5027461353003 67.7395437802365 50
727.458461874842 590.813948067450 458.193770946183 380.572133876131 310.356532547090 256.488736025072 222.994441816550 196.671226703445 173.815072589959 153.993110811782 136.873310808416 122.526994434613 111.126321648939 102.546129456415 95.4719630478941 88.2920446606834 79.3945965320918 67.1678408994278 50
597.965786285821 501.989953285938 394.904124012041 330.741575203306 272.426631477206 229.377054599373 200.722233330368 178.298184971317 159.500061954463 143.183118953515 128.502453511432 115.812534648182 105.767674252986 98.6162295599359 92.9827391826220 87.0857870795079 79.1439572090571 67.3758335297333 50
505 442 352 292 243 209 183 162.948572168708 147.332365312119 134 121.348535356634 109.968784724353 101 95.0646938121630 90.7184217163971 86 78.9482449502696 67.6019728545037 50
434.185639242502 392.917767644504 318.376629582089 263.460345936839 222.213128168793 193.706429839947 169.485130042169 151.204192642909 137.846384427846 126.706631884706 115.748672194896 105.611485314551 97.6028618934907 92.4866702185601 88.8510891247191 84.7403750839550 78.1987845682555 67.2705740496079 50
379.733278070694 351.223716015657 291.034402908743 242.720597293047 207.589653411575 181.900455075790 159.198062706301 142.411627057649 130.568767913886 120.897501975771 111.291656158755 102.308298237053 95.1703061995698 90.5932607902020 87.2635537728093 83.3602796662423 77.0625329893514 66.5494082609872 50
338 317 269 227 196 172 151 135.608650155770 124.774226094307 116 107.379198451166 99.3648656018433 93 88.8745560395662 85.7663114983196 82 75.9003551683471 65.7921106271005 50
305.576758932926 289.996462836015 251.299710725463 213.919815709849 184.976139962921 162.759618689212 143.916889866626 129.942315002235 119.830751582977 111.550732019764 103.559236179535 96.2670337533281 90.5733418882097 86.9591551723739 84.2325779585342 80.7834920405337 75.0017792122157 65.2773212674234 50
279.989990320293 268.633701169951 236.958264352989 202.709368957841 174.696236357976 154.280384356725 137.633663992575 124.996787950500 115.479466152946 107.523169439697 99.9646100690791 93.2214659735947 88.1066565042906 85.0296921673207 82.7864480892672 79.7693905518192 74.3709858366659 64.9837002254965 50
259 251 225 193 166 147 132 120.465513676140 111.554773867063 104 96.8743867494711 90.6150297791503 86 83.4073096963458 81.6147366459656 79 73.9408189095900 64.8149125258764 50
240.766584285053 235.503788418843 214.572675664209 184.452983816359 159.437867535078 141.218058366167 126.921384565401 116.141066332417 107.932382590812 101.016365962164 94.4576243640234 88.6950668978497 84.5111779610779 82.2885391283921 80.8101206834713 78.4589900872436 73.6182148006372 64.6708622845800 50
225.047501388876 221.834071897130 205.317724864488 176.849334282997 154.403178934298 136.681711201015 122.526540582659 112.212537983324 104.653215400233 98.4172276728472 92.4433471106159 87.1508159029366 83.3289937091939 81.3714666204164 80.0887264542075 77.8954914598142 73.2064798864838 64.4364099834633 50
212 210 197 170 150 133 119 108.968150170540 101.799499174001 96 90.4505707007701 85.5319895790017 82 80.2295670263797 79.0725425099927 77 72.4830130455629 63.9926551958425 50
201.690237260197 200.025420525649 189.446623654739 163.786767543232 145.568686193063 129.849629327603 116.434608908807 106.594275830766 99.4340907887345 93.6430633908398 88.2383060221020 83.5493421751065 80.2337981193304 78.5974046590145 77.5383107374556 75.6027698327141 71.3370354228506 63.2873609859257 50
193.820004124204 191.992974204493 182.733799152023 158.374775391654 141.394751608534 127.177956024402 114.556469973086 104.869893480803 97.5423671128237 91.5486606096547 86.1255446666051 81.5577937981954 78.3921834737485 76.8539016661414 75.8817863624661 74.0930880533685 70.1050572294944 62.5349443814896 50
188 186 177 154 138 125 113 103.472133032474 96.0903350126002 90 84.5712734023673 80.0733060196831 77 75.5390696543528 74.6534779457045 73 69.2354109431844 62.0164859012028 50
183.842837044530 182.024159108189 172.344533420539 150.807353418120 135.768869174150 123.346387286385 111.525364984557 102.194863876581 95.0804127903208 89.2261952892916 83.9273482154446 79.4828215244692 76.4425184504893 75.0392867782103 74.2377524946620 72.6854861374556 69.0300582442024 61.9190393525135 50
180.968778410604 179.564401655269 168.710041490384 148.577490076315 134.536333150083 122.310168405082 110.395727673146 101.298913319835 94.6606644919416 89.2399817403860 84.1171019637652 79.6572074513917 76.5467168402564 75.1263973841518 74.3544108040747 72.8432674378230 69.2054776231947 62.0535516979877 50
179 178 166 147 134 122 110 101.161848147921 95.0155655993437 90 84.9567367232255 80.3383120527731 77 75.4186123665846 74.5571121154899 73 69.3317767733990 62.1369431889709 50
177.716192339462 176.914980078633 164.212279700143 145.946781747252 133.985466739967 122.542599304634 110.686153375186 102.107114286080 96.2902104428977 91.4521554519937 86.2753467707504 81.3049172606660 77.5516836342678 75.6227629219776 74.5104734257943 72.8034337656115 69.0902625613226 61.9595784328209 50
177.527104455602 176.712382137394 163.722331182737 146.018968006791 134.830286161505 124.136925910825 112.638397112107 104.241674217759 98.4721687469323 93.4914124288013 87.9535951873799 82.4835397260425 78.1987269430036 75.8001614550468 74.3229427532328 72.3856940471913 68.6070385465521 61.6055994609451 50
179 178 165 148 137 127 116 107.618369565958 101.509629084266 96 89.8850372551827 83.8376297796048 79 76.1007406725702 74.2139258713895 72 68.1194074619438 61.2325926607631 50
182.588689893918 181.204809466168 168.324866297409 152.368482555836 140.770745347464 131.186919198783 120.730021514699 112.131318192577 105.251463102523 98.8170347545853 91.9445480061505 85.3102631039541 79.9803766420691 76.6271017220435 74.3467174753257 71.8415195408390 67.8138035575069 60.9658651642528 50
188.293174137357 186.030514239601 173.215448593483 158.383674933557 145.661040722416 136.105090914582 126.050683878426 117.039742915109 109.149274748558 101.609183359224 93.9322814719671 86.7630167892887 81.0287457580997 77.2925195138329 74.6601679460091 71.8732156326712 67.6731871518618 60.8016070816238 50
196 192 179 165 151 141 131 121.444142789946 112.555351044031 104 95.6297114342393 88.0370932777062 82 77.9629373990224 75.0370165858846 72 67.6296500807821 60.7037292676442 50
205.595714751532 198.636152427066 185.006773628739 171.171880621998 156.116737055362 145.117131307640 134.615982788241 124.445016873482 114.821979010604 105.613038862998 96.8183116745740 88.9736950113039 82.7490320196781 78.5042987286960 75.3600026973967 72.1267843673288 67.6152841800409 60.6361425770818 50
216.966865661637 205.461857200499 190.564022591480 175.853739666387 160.340365763647 147.701969690105 135.936645151968 125.142864222108 115.301445669936 106.071854134304 97.2795559745780 89.4140244321794 83.1307344690420 78.7825468539377 75.5118655829902 72.1584804591610 67.5621812854119 60.5627578647043 50
230 212 195 178 163 148 134 122.638183892218 113.346038043688 105 96.7949181158581 89.1992839824302 83 78.6636251258314 75.3753445451096 72 67.4024332326682 60.4474859852797 50
\ No newline at end of file
//! @file
//! Source code for the ephcom library.
//!
// Copyright (C) 1994-2004 Paul Hardy
// Copyright (C) 2011 Alan W. Irwin
//
// This file is part of the timeephem software project.
//
// timeephem is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation; version 2 of the License.
//
// timeephem is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with timeephem; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// Note that this software is not a product of the Jet Propulsion
// Laboratory; it just uses and supports their ASCII and binary
// ephemeris files. Please don't mail JPL concerning any bugs.
// Send bug reports or suggestions to airwin@users.sourceforge.net instead.
//
// This file contains the following routines. Running "make test" will
// check the proper operation of every one of these routines.
//
// ephcom_readascii_header() - read ASCII header file
// ephcom_readascii_block() - read ASCII coefficient block
// ephcom_readbinary_header() - read header from binary ephemeris
// ephcom_readbinary_block() - read coefficient block from binary
// ephemeris
// ephcom_writeascii_header() - write header in ASCII
// ephcom_writeascii_block() - write coefficient block in ASCII
// ephcom_writebinary_header() - write header to binary ephemeris file
// ephcom_writebinary_block() - write coefficient block to binary
// ephemeris file
// ephcom_parse_block() - parse ("pretty print") a coefficient block
// ephcom_nxtgrp() - read next "GROUP" from ASCII header
// ephcom_outdouble() - write byte-swapped double to a file
// ephcom_outint() - write byte-swapped int to a file
// ephcom_indouble() - read byte-swapped double from a file
// ephcom_inint() - read byte-swapped int from a file
// ephcom_doublstrc2f() - change C ASCII double string to FORTRAN
// [there is no corresponding
// ephcom_doublestrf2c() routine;
// for FORTRAN to C format conversion,
// just change FORTRAN's double precision
// 'D' exponent to 'E' in your software
// and everything else should parse fine]
// ephcom_pleph() - calculate <x,y,z> and <xdot,ydot,zdot>
// for a given target and center, AFTER
// calling ephcom_get_coords() (different
// sequence than with JPL's FORTRAN PLEPH)
// ephcom_get_coords() - calculate <x,y,z> and <xdot,ydot,zdot>
// for all Solar System objects at a
// given time
// ephcom_cheby() - interpolates Chebyshev coefficients
// for one sub-block of coefficients
// for one Solar System object at a
// given time
// ephcom_jd2cal() - convert Julian Day to Julian or Gregorian
// Year, Month, Day, Hour, Minute, Second
// ephcom_cal2jd() - convert Julian or Gregorian calendar
// Year, Month, Day, Hour, Minute, Second
// to Julian Day
//
// The indouble() and outdouble() routines rely upon the gnulliver64c()
// routine from gnulliver.c.
//
// The inint() and outint() routines rely upon the gnulliver32() routine
// from gnulliver.c.
//
//
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <math.h> // IF_SAME_DATE macro uses fabs, ephcom_split uses modf.
#include "ephcom.h"
#include "gnulliver.h"
// Declare static functions.
static void
ephcom_nxtgrp( char *group, const char *expected, FILE *infile );
static void
ephcom_outdouble( FILE *outfp, double x );
static void
ephcom_outint( FILE * outfp, unsigned u );
static void
ephcom_doublestrc2f( char *buf );
static double
ephcom_exact_time( double time );
static double
ephcom_split( double time, double * itime );
// ephcom_cheby() - interpolate at a point using Chebyshev coefficients.
static inline void
ephcom_cheby( int maxcoeffs, double x, double span, double *y,
int ncoords, int ncoeffs, double *pv );
//
// ephcom_jd2cal() - convert Julian Day to calendar date and time.
//
// tjd: double precision Julian Day
// idate: integer year, month, day, hour, minute, second of tjd
// calendar_type: -1=Julian; 0=Automatic; 1=Gregorian
//
// If automatic, use Julian calendar for dates before 15 October 1582.
//
// From pp. 604, 606 in the Explanatory Supplement to the Astronomical Almanac.
//
static void
ephcom_jd2cal( double tjd, int idate[6], int calendar_type );
// Start of function definitions.
//! Read a JPL ephemeris ASCII header from the FILE pointed to by the
//! infp argument and store all header data in the ephcom_Header
//! struct pointed to by the header argument. If any errors are
//! detected this routine writes a message to stderr and exits.
//!
