_dispatcher.py 19.2 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

BO ZHANG's avatar
BO ZHANG committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
    "data_model": None,
    "batch_id": "default_batch",
}

BO ZHANG's avatar
BO ZHANG committed
43
44
45
46
47
48
49
50
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
51

BO ZHANG's avatar
BO ZHANG committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "n_frame",
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
73
    "prc_status",
BO ZHANG's avatar
BO ZHANG committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
112
113
114
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
    return table.Table([{k: d.get(k) for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
115
116


BO ZHANG's avatar
BO ZHANG committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
    """Split data basis into n_split parts."""
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
146
147
148
149
150
151
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
        qr = plan.find(**override_common_keys(PLAN_PARAMS, kwargs))
        assert qr.success, qr
        # plan basis / obsid basis
        for _ in qr.data:
            _["n_frame"] = (
                _["params"]["n_epec_frame"] if _["instrument"] == "HSTDM" else 1
            )
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
167
        )
BO ZHANG's avatar
BO ZHANG committed
168
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
169
170

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
171
172
173
174
175
176
177
178
179
180
181
182
183
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
        qr = level0.find(**override_common_keys(LEVEL0_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
184

BO ZHANG's avatar
BO ZHANG committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
        qr = level1.find(**override_common_keys(LEVEL1_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
199

200
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
201
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
202
203
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
204
205
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
206
207
208
209
210
211
212
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
213
        assert len(relevant_plan) > 0, relevant_plan
214
215
216
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
217
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
218
219
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
220
221
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
222
223
224
225
226
227
228
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
229
        assert len(relevant_plan) > 0, relevant_plan
230
231
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
232
233
234
235
236
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
237
238
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
239

BO ZHANG's avatar
BO ZHANG committed
240
241
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
242

243
        # sort data_basis before dispatching
244
        data_basis.sort(keys=data_basis.colnames)
245

246
        # loop over data
BO ZHANG's avatar
BO ZHANG committed
247
248
249
250
251
252
        for i_data_basis in trange(
            len(data_basis),
            unit="task",
            dynamic_ncols=True,
        ):
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
253
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
254
255
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
256
257
258
259
260
261
262
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
263
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
264
265
266
267
268
269
270
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
271
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
272
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
273
274
275
276
            )
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
277
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
278
279
280
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
281
282
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
BO ZHANG's avatar
BO ZHANG committed
283
284
                )
            )
BO ZHANG's avatar
BO ZHANG committed
285

BO ZHANG's avatar
BO ZHANG committed
286
        return task_list
BO ZHANG's avatar
BO ZHANG committed
287

BO ZHANG's avatar
BO ZHANG committed
288
289
290
291
292
293
294
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
295

BO ZHANG's avatar
BO ZHANG committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
319
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
320
321
322
323
324
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
325
326
327
328
329
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
330
331
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
332
        )
BO ZHANG's avatar
BO ZHANG committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

        # initialize task list
        task_list = []

        # loop over plan
        for i_data_detector in trange(
            len(u_data_detector),
            unit="task",
            dynamic_ncols=True,
        ):
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
371
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
372
373
374
375
376
377
378
379
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
380
381
382
383
384
385

            n_files_expected = (
                this_data_detector_plan["n_frame"][0]
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
386
387
388
389
390
391
392
393
394
395
396
397
398
            n_files_found = len(this_data_detector_files)
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
                        and n_files_found == n_files_expected
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
399
400
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
425
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
426
427
428
429
430
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
431
432
433
434
435
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
436
            ]
BO ZHANG's avatar
BO ZHANG committed
437
438
        )

BO ZHANG's avatar
BO ZHANG committed
439
440
441
442
443
444
445
446
447
        # initialize task list
        task_list = []

        # loop over plan
        for i_data_obsid in trange(
            len(u_data_obsid),
            unit="task",
            dynamic_ncols=True,
        ):
BO ZHANG's avatar
BO ZHANG committed
448
            # i_data_obsid = 2
BO ZHANG's avatar
BO ZHANG committed
449
450
451
452
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
BO ZHANG's avatar
BO ZHANG committed
453
            this_data_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
475
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
476
477
478
479
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
BO ZHANG's avatar
BO ZHANG committed
480
481
            this_n_frame = (
                this_data_obsid_plan["n_frame"] if len(this_data_obsid_plan) > 0 else 0
BO ZHANG's avatar
BO ZHANG committed
482
            )
BO ZHANG's avatar
BO ZHANG committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
            this_effective_detector_names = csst[
                this_instrument
            ].effective_detector_names

            if this_instrument == "HSTDM":
                # 不确定以后是1个探测器还是2个探测器
                this_n_file_found = len(this_data_obsid_file)
                this_n_file_expected = (this_n_frame, this_n_frame * 2)
                this_success = this_n_file_found in this_n_file_expected
            else:
                # for other instruments, e.g., MSC
                # n_file_found = len(this_obsgroup_obsid_file)
                # n_file_expected = len(effective_detector_names)
                # this_success &= n_file_found == n_file_expected

                # or more strictly, expected files are a subset of files found
                this_success = set(this_effective_detector_names) <= set(
                    this_data_obsid_file["detector"]
                )
BO ZHANG's avatar
BO ZHANG committed
502
503
504
505
506
507
508

            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
BO ZHANG's avatar
BO ZHANG committed
509
510
511
                    relevant_data=this_data_obsid_file,
                    n_relevant_plan=len(this_data_obsid_plan),
                    n_relevant_data=len(this_data_obsid_file),
BO ZHANG's avatar
BO ZHANG committed
512
513
514
515
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
516

BO ZHANG's avatar
BO ZHANG committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
533

BO ZHANG's avatar
BO ZHANG committed
534
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
535
536
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
537
538
539
540
541
542
543
544
545
546
547
        # loop over obsgroup
        for i_obsgroup in trange(
            len(obsgroup_basis),
            unit="task",
            dynamic_ncols=True,
        ):

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
548
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
549
550
551
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
552
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
553
554
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
555
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
556
557
558
559
560
561
562
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
563
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
564