//! @param infp [IN ONLY]Pointer to an ascii version of a JPL
//! ephemeris FILE.
//! @param header [OUT ONLY]Pointer to an ephcom_Header struct which
//! upon return will contain all the JPL ephemeris header information
//! that has been read from the FILE.
//!
void
ephcom_readascii_header( FILE * infp, ephcom_Header *header )
{
char group[13]; // To store the "GROUP" header line information
double val1, val2, val3; // To read text line with 3 double precision words
int i, j, k, n;
int iword; // word number we're reading in a line
int blockout; // number of bytes we've written to current block/rec in file
int blockbytes; // number of bytes in a block, equals 8 * ncoeff
char readbuf[EPHCOM_MAXLINE + 1];
char outhcars[EPHCOM_MAXLINE + 1];
size_t fwrite( const void *ptr, size_t size, size_t nmemb, FILE *stream );
//
// First header line: KSIZE= # NCOEFF= #
//
if ( infp != stdin )
rewind( infp );
fgets( readbuf, EPHCOM_MAXLINE, infp );
sscanf( readbuf, "%*6s%6d%*11s%6d", &header->ksize, &header->ncoeff );
blockbytes = 8 * header->ncoeff; // The size of a double, times # of doubles/block
if ( header->ksize != 2 * header->ncoeff )
{
fprintf( stderr, "Badly formed header; header->ksize != 2*header->ncoeff\n\n" );
exit( 1 );
}
//
// GROUP 1010: Title of ephemeris (DE/LE number, start JD, end JD)
//
//
// Blank all of header->ttl. Note that three fgets below
// only defines part of ttl so this blanking keeps valgrind
// quiet for subsequent accesses to all of ttl.
//
for ( i = 0; i < 3; i++ )
{
for ( j = 0; j < EPHCOM_MAXTTL; j++ )
header->ttl[i][j] = ' ';
header->ttl[i][EPHCOM_MAXTTL] = '\0';
}
ephcom_nxtgrp( group, "GROUP 1010", infp );
fgets( header->ttl[0], EPHCOM_MAXTTL + 2, infp ); // JPL Ephemeris title line
if ( strncmp( header->ttl[0], "JPL ", 4 ) != 0 )
{
fprintf( stderr, "\nERROR: file is not a JPL ASCII header file.\n\n" );
exit( 1 );
}
fgets( header->ttl[1], EPHCOM_MAXTTL + 2, infp ); // Start epoch
fgets( header->ttl[2], EPHCOM_MAXTTL + 2, infp ); // Finish epoch
//
// Convert any newlines or tabs to single spaces.
//
for ( i = 0; i < 3; i++ )
{
for ( j = 0; j < EPHCOM_MAXTTL; j++ )
if ( isspace( header->ttl[i][j] ) )
header->ttl[i][j] = ' ';
header->ttl[i][EPHCOM_MAXTTL] = '\0';
}
//
// GROUP 1030: Start and End JD, timestep (in JD) per block.
//
ephcom_nxtgrp( group, "GROUP 1030", infp );
fgets( readbuf, EPHCOM_MAXLINE, infp );
sscanf( readbuf, " %lE %lE %lE", &header->ss[0], &header->ss[1], &header->ss[2] );
//
// GROUP 1040: Constant names.
//
ephcom_nxtgrp( group, "GROUP 1040", infp );
fgets( readbuf, EPHCOM_MAXLINE, infp );
header->ncon = atoi( readbuf );
//
// Now read the constant names, 10 per line, each 6 characters long
// preceded by 2 blanks. Pad names with blanks to make 6 characters.
//
for ( i = 0; i < header->ncon; )
{
fgets( readbuf, EPHCOM_MAXLINE, infp );
if ( ( j = strlen( readbuf ) ) < 81 ) // Pad end with blanks for copying
{
// initial j is such a value that readbuf[j-1] is '\n'
while ( j < 81 )
readbuf[j++ - 1] = ' ';
readbuf[80] = '\n';
readbuf[81] = '\0';
}
for ( iword = 0; iword < 10 && i < header->ncon; iword++, i++ )
{
strncpy( header->cnam[i], &readbuf[2 + iword * 8], 6 );
header->cnam[i][6] = '\0';
}
}
//
// GROUP 1041: Constant values.
//
ephcom_nxtgrp( group, "GROUP 1041", infp );
fgets( readbuf, EPHCOM_MAXLINE, infp );
header->nval = atoi( readbuf );
if ( header->nval != header->ncon )
{
fprintf( stderr, "Error: number of constants and values not equal.\n\n" );
exit( 1 );
}
//
// Now read constant values, 3 per line, 26 characters each.
//
for ( i = 0; i < header->ncon; i += 3 )
{
fgets( readbuf, EPHCOM_MAXLINE, infp );
for ( j = 0; j < strlen( readbuf ); j++ )
if ( tolower( readbuf[j] ) == 'd' )
readbuf[j] = 'E';
// exponent is 'E'
sscanf( readbuf, "%lE %lE %lE",
&header->cval[i], &header->cval[i + 1], &header->cval[i + 2] );
}
//
// GROUP 1050: Constant values.
//
ephcom_nxtgrp( group, "GROUP 1050", infp );
for ( i = 0; i < 3; i++ )
{
fgets( readbuf, EPHCOM_MAXLINE, infp ); // Read line of 13 6-digit integers
for ( j = 0; j < 12; j++ )
{
header->ipt[j][i] = atoi( &readbuf[6 * j] );
}
header->lpt[i] = atoi( &readbuf[6 * 12] );
}
//
// If there are no coefficients for an ipt[i][] object (i.e., ipt[i][1]==0),
// then ipt[i][0] should contain the value of the next available coefficient
// number rather than 0, as per communication of Myles Standish to Paul Hardy
// on preferred format of ephemeris headers.
//
// If there are no libration coefficients (i.e., lpt[1]==0), then lpt[0]
// should contain the value of the next available coefficient number rather
// than 0 as well, as per the same communication from Myles Standish.
//
// First set j to maximum index into ipt[] that has coefficients
j = 0;
for ( i = 1; i < 12; i++ )
if ( header->ipt[i][1] > 0 && header->ipt[i][0] > j )
j = i;
// Now set j to next available index count.
if ( header->lpt[1] > 0 && header->lpt[0] > j )
j = header->lpt[1] + header->lpt[1] * header->lpt[2] * 3;
else
j = header->ipt[j][0] +
header->ipt[j][1] * header->ipt[j][2] * ( j == 11 ? 2 : 3 );
for ( i = 1; i < 12; i++ )
if ( header->ipt[i][0] == 0 )
header->ipt[i][0] = j;
if ( header->lpt[0] == 0 )
header->lpt[0] = j;
//
// Set the maximum number of Chebyshev coefficients possible for this file,
// to initialize position and velocity Chebyshev coefficient arrays during
// Chebyshev interpolation.
//
header->maxcheby = 0;
for ( i = 0; i < 12; i++ )
if ( header->ipt[i][1] > header->maxcheby )
header->maxcheby = header->ipt[i][1];
if ( header->lpt[1] > header->maxcheby )
header->maxcheby = header->lpt[1];
header->au = 0.0;
header->emrat = 0.0;
header->numde = 0;
for ( i = 0; i < header->ncon; i++ )
{
if ( strncmp( header->cnam[i], "AU ", 6 ) == 0 )
header->au = header->cval[i];
else if ( strncmp( header->cnam[i], "EMRAT ", 6 ) == 0 )
header->emrat = header->cval[i];
else if ( strncmp( header->cnam[i], "DENUM ", 6 ) == 0 )
header->numde = header->cval[i];
else if ( strncmp( header->cnam[i], "CLIGHT", 6 ) == 0 )
header->clight = header->cval[i];
else if ( strncmp( header->cnam[i], "LENUM ", 6 ) == 0 )
header->numle = header->cval[i];
}
if ( header->numle == 0 )
header->numle = header->numde;
//
// GROUP 1070: Constant values.
//
ephcom_nxtgrp( group, "GROUP 1070", infp );
//
// Now we're pointing to the first block of coefficient data, after header.
// Return at the point where we can start reading coefficients.
//
}
//! Read a block of data coefficients from a JPL ASCII ephemeris file.
//!
//! @param infp [IN ONLY]Pointer to an ascii version of a JPL
//! ephemeris FILE.
//! @param header [IN ONLY]Pointer to an ephcom_Header struct which
//! contains the JPL ephemeris header information that has already
//! been read from the FILE.
//! @param datablock [OUT ONLY]Pointer to an array that upon
//! successful return will be filled with datapoints == header->ncoeff
//! data points.
//! @returns number of coefficients read or 0 at EOF or some other i/o
//! error.
//!
int
ephcom_readascii_block(
FILE * infp,
ephcom_Header *header,
double *datablock )
{
int i, j;
int datalines; // lines of data we've read
int datapoints; // points of data we've read/converted/written
char readbuf[EPHCOM_MAXLINE + 1];
double val1, val2, val3; // To read text line with 3 double precision words
//
// First line in an ASCII block will be the block number, followed by
// the number of coefficients.
//
datalines = 0; // Not reported, but leave in for debugging
datapoints = 0;
if ( fgets( readbuf, EPHCOM_MAXLINE, infp ) && !feof( infp ) )
{
sscanf( readbuf, "%d %d", &i, &j );
if ( j != header->ncoeff )
{
fprintf( stderr,
"\nERROR: ASCII data file's %d coefficients/block\n", j );
fprintf( stderr,
" doesn't match ASCII header's %d coefficients/block.\n\n",
header->ncoeff );
exit( 1 );
}
datalines++;
while ( datapoints < header->ncoeff && !feof( infp ) )
{
fgets( readbuf, EPHCOM_MAXLINE, infp );
for ( j = 0; j < strlen( readbuf ); j++ )
if ( tolower( readbuf[j] ) == 'd' )
readbuf[j] = 'e';
datalines++;
//
// This is horrible, but use "%le" here and "%lE in the other
// ASCII data routine (ephcom_readascii_header) so gcc won't try
// to store the formats in the same location and write to them.
// (Problem with gcc not acting like K&R without -traditional flag
// and without -fwritable-strings flag.)
//
sscanf( readbuf, " %le %le %le", &val1, &val2, &val3 );
datablock[datapoints++] = val1;
if ( ( datapoints ) < header->ncoeff )
{
datablock[datapoints++] = val2;
if ( datapoints < header->ncoeff )
{
datablock[datapoints++] = val3;
}
}
}
}
return ( datapoints );
}
//! Read a JPL ephemeris binary header from the FILE pointed to by the
//! infp argument and store all header data in the ephcom_Header
//! struct pointed to by the header argument. If any errors are
//! detected this routine writes a message to stderr and exits.
//!
//! @param infp [IN ONLY]Pointer to a binary version of a JPL
//! ephemeris FILE.
//! @param header [OUT ONLY]Pointer to an ephcom_Header struct which
//! upon return will contain all the JPL ephemeris header information
//! that has been read from the FILE.
//!
void
ephcom_readbinary_header( FILE * infp, ephcom_Header *header )
{
int i, j, k;
if ( infp != stdin )
rewind( infp );
//
// Read title lines.
//
for ( i = 0; i < 3; i++ )
{
for ( j = 0; j < EPHCOM_MAXTTL; j++ )
{
header->ttl[i][j] = fgetc( infp );
}
if ( i == 0 && strncmp( header->ttl[0], "JPL ", 4 ) != 0 )
{
fprintf( stderr, "\nERROR: file is not a JPL ephemeris file.\n\n" );
if ( strncmp( header->ttl[0], "KSIZE", 5 ) == 0 )
fprintf( stderr, "File is an ASCII JPL ephemeris header instead.\n\n" );
exit( 1 );
}
header->ttl[i][j] = '\0';
}
//
// Read constant names.
//
for ( i = 0; i < 400; i++ )
{
for ( j = 0; j < 6; j++ )
{
header->cnam[i][j] = fgetc( infp );
}
header->cnam[i][j] = '\0';
}
//
// Read ephemeris start epoch, stop epoch, and step size (in Julian Days).
//
for ( i = 0; i < 3; i++ )
{
header->ss[i] = ephcom_indouble( infp );
}
// These values are half integral Julian dates. Make sure there is no
// numerical noise in these values.
header->ss[0] = ephcom_exact_time( header->ss[0] );
header->ss[1] = ephcom_exact_time( header->ss[1] );
// This value is an integral number of days (a power of two). Make sure there
// is no numerical noise in this value.
header->ss[2] = (double) (int) ( header->ss[2] + 0.01 );
//
// Read NCON, AU, EMRAT.
//
header->ncon = ephcom_inint( infp );
header->au = ephcom_indouble( infp );
header->emrat = ephcom_indouble( infp );
header->nval = header->ncon;
//
// Read indexes for coefficients in data block. Written in transposed
// order (Fortran and C matrices are transposed).
//
for ( i = 0; i < 12; i++ )
{
for ( j = 0; j < 3; j++ )
{
header->ipt[i][j] = ephcom_inint( infp );
}
}
header->numde = ephcom_inint( infp ); // Get ephemeris number
for ( i = 0; i < 3; i++ )
header->lpt[i] = ephcom_inint( infp );
//
// If there are no coefficients for an ipt[i][] object (i.e., ipt[i][1]==0),
// then ipt[i][0] should contain the value of the next available coefficient
// number rather than 0, as per communication of Myles Standish to Paul Hardy
// on preferred format of ephemeris headers.
//
// If there are no libration coefficients (i.e., lpt[1]==0), then lpt[0]
// should contain the value of the next available coefficient number rather
// than 0 as well, as per the same communication from Myles Standish.
//
// First set j to maximum index into ipt[] that has coefficients
j = 0;
for ( i = 1; i < 12; i++ )
if ( header->ipt[i][1] > 0 && header->ipt[i][0] > j )
j = i;
// Now set j to next available index count.
if ( header->lpt[1] > 0 && header->lpt[0] > j )
j = header->lpt[1] + header->lpt[1] * header->lpt[2] * 3;
else
j = header->ipt[j][0] +
header->ipt[j][1] * header->ipt[j][2] * ( j == 11 ? 2 : 3 );
for ( i = 1; i < 12; i++ )
if ( header->ipt[i][0] == 0 )
header->ipt[i][0] = j;
if ( header->lpt[0] == 0 )
header->lpt[0] = j;
//
// Set the maximum number of Chebyshev coefficients possible for this file,
// to initialize position and velocity Chebyshev coefficient arrays during
// Chebyshev interpolation.
//
header->maxcheby = 0;
for ( i = 0; i < 12; i++ )
if ( header->ipt[i][1] > header->maxcheby )
header->maxcheby = header->ipt[i][1];
if ( header->lpt[1] > header->maxcheby )
header->maxcheby = header->lpt[1];
//
// From JPL ephemeris number, set NCOEFF and calculate KSIZE = 2*NCOEFF.
//
// switch (header->numde) {
// case 102:
// header->ncoeff = 773;
// break;
// case 200:
// header->ncoeff = 826;
// break;
// case 202:
// header->ncoeff = 826;
// break;
// case 403:
// header->ncoeff = 1018;
// break;
// case 405:
// header->ncoeff = 1018;
// break;
// case 406:
// header->ncoeff = 728;
// break;
// case 410:
// header->ncoeff = 1018;
// break;
// default:
// header->ncoeff = 1018;
// break;
// }
//
// Calculate number of coefficients, starting with
// highest index into a data block (stored in j).
//
j = 0;
for ( i = 1; i < 12; i++ )
if ( header->ipt[i][1] > 0 && header->ipt[i][0] > header->ipt[j][0] )
j = i;
//
// Now see if the starting point we found is lower than where
// lpt[] starts. If not, use lpt[] for largest value.
//
if ( header->lpt[1] > 0 && header->lpt[0] > header->ipt[j][0] )
{
header->ncoeff = header->lpt[0] - 1 + // starting point
( header->lpt[1] * // coefficients per coordinate
header->lpt[2] ) * // subblocks per block
3; // coordinates
}
else
{
header->ncoeff = header->ipt[j][0] - 1 + // starting point
( header->ipt[j][1] * // coefficients per coordinate
header->ipt[j][2] ) * // subblocks per block
( j == 11 ? 2 : 3 ); // coordinates
}
header->ksize = header->ncoeff + header->ncoeff; // KSIZE = 2*NCOEFF always
//
// Skip to second block in file.
//
fseek( infp, header->ncoeff * 8, SEEK_SET );
//
// Read ephemeris constants.
//
for ( i = 0; i < header->ncon; i++ )
{
header->cval[i] = ephcom_indouble( infp );
if ( strncmp( header->cnam[i], "NCOEFF", 6 ) == 0 )
{
header->ncoeff = header->cval[i];
header->ksize = 2 * header->cval[i];
}
else if ( strncmp( header->cnam[i], "LENUM ", 6 ) == 0 )
header->numle = header->cval[i];
}
if ( header->numle == 0 )
header->numle = header->numde;
}
//! Read a block of data coefficients from a JPL binary ephemeris file.
//!
//! @param infp [IN ONLY]Pointer to a binary version of a JPL
//! ephemeris FILE.
//! @param header [IN ONLY]Pointer to an ephcom_Header struct which
//! contains the JPL ephemeris header information that has already
//! been read from the infp FILE.
//! @param blocknum [IN ONLY]Requested direct access block number with
//! zero corresponding to the first data block after the two header
//! blocks in the binary ephemeris.
//! @param datablock [OUT ONLY]Pointer to an array that upon
//! successful return will be filled with datapoints == header->ncoeff
//! data points.
//! @returns number of coefficients read or 0 at EOF or some other i/o
//! error.
//!
int
ephcom_readbinary_block(
FILE *infp,
ephcom_Header *header,
int blocknum,
double *datablock
)
{
int i;
long filebyte;
filebyte = ( blocknum + 2 ) * header->ncoeff * 8; // 8 bytes per coefficient
fseek( infp, filebyte, SEEK_SET );
for ( i = 0; !feof( infp ) && !ferror( infp ) && i < header->ncoeff; i++ )
{
datablock[i] = ephcom_indouble( infp );
}
if ( feof( infp ) || ferror( infp ) )
i = 0; // 0 --> EOF or any other i/o error.
// First two values of data block are half-integral Julian dates. Make sure
// there is no numerical noise in these data. (This makes a difference for
// early versions of de422.)
if ( i >= 1 )
{
datablock[0] = ephcom_exact_time( datablock[0] );
datablock[1] = ephcom_exact_time( datablock[1] );
}
return ( i ); // Number of coefficients successfuly read (all or nothing).
}
//! Write JPL ephemeris header information in ASCII format.
//! @param outfp [IN ONLY]Pointer to the FILE which will be used to
//! output the formatted header information.
//! @param header [IN and OUT]Pointer to an ephcom_Header struct which
//! contains the JPL ephemeris header information to be output to the
//! FILE. However, some self-consistency adjustments of the header
//! are made before such FILE output and those are returned to the
//! calling routine as well.
//!
void
ephcom_writeascii_header( FILE * outfp, ephcom_Header *header )
{
char group[13];
double val1, val2, val3; // To read text line with 3 double precision words
int i, j, k, n;
int iword; // word number we're reading in a line
int blockout; // number of bytes we've written to current block/rec in file
int blockbytes; // number of bytes in a block, equals 8 * ncoeff
static char spaces[EPHCOM_MAXTTL] = " \n";
int idate[6];
const char *month[12] = { "JAN", "FEB", "MAR", "APR", "MAY", "JUN",
"JUL", "AUG", "SEP", "OCT", "NOV", "DEC" };
char writebuf[EPHCOM_MAXLINE + 1];
char outhcars[EPHCOM_MAXLINE + 1];
size_t fwrite( const void *ptr, size_t size, size_t nmemb, FILE *stream );
//
// First header line: KSIZE= # NCOEFF= #
//
blockbytes = 8 * header->ncoeff; // sizeof(double) * # of doubles/block
fprintf( outfp, "KSIZE=%5d NCOEFF=%5d\n", header->ksize, header->ncoeff );
if ( header->ksize != 2 * header->ncoeff )
{
fprintf( stderr, "Badly formed header; KSIZE <> 2*NCOEFF\n" );
exit( 1 );
}
//
// GROUP 1010: Title of ephemeris (DE/LE number, start JD, end JD)
//
fprintf( outfp, " \n" ); // blank line
fprintf( outfp, "GROUP 1010\n" );
fprintf( outfp, " \n" ); // blank line
//
// Header title lines with dates, for example:
//
// JPL Planetary Ephemeris DE405/LE405
// Start Epoch: JED= 2305424.5 1599 DEC 09 00:00:00
// Final Epoch: JED= 2525008.5 2201 FEB 20 00:00:00
//
sprintf( header->ttl[0], "JPL Planetary Ephemeris DE%03d/LE%03d",
header->numde, header->numle );
k = strlen( header->ttl[0] );
strcpy( &header->ttl[0][k], &spaces[k] );
ephcom_jd2cal( header->ss[0], idate, 0 );
sprintf( header->ttl[1], "Start Epoch: JED=%11.1f%5d %3s %02d %02d:%02d:%02d",
header->ss[0], idate[0], month[idate[1] - 1], idate[2],
idate[3], idate[4], idate[5] );
k = strlen( header->ttl[1] );
strcpy( &header->ttl[1][k], &spaces[k] );
ephcom_jd2cal( header->ss[1], idate, 0 );
sprintf( header->ttl[2], "Final Epoch: JED=%11.1f%5d %3s %02d %02d:%02d:%02d",
header->ss[1], idate[0], month[idate[1] - 1], idate[2],
idate[3], idate[4], idate[5] );
k = strlen( header->ttl[2] );
strcpy( &header->ttl[2][k], &spaces[k] );
//
// Don't print trailing blanks at the end of these 3 lines.
//
for ( i = 0; i < 3; i++ )
{
strncpy( writebuf, header->ttl[i], EPHCOM_MAXTTL + 1 );
for ( j = EPHCOM_MAXTTL; isspace( writebuf[j] ) || writebuf[j] == '\0'; j-- )
writebuf[j] = '\0';
// To match end space in JPL Epoch header lines.
if ( i > 0 )
writebuf[++j] = ' ';
fprintf( outfp, "%s\n", writebuf );
}
//
// GROUP 1030: Start and End JD, timestep (in JD) per block.
//
fprintf( outfp, " \n" ); // blank line
fprintf( outfp, "GROUP 1030\n" );
fprintf( outfp, " \n" ); // blank line
fprintf( outfp, "%12.2f%12.2f%11.0f.\n",
header->ss[0], header->ss[1], header->ss[2] );
//
// GROUP 1040: Constant names.
//
fprintf( outfp, " \n" ); // blank line
fprintf( outfp, "GROUP 1040\n" );
fprintf( outfp, " \n" ); // blank line
fprintf( outfp, "%6d\n", header->ncon );
//
// Now write the constant names, 10 per line, each 6 characters long
// preceded by 2 blanks. Pad names with blanks to make 6 characters.
//
for ( i = 0; i < header->ncon; i++ )
{
fprintf( outfp, " %-6s", header->cnam[i] );
if ( i % 10 == 9 )
fprintf( outfp, "\n" );
}
if ( i % 10 != 0 ) // Pad last line with spaces (i is 1 more than above)
{
for (; i % 10 != 0; i++ )
fprintf( outfp, " " );
fprintf( outfp, "\n" );
}
//
// GROUP 1041: Constant values.
//
fprintf( outfp, " \n" ); // blank line
fprintf( outfp, "GROUP 1041\n" );
fprintf( outfp, " \n" ); // blank line
fprintf( outfp, "%6d\n", header->nval );
if ( header->nval != header->ncon )
{
fprintf( stderr, "Error: number of constants and values not equal.\n\n" );
exit( 1 );
}
//
// Now write constant values, 3 per line, 26 characters each.
//
for ( i = 0; i < header->ncon; i += 3 )
{
val1 = header->cval[i];
val2 = ( i + 1 < header->ncon ) ? header->cval[i + 1] : 0.0;
val3 = ( i + 2 < header->ncon ) ? header->cval[i + 2] : 0.0;
// Write values, 3 coefficients per line, pad lines with 0.0E+00
// Must have trailing blank to make room for reformatted
// fortran version (with leading "0.") created below.
// Note there is (just) room for Windows 3-digit exponent in
// the format.
sprintf( writebuf, "%25.17E %25.17E %25.17E ", val1, val2, val3 );
// Now re-format numbers the way the JPL header file writes them:
// all with a leading "0.", so the exponent is one greater.
// If the number is written in Windows 3-digit exponent format,
// then it is shifted by one byte to the right to overwrite
// the assumed leading 0 of the exponent (or error out if
// there are three exponent digits but the leading one is not
// zero, i.e., this logic will not work for numbers greater
// than or equal to 1.e100 or less than or equal to 1.e-101, but
// this limitation is also in the current JPL ascii format which
// we are trying to mimic as closely as possible here.
ephcom_doublestrc2f( &writebuf[0] ); // Reformat first number
ephcom_doublestrc2f( &writebuf[26] ); // Reformat second number
ephcom_doublestrc2f( &writebuf[52] ); // Reformat third number
fprintf( outfp, "%s\n", writebuf );
}
//
// GROUP 1050: Constant values.
//
fprintf( outfp, " \n" ); // blank line
fprintf( outfp, "GROUP 1050\n" );
fprintf( outfp, " \n" ); // blank line
//
// If there are no coefficients for an ipt[i][] object (i.e., ipt[i][1]==0),
// then ipt[i][0] should contain the value of the next available coefficient
// number rather than 0, as per communication of Myles Standish to Paul Hardy
// on preferred format of ephemeris headers.
//
// If there are no libration coefficients (i.e., lpt[1]==0), then lpt[0]
// should contain the value of the next available coefficient number rather
// than 0 as well, as per the same communication from Myles Standish.
//
// First set j to maximum index into ipt[] that has coefficients
j = 0;
for ( i = 1; i < 12; i++ )
if ( header->ipt[i][1] > 0 && header->ipt[i][0] > j )
j = i;
// Now set j to next available index count.
if ( header->lpt[1] > 0 && header->lpt[0] > j )
j = header->lpt[1] + header->lpt[1] * header->lpt[2] * 3;
else
j = header->ipt[j][0] +
header->ipt[j][1] * header->ipt[j][2] * ( j == 11 ? 2 : 3 );
for ( i = 1; i < 12; i++ )
if ( header->ipt[i][0] == 0 )
header->ipt[i][0] = j;
if ( header->lpt[0] == 0 )
header->lpt[0] = j;
//
// Write ipt array in transposed order (arrays are transposed in FORTRAN
// from their order in C).
//
for ( i = 0; i < 3; i++ )
{
for ( j = 0; j < 12; j++ )
{
fprintf( outfp, "%6d", header->ipt[j][i] );
}
fprintf( outfp, "%6d\n", header->lpt[i] );
}
//
// GROUP 1070: Constant values.
//
fprintf( outfp, " \n" ); // blank line
fprintf( outfp, "GROUP 1070\n" );
fprintf( outfp, " \n" ); // blank line
//
// Now we're pointing to the first block of coefficient data, after header.
//
}
//! Write JPL ephemeris coefficient block of data in ASCII format.
//! @param outfp [IN ONLY]Pointer to the FILE which will be used to
//! output the formatted block of data.
//! @param header [IN ONLY]Pointer to an ephcom_Header struct which
//! contains the JPL ephemeris header information. Some of these
//! data are included in the formatted block and some of these
//! data are used to control how much is written in that formatted block.
//! @param blocknum [IN ONLY]Block number. This value + 1 will be used
//! in the output formatted block of data.
//! @param datablock [IN ONLY]Pointer to an array that contains the
//! block of data that will be output in formatted form.
//!
void
ephcom_writeascii_block(
FILE * outfp,
ephcom_Header *header,
int blocknum,
double *datablock )
{
double val1, val2, val3; // To write text line with 3 double precision words
int i, j, k, n;
char writebuf[EPHCOM_MAXLINE + 1];
char outhcars[EPHCOM_MAXLINE + 1];
size_t fwrite( const void *ptr, size_t size, size_t nmemb, FILE *stream );
int fputc( int, FILE * );
//
// Write first line in block, which is block number and ncoeff.
//
fprintf( outfp, "%6d%6d\n", blocknum + 1, header->ncoeff );
//
// Now write the data, 3 coefficients per line, 26 characters each.
// Convert format to match what appears in JPL Ephemeris ASCII files.
//
for ( i = 0; i < header->ncoeff; i += 3 )
{
val1 = datablock[i];
val2 = ( i + 1 ) < header->ncoeff ? datablock[i + 1] : 0.0;
val3 = ( i + 2 ) < header->ncoeff ? datablock[i + 2] : 0.0;
// Write values, 3 coefficients per line, pad lines with 0.0E+00
// Must have trailing blank to make room for reformatted
// fortran version (with leading "0.") created below.
// Note there is (just) room for Windows 3-digit exponent in
// the format.
sprintf( writebuf, "%25.17E %25.17E %25.17E ", val1, val2, val3 );
// Now re-format numbers the way the JPL header file writes them:
// all with a leading "0.", so the exponent is one greater.
// If the number is written in Windows 3-digit exponent format,
// then it is shifted by one byte to the right to overwrite
// the assumed leading 0 of the exponent (or error out if
// there are three exponent digits but the leading one is not
// zero, i.e., this logic will not work for numbers greater
// than or equal to 1.e100 or less than or equal to 1.e-101, but
// this limitation is also in the current JPL ascii format which
// we are trying to mimic as closely as possible here.
ephcom_doublestrc2f( &writebuf[0] ); // Reformat first number
ephcom_doublestrc2f( &writebuf[26] ); // Reformat second number
ephcom_doublestrc2f( &writebuf[52] ); // Reformat third number
fprintf( outfp, "%s\n", writebuf );
}
}
//! Write JPL ephemeris header information in binary form.
//! @param outfp [IN ONLY]Pointer to the FILE which will be used to
//! output the binary header information.
//! @param header [IN ONLY]Pointer to an ephcom_Header struct which
//! contains the JPL ephemeris header information to be output in
//! binary form.
//!
void
ephcom_writebinary_header( FILE *outfp, ephcom_Header *header )
{
char readbuf[EPHCOM_MAXLINE + 1];
char group[13]; // To hold "GROUP" header line
int blockout; // number of bytes we've written to current block/rec in file
int blockbytes; // number of bytes in a block, equals 8 * ncoeff
double val1, val2, val3; // To read text line with 3 double precision words
int i, j, k, n;
int idate[6];
const char *month[12] = { "JAN", "FEB", "MAR", "APR", "MAY", "JUN",
"JUL", "AUG", "SEP", "OCT", "NOV", "DEC" };
char outhcars[EPHCOM_MAXLINE + 1];
size_t fwrite( const void *ptr, size_t size, size_t nmemb, FILE *stream );
//
// Point to beginning of output file.
//
rewind( outfp );
//
// First header line: KSIZE= # NCOEFF= #
//
blockbytes = sizeof ( double ) * header->ncoeff;
//
// Start writing output ephemeris, beginning with header.
//
//
// Header title lines with dates, for example:
//
// JPL Planetary Ephemeris DE405/LE405
// Start Epoch: JED= 2305424.5 1599 DEC 09 00:00:00
// Final Epoch: JED= 2525008.5 2201 FEB 20 00:00:00
//
sprintf( header->ttl[0], "JPL Planetary Ephemeris DE%03d/LE%03d",
header->numde, header->numle );
for ( i = strlen( header->ttl[0] ); i < EPHCOM_MAXTTL; i++ )
header->ttl[1][i] = ' ';
ephcom_jd2cal( header->ss[0], idate, 0 );
sprintf( header->ttl[1], "Start Epoch: JED=%11.1f%5d %3s %02d %02d:%02d:%02d",
header->ss[0], idate[0], month[idate[1] - 1], idate[2],
idate[3], idate[4], idate[5] );
for ( i = strlen( header->ttl[1] ); i < EPHCOM_MAXTTL; i++ )
header->ttl[1][i] = ' ';
ephcom_jd2cal( header->ss[1], idate, 0 );
sprintf( header->ttl[2], "Final Epoch: JED=%11.1f%5d %3s %02d %02d:%02d:%02d",
header->ss[1], idate[0], month[idate[1] - 1], idate[2],
idate[3], idate[4], idate[5] );
for ( i = strlen( header->ttl[2] ); i < EPHCOM_MAXTTL; i++ )
header->ttl[2][i] = ' ';
header->ttl[0][EPHCOM_MAXTTL] = header->ttl[1][EPHCOM_MAXTTL] = header->ttl[2][EPHCOM_MAXTTL] = '\0';
//
// ephcom_Header title lines.
//
// Write the three title lines to the output file, padded with blanks,
// 84 characters long (84 is the first even multiple of 6 that is > 80,
// so the JPL software uses that value because it reads in Fortran 'A6'
// character strings.
//
fprintf( outfp, "%-84s%-84s%-84s", header->ttl[0], header->ttl[1], header->ttl[2] );
blockout = 3 * EPHCOM_MAXTTL; // Just wrote 3 84-byte strings to start output file
//
// Now output 400 cnam entries to the output file.
//
for ( i = 0; i < header->ncon; i++ )
{
fprintf( outfp, "%-6s", header->cnam[i] );
blockout += 6;
}
for (; i < 400; i++ )
{
fprintf( outfp, " " ); // Round out to 400 entries, all blank at end
blockout += 6;
}
//
// Binary values: Make sure bytes are in big-endian (network) order for file.
//
for ( i = 0; i < 3; i++ )
{
ephcom_outdouble( outfp, header->ss[i] ); // Write net-order bytes from double precision
blockout += 8;
}
ephcom_outint( outfp, header->ncon );
blockout += 4;
ephcom_outdouble( outfp, header->au );
blockout += 8;
ephcom_outdouble( outfp, header->emrat );
blockout += 8;
//
// If there are no coefficients for an ipt[i][] object (i.e., ipt[i][1]==0),
// then ipt[i][0] should contain the value of the next available coefficient
// number rather than 0, as per communication of Myles Standish to Paul Hardy
// on preferred format of ephemeris headers.
//
// If there are no libration coefficients (i.e., lpt[1]==0), then lpt[0]
// should contain the value of the next available coefficient number rather
// than 0 as well, as per the same communication from Myles Standish.
//
// First set j to maximum index into ipt[] that has coefficients
j = 0;
for ( i = 1; i < 12; i++ )
if ( header->ipt[i][1] > 0 && header->ipt[i][0] > j )
j = i;
// Now set j to next available index count.
if ( header->lpt[1] > 0 && header->lpt[0] > j )
j = header->lpt[1] + header->lpt[1] * header->lpt[2] * 3;
else
j = header->ipt[j][0] +
header->ipt[j][1] * header->ipt[j][2] * ( j == 11 ? 2 : 3 );
for ( i = 1; i < 12; i++ )
if ( header->ipt[i][0] == 0 )
header->ipt[i][0] = j;
if ( header->lpt[0] == 0 )
header->lpt[0] = j;
for ( j = 0; j < 12; j++ )
{
for ( i = 0; i < 3; i++ )
{
ephcom_outint( outfp, header->ipt[j][i] );
blockout += 4;
}
}
ephcom_outint( outfp, header->numde );
blockout += 4;
for ( i = 0; i < 3; i++ )
{
ephcom_outint( outfp, header->lpt[i] );
blockout += 4;
}
//
// Now pad the end of the first record with null bytes. Note: the
// JPL Fortran software just skips to next record at this point.
//
for ( i = blockout; i < blockbytes; i++ )
{
fputc( '\0', outfp );
}
//
// End of first block. Now set blockout to 0 and start with next block.
//
blockout = 0;
for ( i = 0; i < header->ncon; i++ )
{
ephcom_outdouble( outfp, header->cval[i] );
blockout += 8;
}
//
// Pad with double-precision zeroes for rest of array.
//
for (; i < 400; i++ )
{
ephcom_outdouble( outfp, (double) 0.0 );
blockout += 8;
}
//
// Pad with nulls for rest of block.
//
for ( i = blockout; i < blockbytes; i++ )
{
fputc( '\0', outfp );
}
//
// Finished normally.
//
}
//! Write JPL ephemeris coefficient block of data in binary form.
//! @param outfp [IN ONLY]Pointer to the FILE which will be used to
//! output the binary block of data.
//! @param header [IN ONLY]Pointer to an ephcom_Header struct which
//! contains the JPL ephemeris header information. Some of these
//! data are used to control where in the binary FILE the block of
//! data is written and how large it is.
//! @param blocknum [IN ONLY]Block number. This value helps control
//! where in the binary FILE the block of data is written.
//! @param datablock [IN ONLY]Pointer to an array that contains the
//! block of data that will be output in binary form.
//!
void
ephcom_writebinary_block(
FILE * outfp,
ephcom_Header *header,
int blocknum,
double *datablock )
{
int i;
int filebyte;
int filepos;
//
// Find out where we need to point in the binary file.
//
filebyte = ( blocknum + 2 ) * header->ncoeff * 8; // 8 bytes per coefficient
//
// If the file isn't that large, pad it with null bytes
//
fseek( outfp, 0L, SEEK_END );
filepos = ftell( outfp );
if ( filepos < filebyte )
{
for ( i = 0; i < ( filebyte - filepos ); i++ )
{
fputc( '\0', outfp );
}
}
//
// Now go to position where we want to start writing.
//
fseek( outfp, filebyte, SEEK_SET );
for ( i = 0; i < header->ncoeff; i++ )
{
ephcom_outdouble( outfp, datablock[i] );
}
}
//! Write out a block of JPL binary data in ascii form that is nicely
//! formatted and therefore verbose.
//!
//! @param outfp [IN ONLY]Pointer to the FILE which will be used to
//! output the nicely formatted data.
//! @param header [IN ONLY]Pointer to an ephcom_Header struct which
//! contains the JPL ephemeris header information. Some of these
//! data are used to control how to output the block of data in a
//! nicely formatted way.
//! @param datablock [IN ONLY]Pointer to an array that contains the
//! block of data that will be output in nicely formatted form.
//!
void
ephcom_parse_block(
FILE * outfp,
ephcom_Header *header,
double *datablock )
{
int i0, i1, i2, i3;
int blockword;
//
// Names of the objects in Chebyshev coefficient arrays.
//
const char *ephcom_coeffname[13] = {
"Mercury", "Venus", "EMBary", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune",
"Pluto", "Geocentric Moon", "Sun", "Nutation", "Libration"
};
blockword = 0;
fprintf( outfp, "@%04d StartJD\t%12.2f\n", blockword++, datablock[0] );
fprintf( outfp, "@%04d EndJD\t%12.2f\n", blockword++, datablock[1] );
for ( i0 = 0; i0 < 13; i0++ ) // For all bodies
{
fprintf( outfp, "Body\t%d (%s)\n", i0 + 1, ephcom_coeffname[i0] );
for ( i1 = 0; i1 < header->ipt[i0][2]; i1++ ) // For all subintervals
{
fprintf( outfp, " Subinterval %d of %d\n", i1 + 1, header->ipt[i0][2] );
for ( i2 = 0; i2 < ( i0 == 11 ? 2 : 3 ); i2++ ) // For all coordinates
{
fprintf( outfp, " %cCoefficients\n", 'X' + i2 );
for ( i3 = 0; i3 < header->ipt[i0][1]; i3++ ) // For all coefficients
{
blockword = header->ipt[i0][0] +
i1 * header->ipt[i0][1] * ( i0 == 11 ? 2 : 3 ) +
i2 * header->ipt[i0][1] + i3 - 1;
fprintf( outfp, " @%04d [%2d of %2d] %25.17E\n",
blockword, i3 + 1, header->ipt[i0][1], datablock[blockword] );
}
}
}
}
}
//! Read the next two lines of the ascii form of a JPL ephemeris file.
//! For the last of those check that it is exactly the same as the
//! expected group header form, that is, 12 characters containing
//! "GROUP nnnn" with the same nnnn as expected. If the group is not
//! what is expected, then print an error message and exit.
//!
//! @param group [OUT ONLY]Pointer to a group header that upon return
//! will be filled by a 12-character null-terminated string that we
//! read.
//! @param expected [IN ONLY]Pointer to a 12-character null-terminated
//! string that we expect to read.
//! @param infile [IN ONLY]Pointer to the JPL ascii ephemeris FILE
//! that we read.
//!
static void
ephcom_nxtgrp( char *group, const char *expected, FILE *infile )
{
char readbuf[EPHCOM_MAXLINE + 1];
fgets( readbuf, EPHCOM_MAXLINE, infile ); // Blank Line
fgets( readbuf, EPHCOM_MAXLINE, infile ); // "GROUP dddd\n"
strncpy( group, readbuf, 12 );
group[12] = '\0';
if ( strncmp( group, expected, 12 ) != 0 )
{
fprintf( stderr, "Badly formed header; \"%s\" not found.\n\n", expected );
exit( 1 );
}
fgets( readbuf, EPHCOM_MAXLINE, infile ); // Blank Line
}
//! Write a double-precision value to the given binary file with
//! bytes swapped if necessary to match network order (Big Endian).
//! On Intel 80x86 the bytes will get swapped, on Motorola or SPARC
//! they won't.
//!
//! @param outfp [IN ONLY]Pointer to the binary output FILE.
//! @param x [IN ONLY]Double-precision value that will be written to
//! the binary FILE.
//!
static void
ephcom_outdouble( FILE *outfp, double x )
{
double retval;
unsigned char ch[8];
memcpy( (void *) ch, (const void *) &x, 8 );
gnulliver64c( ch );
fwrite( ch, 1, 8, outfp );
}
//! Write a integer value to the given binary file with bytes swapped
//! if necessary to match network order (Big Endian). On Intel 80x86
//! the bytes will get swapped, on Motorola or SPARC they won't.
//!
//! @param outfp [IN ONLY]Pointer to the binary output FILE.
//! @param u [IN ONLY]Integer value that will be written to the binary
//! FILE.
//!
static void
ephcom_outint( FILE * outfp, unsigned u )
{
unsigned u2;
u2 = gnulliver32( u );
fwrite( &u2, 4, 1, outfp );
}
//! Read a double-precision value from the given binary file with
//! bytes swapped if necessary to match host endian order. On Intel
//! 80x86 the bytes will get swapped, on Motorola or SPARC they won't.
//!
//! @param infp [IN ONLY]Pointer to the binary input FILE.
//! @returns the (possibly) byte-swapped double-precision value that
//! was read from the binary input FILE.
//!
double
ephcom_indouble( FILE *infp )
{
double x;
double retval;
unsigned char ch[8];
//
// Handle as character string until bytes are in correct order,
// then copy to double once they are.
//
fread( ch, 1, 8, infp );
gnulliver64c( ch );
memcpy( (void *) &retval, (const void *) ch, (size_t) 8 );
return ( retval );
}
//! Read an integer value from the given binary file with bytes
//! swapped if necessary to match host endian order. On Intel 80x86
//! the bytes will get swapped, on Motorola or SPARC they won't.
//!
//! @param infp [IN ONLY]Pointer to the binary input FILE.
//! @returns the (possibly) byte-swapped integer value that was read
//! from the binary input FILE.
//!
int
ephcom_inint( FILE *infp )
{
unsigned u;
int retval;
fread( &u, 4, 1, infp );
retval = (int) gnulliver32( u );
return ( retval );
}
//! Function to convert a string with a double precision value written
//! in C to a double precision value that fortran understands (i.e.,
//! with a "D" exponent character). Conversion happens in place.
//!
//! @param buf [IN AND OUT]Pointer to a character string holding the C
//! double-precision value (in "E" exponential format with a trailing
//! blank after the exponent to make room for the leading zero
//! notation of the fortran value) on input and the fortran
//! double-precision value in "D" exponential format for fortran (with
//! leading zero before the decimal point) on output. If the resulting
//! fortran exponent has a leading zero and more than two digits that
//! leading zero is dropped while right justification is maintained
//! by shifting the whole string to the right by one byte to overlay
//! that leading zero by the exponent sign.
//!
static void
ephcom_doublestrc2f( char *buf )
{
int i, j, istart, istop, exp, edigits;
double x;
// Deal with three or more digit exponent with leading zero
// (which can occur for the Windows case).
for ( istop = 0; toupper( buf[istop] ) != 'E'; istop++ )
;
// buf[istop] is 'E', buf[istop+1] is the exponent sign, buf[istop+2],...
// is the absolute value of the exponent.
if ( buf[istop + 2] == '0' && isdigit( buf[istop + 3] ) && isdigit( buf[istop + 4] ) )
{
for ( istart = istop + 2; istart > 0; istart-- )
buf[istart] = buf[istart - 1];
buf[0] = ' ';
istop++;
}
for ( istart = 0; isspace( buf[istart] ); istart++ )
;
x = atof( &buf[istart] );
exp = atoi( &buf[istop + 1] );
exp++;
if ( exp < 0 )
{
buf[istop + 2] = '-';
exp = -exp;
}
else
{
buf[istop + 2] = '+';
}
if ( x == 0.0 )
exp = 0;
if ( exp < 100 )
edigits = 2;
else if ( exp < 1000 )
edigits = 3;
else
edigits = 4;
while ( edigits > 0 )
{
buf[istop + edigits + 2] = exp % 10 + '0';
exp /= 10;
edigits--;
}
buf[istop + 1] = 'D';
while ( istop > istart && buf[istop - 1] != '.' )
{
buf[istop] = buf[istop - 1];
istop--;
}
buf[istop] = buf[istop - 2]; // buf[istop-1] == '.'
buf[istop - 2] = '0'; // leading zero
}
//! This ephcom_pleph routine takes coordinates already calculated in
//! a ephcom_Coords struct and returns selected results in an array
//! depending on the ntarg and ncentr indices provided by the calling
//! routine. These indices have the following interpretation (note
//! the offset of one compared to the interpretation of the first index
//! of pv in the ephcom_Coords struct.
//! <table border>
//! <tr> <td><b>Index</b></td> <td><b>Identification</b></td> </tr>
//! <tr> <td>1</td> <td>Mercury</td> </tr>
//! <tr> <td>2</td> <td>Venus</td> </tr>
//! <tr> <td>3</td> <td>Earth</td> </tr>
//! <tr> <td>4</td> <td>Mars</td> </tr>
//! <tr> <td>5</td> <td>Jupiter</td> </tr>
//! <tr> <td>6</td> <td>Saturn</td> </tr>
//! <tr> <td>7</td> <td>Uranus</td> </tr>
//! <tr> <td>8</td> <td>Neptune</td> </tr>
//! <tr> <td>9</td> <td>Pluto</td> </tr>
//! <tr> <td>10</td> <td>Moon</td> </tr>
//! <tr> <td>11</td> <td>Sun</td> </tr>
//! <tr> <td>12</td> <td>Solar System Barycenter</td> </tr>
//! <tr> <td>13</td> <td>Earth-Moon Barycenter</td> </tr>
//! <tr> <td>14</td> <td>Nutation Angles</td> </tr>
//! <tr> <td>15</td> <td>Libration Angles</td> </tr>
//! <tr> <td>16</td> <td>Moon (Geocentric)</td> </tr>
//! </table>
//!
//! @param coords [IN ONLY]Pointer to a ephcom_Coords struct which
//! contains interpolated values of all coordinates and their time derivatives
//! as calculated from Chebyshev coefficients supplied by a JPL ephemeris.
//! @param ntarg [IN ONLY]Index interpreted according to the
//! above table which identifies the "target" data in coords.
//! @param ncntr [IN ONLY]Index interpreted according to the above
//! table which identifies the "center" data in coords. If either
//! ntarg or ncent is 14, the interpolated nutation angle data (two
//! angles and two angle time derivatives) are returned in r.
//! Otherwise, if either ntarg or ncent is 15, the interpolated
//! libration angle data (three angles and three angle time
//! derivatives) are returned in r. Otherwise, if either ntarg or
//! ncent is 16, the moon geocentric position and velocity data (3
//! positions and 3 velocities) are returned in pv. Otherwise (the
//! normal case) if 0 < ntarg < 14 and 0 < ncent < 14, the
//! interpolated positions and velocities corresponding to the center
//! index are subtracted from the interpolated positions and
//! velocities corresponding to the target index and the resulting
//! data (3 positions and 3 velocities) are returned in pv.
//! Otherwise, ephcom_pleph() issues an error message and exits.
//! @param r [OUT ONLY]Pointer to an array which upon return will be
//! filled with the requested interpolated results (4 values for
//! nutation and 6 values for everything else).
//!
void
ephcom_pleph( ephcom_Coords *coords, int ntarg, int ncntr, double *r )
{
int i;
if ( ntarg == 14 || ncntr == 14 )
{
for ( i = 0; i < 4; i++ )
r[i] = coords->pv[13][i];
}
else if ( ntarg == 15 || ncntr == 15 )
{
for ( i = 0; i < 6; i++ )
r[i] = coords->pv[14][i];
}
else if ( ntarg == 16 || ncntr == 16 )
{
for ( i = 0; i < 6; i++ )
r[i] = coords->pv[15][i];
}
else if ( ( 0 < ntarg && ntarg < 14 ) && ( 0 < ncntr && ncntr < 14 ) )
{
for ( i = 0; i < 6; i++ )
r[i] = coords->pv[ntarg - 1][i] - coords->pv[ncntr - 1][i];
}
else
{
fprintf( stderr, "ephcom_pleph: Invalid combination of ntarg = %d and ncntr = %d\n", ntarg, ncntr );
exit( EXIT_FAILURE );
}
}
//! Interpolate positions and velocities of all stored JPL "bodies" at given time from a JPL
//! binary ephemeris file. Transform the interpolated data to the following index scheme
//! for JPL bodies where the index is one less than the index used for the arguments
//! of ephcom_pleph():
//! <table border>
//! <tr> <td><b>Index</b></td> <td><b>Identification</b></td> </tr>
//! <tr> <td>0</td> <td>Mercury</td> </tr>
//! <tr> <td>1</td> <td>Venus</td> </tr>
//! <tr> <td>2</td> <td>Earth</td> </tr>
//! <tr> <td>3</td> <td>Mars</td> </tr>
//! <tr> <td>4</td> <td>Jupiter</td> </tr>
//! <tr> <td>5</td> <td>Saturn</td> </tr>
//! <tr> <td>6</td> <td>Uranus</td> </tr>
//! <tr> <td>7</td> <td>Neptune</td> </tr>
//! <tr> <td>8</td> <td>Pluto</td> </tr>
//! <tr> <td>9</td> <td>Moon</td> </tr>
//! <tr> <td>10</td> <td>Sun</td> </tr>
//! <tr> <td>11</td> <td>Solar System Barycenter</td> </tr>
//! <tr> <td>12</td> <td>Earth-Moon Barycenter</td> </tr>
//! <tr> <td>13</td> <td>Nutation Angles</td> </tr>
//! <tr> <td>14</td> <td>Libration Angles</td> </tr>
//! <tr> <td>15</td> <td>Moon (Geocentric)</td> </tr>
//! </table>
//!
//! @param infp [IN ONLY]Pointer to a binary version of a JPL
//! ephemeris FILE.
//! @param header [IN ONLY]Pointer to an ephcom_Header struct which
//! contains the JPL ephemeris header information that has already
//! been read from that binary JPL ephemeris FILE.
//! @param coords [IN AND OUT]Pointer to a ephcom_Coords struct which
//! contains on input coords->et2 (the split Julian date where the
//! interpolation should occur) and also the control information
//! coords->km (if nonzero, solar system body coordinates [but not
//! nutation and libration angles which are always returned in
//! radians] will be be returned in kilometers rather than
//! astronomical units); coords->second (if nonzero, all solar system
//! body and nutation and libration angle time derivatives will be
//! returned in per second units rather than in per day units);
//! coords->bary (if nonzero, all solar system body coordinates will
//! be relative to the solar system barycenter, otherwise they will be
//! relative to the solar system body indicated by the coords->center
//! index; and coords->center (the index in the range from 0 to 12
//! which cooresponds to a particular solar system body indicated in
//! the above table, and which only needs to be supplied if
//! coords->bary is zero). Upon return this struct contains
//! interpolated values of all coordinates and their time derivatives
//! as calculated from the Chebyshev coefficients in datablock using
//! the above body index scheme.
//! @param datablock [OUT ONLY]Pointer to an array that upon return
//! will contain the block of Chebyshev coefficient data that has been
//! read that has a Julian date range that contains the specified
//! Julian date in coords where the interpolation occurred.
//! @returns 0 on success and -1 on failure (due to specified Julian
//! date in coords out of range or some i/o error).
//!
int
ephcom_get_coords( FILE * infp,
ephcom_Header *header,
ephcom_Coords *coords,
double *datablock )
{
double et2[2], pjd[2]; // Ephemeris times, split into coarse (whole) and fine time in JD
double filetime; // JDs since start of ephemeris file
double blocktime[2]; // JDs since start of data block
double subtime; // JDs since start of subinterval in block
int i, j, k;
int blocknum;
// Number of subintervals in data block for this body
int nsub;
// Number of subinterval for this body
int subinterval;
// Offset in datablock for current body and subinterval
int dataoffset;
// Span of one subinterval in days
double subspan;
// Span of one subinterval in days (coords->second is zero) or
// seconds (coords->second is nonzero) used for normalization
// of the Chebyshev polynomial time derivatives.
double norm_span;
// Normalized Chebyshev time, in interval [-1,1].
double chebytime;
// Number of coordinates for position and velocity
int ncoords;
// Number of Chebyshev coefficients per coordinate
int ncf;
// Return value
int retval;
// Assume normal return
retval = 0;
// et2 is a transformed version of coords->et2 such that the first
// value of et2 is exactly half-integral to match the exactly
// half-integral characteristics of the Julian dates returned from
// the binary ephemeris.
et2[1] = ephcom_split( coords->et2[0] - 0.5, &et2[0] );
pjd[1] = ephcom_split( coords->et2[1], &pjd[0] );
// et2[0] should end up as exactly half integral.
et2[0] += pjd[0] + 0.5;
// Deal with fractional remainders.
et2[1] = ephcom_split( et2[1] + pjd[1], &pjd[0] );
et2[0] += pjd[0];
if ( et2[0] + et2[1] < header->ss[0] || et2[0] + et2[1] > header->ss[1] )
{
// fprintf(stderr,"Time is outside ephemeris range.\n");
retval = -1;
}
else
{
// Days from start of file. First part of this calculation should be
// exact because both values are exactly half integral.
filetime = ( et2[0] - header->ss[0] ) + et2[1];
// Data block in file (offset by two in ephcom_readbinary_block to skip two
// header blocks).
// blocknum is initially calculated using the convention that the time is
// in the semi-open interval [datablock[0], datablock[1]), i.e., is
// strictly less than datablock[1].
blocknum = (int) ( filetime / header->ss[2] );
// If time corresponds to datablock[1] of the last block =
// header->ss[1], then change the above convention to allow
// time to correspond to that value, that is calculate
// blocknum index as if the time was just slightly less than
// header->ss[1].
if ( et2[0] == header->ss[1] && et2[1] == 0 )
blocknum--;
// Read the data block that contains the coefficients for the
// desired date.
if ( ephcom_readbinary_block( infp, header, blocknum, datablock ) <= 0 )
{
retval = -1;
}
else
{
// Now step through the bodies and interpolate positions
// and velocities.
// Days from block start. blocktime[0] calculation should
// be exact because both values exactly half integral.
blocktime[0] = et2[0] - datablock[0];
blocktime[1] = et2[1];
for ( i = 0; i < 13; i++ )
{
// The i index corresponds to positions and velocities
// of solar system bodies, two nutation angles and
// their time derivatives, or 3 lunar libration angles
// and their time derivatives as noted in the
// following table. (The positions and velocities are
// solar system barycentric unless noted otherwise.)
// 0 = Mercury
// 1 = Venus
// 2 = Earth-Moon barycenter
// 3 = Mars
// 4 = Jupiter
// 5 = Saturn
// 6 = Uranus
// 7 = Neptune
// 8 = Pluto
// 9 = Moon (Geocentric)
// 10 = Sun
// 11 = nutation angles
// 12 = lunar librations
// subspan is always an integer; header->ss[2] is
// either 2^5 or 2^6 while header->ipt[i][2] is always
// a low (< 5) power of two.
subspan = header->ss[2] / header->ipt[i][2]; // Days/subinterval
norm_span = coords->seconds ? subspan * 86400.0 : subspan;
subinterval = (int) ( ( ( et2[0] - datablock[0] ) + et2[1] ) / subspan );
// For this corner case calculate the subinterval value as
// if the time were slightly less than header->ss[1] (which
// is equal to datablock[1] in this special case).
if ( et2[0] == header->ss[1] && et2[1] == 0 )
subinterval--;
ncoords = i == 11 ? 2 : 3; // 2 coords for nutation, else 3
dataoffset = header->ipt[i][0] - 1 +
ncoords * header->ipt[i][1] * subinterval;
// header->ss[2] / header->ipt[i][2] is always an
// integer; header->ss[2] is either 2^5 or 2^6 while
// header->ipt[i][2] is always a low (< 5) power of
// two.
subtime = ( blocktime[0] - subinterval * header->ss[2] / header->ipt[i][2] ) + blocktime[1];
//
// Divide days in this subblock by total days in
// subblock to get interval [0,1]. The right part of
// the expression will evaluate to a whole number:
// subinterval lengths are all integer multiples of
// days in a block (all powers of 2).
//
chebytime = subtime / subspan;
chebytime = ( chebytime + chebytime ) - 1.0;
if ( chebytime < -1.0 || chebytime > 1.0 )
{
fprintf( stderr, "Chebyshev time is beyond [-1,1] interval.\n" );
fprintf( stderr,
"filetime=%f, blocktime[0]=%f, blocktime[1]=%f, subtime=%f, chebytime=%f\n",
filetime, blocktime[0], blocktime[1], subtime, chebytime );
}
else
{
//
// Everything is as expected. Interpolate
// coefficients to calculate position and velocity
// (or angles and angles' time derivatives for the
// case of nutation or libration) for the ith
// "body" in the solar system at time equivalent
// to chebytime. The number of coordinates is
// ncoords which is 3 for everything but nutation
// where it is 2.
//
ephcom_cheby( header->maxcheby, chebytime, norm_span,
&datablock[dataoffset],
ncoords, header->ipt[i][1], coords->pv[i] );
}
}
//
// Set any user-defined coordinates to zero.
//
// for (i = 16; i < EPHCOM_NUMOBJECTS; i++)
// coords->pv[i][0] = coords->pv[i][1] = coords->pv[i][1] =
// coords->pv[i][1] = coords->pv[i][1] = coords->pv[i][1] = 0.0;
//
// With interpolations complete, calculate Earth from EMBary and
// Sun from SSBary. Preserve other coordinates.
// N.B. last two elements of nutation are undefined, but
// as a result of this next loop those locations are zeroed
// so that all 6 components of each coords->pv[] vector
// are initialized.
for ( j = 0; j < 6; j++ )
{
// Save original lunar geocentric coords
coords->pv[15][j] = coords->pv[ 9][j];
// Save Librations if on file
coords->pv[14][j] = coords->pv[12][j];
// Save Nutations if on file. Last two components
// are uninitialized so avoid them.
if ( j < 4 )
{
coords->pv[13][j] = coords->pv[11][j];
}
// Save Earth-Moon barycenter.
coords->pv[12][j] = coords->pv[2][j];
// Prepare new solar system barycenter coordinates (relative
// to that center). Note, this action initializes the
// last two components of pv[11] (previously used
// for nutation) for the first time.
coords->pv[11][j] = 0.;
//
// Calculate Earth and Moon from EMBary and geocentric Moon.
//
// New Earth
coords->pv[2][j] -= coords->pv[9][j] / ( 1.0 + header->emrat );
// New Moon
coords->pv[9][j] += coords->pv[2][j];
// The first index corresponds to positions and velocities
// of solar system bodies, two nutation angles and
// their time derivatives, or 3 lunar libration angles
// and their time derivatives as noted in the
// following table. (The positions and velocities are
// solar system barycentric unless noted otherwise. An
// asterisk preceding a number indicates a change or
// new index compared to the previous i indices.)
// 0 = Mercury
// 1 = Venus
// *2 = Earth
// 3 = Mars
// 4 = Jupiter
// 5 = Saturn
// 6 = Uranus
// 7 = Neptune
// 8 = Pluto
// *9 = Moon
// 10 = Sun
// *11 = Solar-System barycenter
// *12 = Earth-Moon barycenter
// *13 = nutation angles
// *14 = lunar librations
// *15 = Moon (geocentric)
}
//
// If we want something other than coordinates relative to
// the solar system barycenter, subtract coordinates of
// the reference body (supplied by the calling routine via
// the coords->center index in the new indexing scheme)
// from all coordinates except nutation angles (which as a
// side effect avoids dealing with the 4 components in
// that special case), libration angles, and geocentric
// lunar position
//
if ( !coords->bary )
{
if ( 0 <= coords->center && coords->center <= 12 )
{
for ( i = 0; i < 13; i++ )
{
if ( i != coords->center )
{
for ( j = 0; j < 6; j++ )
coords->pv[i][j] -= coords->pv[coords->center][j];
}
else
{
for ( j = 0; j < 6; j++ )
coords->pv[coords->center][j] = 0.;
}
}
}
else
{
fprintf( stderr, "ephcom_get_coords: coords->center = %d is outside the valid range from 0 to 12.\n", coords->center );
exit( EXIT_FAILURE );
}
}
if ( !coords->km ) // Calculate AU, not kilometers
{
for ( i = 0; i < 15; i++ )
{
// Skip over nutations (which as a side effect
// avoids dealing with the 4 components in that
// special case) and librations.
if ( i == 13 )
i = 15;
for ( j = 0; j < 6; j++ )
coords->pv[i][j] /= header->au;
}
}
}
}
return ( retval );
}
//! Interpolate position and velocity (or nutation or libration angles
//! and their time derivatives) at a time point (converted to
//! Chebyshev coordinate in range [-1,1]) using JPL Chebyshev
//! coefficients supplied for one solar system JPL "body" index, where
//! the JPL "bodies" are identified as follows:
//! <table border>
//! <tr> <td><b>Index</b></td> <td><b>Identification</b></td> </tr>
//! <tr> <td>0</td> <td>Mercury</td> </tr>
//! <tr> <td>1</td> <td>Venus</td> </tr>
//! <tr> <td>2</td> <td>Earth-Moon Barycenter</td> </tr>
//! <tr> <td>3</td> <td>Mars</td> </tr>
//! <tr> <td>4</td> <td>Jupiter</td> </tr>
//! <tr> <td>5</td> <td>Saturn</td> </tr>
//! <tr> <td>6</td> <td>Uranus</td> </tr>
//! <tr> <td>7</td> <td>Neptune</td> </tr>
//! <tr> <td>8</td> <td>Pluto</td> </tr>
//! <tr> <td>9</td> <td>Moon (Geocentric)</td> </tr>
//! <tr> <td>10</td> <td>Sun</td> </tr>
//! <tr> <td>11</td> <td>Nutation angles</td> </tr>
//! <tr> <td>12</td> <td>Lunar Libration angles</td> </tr>
//! </table>
//!
//! @param maxcoeffs [INPUT ONLY]Maximum number of Chebyshev
//! components possible.
//! @param x [INPUT ONLY]Value of x over [-1,1] for Chebyshev
//! interpolation.
//! @param span [INPUT ONLY]Span of subinterval in the time coordinate
//! used for the time derivatives (velocity or radians per second for
//! the angular coordinates).
//! @param y [INPUT ONLY]Pointer to an array of required Chebyshev
//! coefficients for a particular JPL "body".
//! @param ncoords [INPUT ONLY]Total number of coordinates to
//! interpolate for a particular JPL "body". This quantity is 3
//! except for nutation where it is two.
//! @param ncoeffs [INPUT ONLY]Number of Chebyshev coefficients per
//! coordinate.
//! @param pv [OUTPUT ONLY]Pointer to an array to hold interpolated
//! positions (or angles) in 1st half, interpolated velocity (or angle
//! time derivatives) in 2nd half for a particular JPL "body".
//!
static inline void
ephcom_cheby( int maxcoeffs, double x, double span, double *y,
int ncoords, int ncoeffs, double *pv )
{
int i, j;
static double twox;
static double *pc, *vc; // Position and velocity polynomial coefficients.
static double lastx = 2.0; // x from last call; initialize to impossible value
static int init = 1; // Need to initialize pc[] and vc[]
//
// Allocate position and velocity Chebyshev coefficients.
//
if ( init )
{
// It is extremely convenient to "permanently" malloc space for
// pc and vc like this. Ideally, one would have a special call
// to ephcom_cheby to free pc and vc or else malloc and free the
// space outside the routine, but these changes are more trouble
// than they are worth so we will have to pay the price of
// valgrind complaining about that unfreed space.
if ( ( pc = (double *) malloc( maxcoeffs * sizeof ( double ) ) ) == NULL )
{
fprintf( stderr, "ephcom_cheby: Cannot malloc pc" );
exit( EXIT_FAILURE );
}
if ( ( vc = (double *) malloc( maxcoeffs * sizeof ( double ) ) ) == NULL )
{
fprintf( stderr, "ephcom_cheby: Cannot malloc vc" );
exit( EXIT_FAILURE );
}
init = 0;
}
//
// This need only be called once for each Julian Date,
// saving a lot of time initializing polynomial coefficients.
//
if ( lastx != x )
{
lastx = x;
twox = x + x; // For Chebyshev recursion
//
// Initialize position polynomial coefficients
//
pc[0] = 1.0; // Chebyshev T[0](x) = 1
pc[1] = x; // Chebyshev T[1](x) = x
for ( i = 2; i < maxcoeffs; i++ )
{
pc[i] = twox * pc[i - 1] - pc[i - 2];
// Resolve bug with gcc generating -0.0 (also makes
// the smallest represented number equal to zero).
//
if ( pc[i] * pc[i] == 0.0 )
{
pc[i] = 0.0;
}
}
//
// Initialize derivative polynomial coefficients
//
vc[0] = 0.0; // d(1)/dx = 0
vc[1] = 1.0; // d(x)/dx = 1
vc[2] = twox + twox; // d(2x^2 - 1)/dx = 4x
for ( i = 3; i < maxcoeffs; i++ )
{
vc[i] = twox * vc[i - 1] + pc[i - 1] + pc[i - 1] - vc[i - 2];
}
}
//
// Interpolate to get position for each component
//
for ( i = 0; i < ncoords; i++ ) // Once each for x, y, and z
{
pv[i] = 0.0;
for ( j = ncoeffs - 1; j >= 0; j-- )
{
pv[i] += pc[j] * y[i * ncoeffs + j];
}
}
//
// Interpolate velocity (first derivative)
//
for ( i = 0; i < ncoords; i++ )
{
pv[ncoords + i] = 0.0;
for ( j = ncoeffs - 1; j >= 0; j-- )
{
pv[ncoords + i] += vc[j] * y[i * ncoeffs + j];
}
pv[ncoords + i] *= 2.0 / span;
}
}
//! Convert Julian Day to calendar date and time. From pp. 604, 606
//! in the Explanatory Supplement to the Astronomical Almanac.
//!
//! @param tjd [IN ONLY]Double-precision Julian Day number.
//! @param idate [OUT ONLY] integer array of 6 values which upon
//! return will contain the integer year, month, day, hour, minute,
//! and second corresponding to tjd.
//! @param calendar_type [IN ONLY]Integer value which controls the
//! kind of calendar used for the transformation: -1=Julian;
//! 0=automatic; 1=Gregorian. If automatic, use Julian calendar for
//! dates before 15 October 1582.
//!
static void
ephcom_jd2cal( double tjd, int idate[6], int calendar_type )
{
int ihour, imin, isec;
int j;
// From Explanatory Supplement to Astronomical Almanac, pp. 604, 606
int I, J, K, L, N, D, M, Y;
tjd += 0.5 + 0.5 / 86400.0; // Round to nearest second
j = tjd; // Integer Julian Day
tjd = ( tjd - j ) * 24.0;
ihour = tjd;
tjd = ( tjd - ihour ) * 60.0;
imin = tjd;
tjd = ( tjd - imin ) * 60.0;
isec = tjd;
//
// Julian calendar. Explanatory Supplement to Astronomical Alamanac, p. 606.
// If automatic, use Julian calendar for dates before 15 October 1582.
//
if ( calendar_type == -1 || ( calendar_type == 0 && j <= 2299160 ) )
{
J = j + 1402;
K = ( J - 1 ) / 1461;
L = J - 1461 * K;
N = ( L - 1 ) / 365 - L / 1461;
I = L - 365 * N + 30;
J = ( 80 * I ) / 2447;
D = I - ( 2447 * J ) / 80;
I = J / 11;
M = J + 2 - 12 * I;
Y = 4 * K + N + I - 4716;
}
//
// Gregorian calendar.
//
else // Explanatory Supplement to Astronomical Almanac, p. 604
{
L = j + 68569;
N = ( 4 * L ) / 146097;
L = L - ( 146097 * N + 3 ) / 4;
I = ( 4000 * ( L + 1 ) ) / 1461001;
L = L - ( 1461 * I ) / 4 + 31;
J = ( 80 * L ) / 2447;
D = L - ( 2447 * J ) / 80;
L = J / 11;
M = J + 2 - 12 * L;
Y = 100 * ( N - 49 ) + I + L;
}
idate[0] = Y;
idate[1] = M;
idate[2] = D;
idate[3] = ihour;
idate[4] = imin;
idate[5] = isec;
}
//! Convert calendar date and time to JD. From pp. 604, 606 in the
//! Explanatory Supplement to the Astronomical Almanac.
//!
//! @param idate [IN ONLY] integer array of 6 values which contains
//! the integer year, month, day, hour, minute, and second.
//! @param calendar_type [IN ONLY]Integer value which controls the
//! kind of calendar used for the transformation: -1=Julian;
//! 0=automatic; 1=Gregorian. If automatic, use Julian calendar for
//! dates before 15 October 1582.
//! @returns double-precision Julian Day number corresponding to idate.
//!
double
ephcom_cal2jd( int idate[6], int calendar_type )
{
double tjd;
int jd;
//
// Convert hours, minutes, seconds to fractional JD.
//
tjd = ( idate[3] + ( idate[4] + idate[5] / 60.0 ) / 60.0 ) / 24.0 - 0.5;
//
// Julian calendar. Explanatory Supplement to Astronomical Alamanac, p. 606.
// If automatic, use Julian calendar for dates before 15 October 1582.
//
if ( calendar_type == -1 ||
( calendar_type == 0 &&
( idate[0] < 1582 || // Before 1582
( idate[0] == 1582 &&
( idate[1] < 10 || // Before October 1582
( idate[1] == 10 && idate[2] < 15 ) ) ) ) ) ) // Before 15 October 1582
{
jd = 367 * idate[0] -
( 7 * ( idate[0] + 5001 + ( idate[1] - 9 ) / 7 ) ) / 4 +
( 275 * idate[1] ) / 9 +
idate[2] + 1729777;
}
//
// Gregorian calendar.
//
else // Explanatory Supplement to Astronomical Almanac, p. 604
{
jd = ( 1461 * ( idate[0] + 4800 + ( idate[1] - 14 ) / 12 ) ) / 4 +
( 367 * ( idate[1] - 2 - 12 * ( ( idate[1] - 14 ) / 12 ) ) ) / 12 -
( 3 * ( ( idate[0] + 4900 + ( idate[1] - 14 ) / 12 ) / 100 ) ) / 4 +
idate[2] - 32075;
}
//
// Return value is whole JD number plus fractional JD number.
//
tjd += (double) jd;
return ( tjd );
}
//! If Julian date is close to an integer + 0.5, return that exact
//! "half" value. Use of this routine makes the code more robust for
//! an early version of de422 (since corrected) which had numerical
//! noise in its half days.
//!
//! @param time [IN ONLY]Value of the Julian date which should be
//! exactly half integral.
//! @returns exactly half integral Julian date closest to time if
//! input time close to half-integral. If input time is not close
//! to half-integral the routine returns the unmodified input time.
//!
static double
ephcom_exact_time( double time )
{
double exact_half_time = ( time >= 0. ) ? (double) ( (int) time + 0.5 ) : (double) ( (int) time - 0.5 );
if ( IF_SAME_DATE( time, exact_half_time ) )
return exact_half_time;
else
return time;
}
//! Split time into an integer part and a positive remainder in the
//! semi-open range [0., 1.).
//!
//! @param time [IN ONLY]time value to be split.
//! @param integral_time [OUT ONLY]Pointer to a double value which
//! upon return will contain the integral part of the split time.
//! @returns remainder of the split time in the semi-open range [0., 1.).
//!
static double
ephcom_split( double time, double * integral_time )
{
double retval = modf( time, integral_time );
if ( retval < 0. )
{
retval += 1.;
*integral_time -= 1.;
}
return retval;
}
//! @file
//! Header information for the ephcom library.
//!
// Copyright (C) 1994-2004 Paul Hardy
// Copyright (C) 2011 Alan W. Irwin
//
// This file is part of the timeephem software project.
//
// timeephem is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation; version 2 of the License.
//
// timeephem is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with timeephem; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// Note that this software is not a product of the Jet Propulsion
// Laboratory; it just uses and supports their ASCII and binary
// ephemeris files. Please don't mail JPL concerning any bugs.
// Send bug reports or suggestions to airwin@users.sourceforge.net instead.
#ifndef __EPHCOM_H__
#define __EPHCOM_H__
// Set up for dealing with function visibility issues.
#include "ephcomdll.h"
#define EPHCOM_VERSION "1.0"
#define EPHCOM_MAXLINE 128 // Maximum # characters to allow in input line
#define EPHCOM_MAXTTL 84 // Maximum # characters of information in ttl[0-3]
#define EPHCOM_MINJD -999999999.5
#define EPHCOM_MAXJD 999999999.5
// Objects for pleph() ntarget and ncenter parameters.
#define EPHCOM_MERCURY 1
#define EPHCOM_VENUS 2
#define EPHCOM_EARTH 3
#define EPHCOM_MARS 4
#define EPHCOM_JUPITER 5
#define EPHCOM_SATURN 6
#define EPHCOM_URANUS 7
#define EPHCOM_NEPTUNE 8
#define EPHCOM_PLUTO 9
#define EPHCOM_MOON 10 // Moon, relative to Solar System center
#define EPHCOM_SUN 11
#define EPHCOM_SSBARY 12 // Solar System Barycenter
#define EPHCOM_EMBARY 13 // Earth-Moon Barycenter
#define EPHCOM_NUTATION 14
#define EPHCOM_LIBRATION 15
#define EPHCOM_GEOMOON 16 // Original Lunar Ephemeris coordinates
#define EPHCOM_OBSERVER 17 // User-defined observer position
#define EPHCOM_NUMOBJECTS 17 // Allocate memory for 17 solar sys objs
//! This structure holds all the information contained in a JPLEPH header.
//! When an ASCII or binary header is read, this structure is populated.
//! Fill out this structure before writing an ASCII or binary header, and
//! before performing any interpolations.
//!
#ifdef __cplusplus
extern "C"{
#endif
typedef struct
{
//! block size, in first line of ASCII header.
int ksize;
//! Number of Chebyshev coefficients in data blocks.
int ncoeff;
//! Hold up to 14*6=EPHCOM_MAXTTL characters + "\n" + null.
char ttl[3][EPHCOM_MAXTTL + 2];
//! Number of assigned in cnam.
int ncon;
//! Hold up to 400 6-character names ending with null.
char cnam[400][7];
//! Number of values for cval, to compare with ncon.
int nval;
//! Constant values, corresponding to cnam names.
double cval[400];
//! Astronomical unit in km.
double au;
//! Earth-Moon mass ratio.
double emrat;
//! Speed of light, km/sec.
double clight;
//! Ephemeris number.
int numde;
//! Lunar ephemeris number (can be same # as numde).
int numle;
//! Start Julian day number, stop Julian day number, and step size (in days).
double ss[3];
//! Index pointers into Chebyshev coefficients.
int ipt[12][3];
//! Libration pointer in a block.
int lpt[3];
//! Maximum Chebyshev coefficients for a body.
int maxcheby;
} ephcom_Header;
//! This struct holds all interpolated positions of planets, Sun, and Moon
//! at a given time. All of the information available from interpolation
//! at a given point in time is computed at once and preserved here.
//!
//! To populate this structure, have the ephemeris file open, and set:
//!
//! km, seconds, bary, et2[0], and et2[1] in the ephcom_Coords struct whose
//! pointer is an argument to ephcom_get_coords().
//!
//! Then call ephcom_get_coords() to get all coordinates, then call
//! ephcom_pleph() for each desired (ntarget,ncenter) combination.
//! See testeph.c for an example. Note that unlike JPL's PLEPH()
//! subroutine, you cannot call ephcom_pleph() without first initializing
//! the pv[] array in ephcom_get_coords().
//!
//! The first index of pv is
//! interpreted as follows (note the offset by one compared to the
//! interpretation of the index arguments to ephcom_pleph()):
//! <table border>
//! <tr> <td><b>Index</b></td> <td><b>Identification</b></td> </tr>
//! <tr> <td>0</td> <td>Mercury</td> </tr>
//! <tr> <td>1</td> <td>Venus</td> </tr>
//! <tr> <td>2</td> <td>Earth</td> </tr>
//! <tr> <td>3</td> <td>Mars</td> </tr>
//! <tr> <td>4</td> <td>Jupiter</td> </tr>
//! <tr> <td>5</td> <td>Saturn</td> </tr>
//! <tr> <td>6</td> <td>Uranus</td> </tr>
//! <tr> <td>7</td> <td>Neptune</td> </tr>
//! <tr> <td>8</td> <td>Pluto</td> </tr>
//! <tr> <td>9</td> <td>Moon</td> </tr>
//! <tr> <td>10</td> <td>Sun</td> </tr>
//! <tr> <td>11</td> <td>Solar System Barycenter</td> </tr>
//! <tr> <td>12</td> <td>Earth-Moon Barycenter</td> </tr>
//! <tr> <td>13</td> <td>Nutation Angles</td> </tr>
//! <tr> <td>14</td> <td>Libration Angles</td> </tr>
//! <tr> <td>15</td> <td>Moon (Geocentric)</td> </tr>
//! <tr> <td>16</td> <td>Possible user-defined coordinates</td> </tr>
//! </table>
//!
//! There are some extra entries at the end, compared to JPL's PLEPH():
//!
//! pv[15][] - preserves the unmodified lunar ephemeris coordinates.
//! These coordinates are never offset by center, so that
//! their full precision is maintained.
//! pv[16][] - start of possible user-defined coordinates.
//! These coordinates are offset by center.
//!
typedef struct
{
//! 1 = positions in km; 0 = positions in AU.
int km;
//! 1 = timescale is seconds; 0 = timescale is days.
int seconds;
//! 1 = Barycentric coordinates; 0 = adjust for center.
int bary;
//! object to use as center (instead of SSBARY).
int center;
//! 0 = raw JPL ephemeris coordinates. Note: none of the supplied routines read or modify the coordtype value.
int coordtype;
//! Julian Day of interpolation. For best precision, et2[0] should be an exact integral or exact half-integral number of days while et2[1] should be a correction to et2[0] between 0. and 1.
double et2[2];
//! x, y, z Position & Velocity. The first index of pv is interpreted as in the above table.
double pv[EPHCOM_NUMOBJECTS][6];
} ephcom_Coords;
// Useful macro for Julian date comparison.
// JPL ephemeris Julian dates (so far) range from 6.e5 (3000 BC) to 2.8e6 (3000 AD). So
// double precision (64-bit floating point) should be able to represent a date to within
// ~ 1.e-15*2.8e6 = 2.8e-9 days (or 0.24 ms). Make criterion ~100 times that value since
// all JPL ephemerides up to now have dates which are offset by 0.5 from an integer so
// that a criterion of 0.25 days would probably work.
#define JULIAN_DATE_CRITERION ( 3.e-7 )
// Need this logic to compare dates rather than exact equalities because
// (for DE422 at least) rounding errors have crept into the dates.
#define IF_SAME_DATE( a, b ) ( fabs( a - b ) <= JULIAN_DATE_CRITERION )
// Here is where the public API for libephcom is described.
// Read a JPL Ephemeris ASCII header from the FILE pointed to by the
// infp argument and store and return values in the ephcom_Header
// struct pointed to by the header argument. Write any errors to
// stderr.
EPHCOMDLLIMPEXP void
ephcom_readascii_header( FILE * infp, ephcom_Header *header );
//
// Read a block of data coefficients from a JPL ASCII ephemeris file.
// Returns number of coefficients read, 0 at EOF.
//
EPHCOMDLLIMPEXP int
ephcom_readascii_block(
FILE * infp,
ephcom_Header *header,
double *datablock );
//
// Read a JPL Ephemeris header in binary format. Store values in
// an ephcom_Header struct.
//
EPHCOMDLLIMPEXP void
ephcom_readbinary_header( FILE * infp, ephcom_Header *header );
//
// Read a JPL Ephemeris data block in binary format.
//
// This is the only routine in this library that accesses a file
// as a direct access file, with a specified block number. The
// block number ranges from 0 on up (starting at first data block,
// after the 2 header blocks). Returns the number of coefficients
// read, or 0 at EOF.
//
EPHCOMDLLIMPEXP int
ephcom_readbinary_block(
FILE *infp, // File pointer for direct access file
ephcom_Header *header, // header struct, already filled in
int blocknum, // Data block number, starting with 0
double *datablock // returned coefficient data block
);
//
// Write header information in ASCII format.
//
EPHCOMDLLIMPEXP void
ephcom_writeascii_header( FILE * outfp, ephcom_Header *header );
//
// Write coefficient block information in ASCII format.
//
EPHCOMDLLIMPEXP void
ephcom_writeascii_block(
FILE * outfp,
ephcom_Header *header,
int blocknum,
double *datablock );
//
// Write a JPL Ephemeris header in binary format.
//
EPHCOMDLLIMPEXP void
ephcom_writebinary_header( FILE *outfp, ephcom_Header *header );
//
// Write a block of data coefficients in JPL binary file format.
//
EPHCOMDLLIMPEXP void
ephcom_writebinary_block(
FILE * outfp,
ephcom_Header *header,
int blocknum,
double *datablock );
//
// ephcom_parse_block() - Parse a binary block of data. Warning: verbose!
// Writes parsed output to file pointer outfp.
//
EPHCOMDLLIMPEXP void
ephcom_parse_block(
FILE * outfp,
ephcom_Header *header,
double *datablock );
//
// Read in a double precision value from the given file with bytes swapped
// if necessary to match host order (Little- or DEC- Endian). On Intel 80x86
// the bytes will get swapped, on Motorola or SPARC they won't.
//
EPHCOMDLLIMPEXP double
ephcom_indouble( FILE *infp );
//
// Read in an integer (4--byte) value to the given file with bytes swapped
// if necessary to match host order (Little- or DEC- Endian). On Intel 80x86
// the bytes will get swapped, on Motorola or SPARC they won't.
//
EPHCOMDLLIMPEXP int
ephcom_inint( FILE *infp );
//
// Planetary Ephemeris. Takes coordinates already calculated in
// coords structure and converts to vectors and vector dot in testr[].
// Bodies start at 1 for Mercury, to match the JPL PLEPH() numbering.
// Values for ntarg and ncntr correspond to locations ntarg-1 and
// ncntr-1 in coords->pv[].
//
EPHCOMDLLIMPEXP void
ephcom_pleph( ephcom_Coords *coords, int ntarg, int ncntr, double *r );
//
// ephcom_get_coords() - Interpolate positions and velocities at given time.
//
EPHCOMDLLIMPEXP int
ephcom_get_coords( FILE * infp,
ephcom_Header *header,
ephcom_Coords *coords,
double *datablock );
//
// ephcom_cal2jd() - convert calendar date and time to JD.
//
// idate: integer year, month, day, hour, minute, second
// calendar_type: -1=Julian; 0=Automatic; 1=Gregorian
// return value: double precision Julian Day of idate[]
//
// From pp. 604, 606 in the Explanatory Supplement to the Astronomical Almanac.
//
EPHCOMDLLIMPEXP double
ephcom_cal2jd( int idate[6], int calendar_type );
#ifdef __cplusplus
}
#endif
#endif // __EPHCOM_H__
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment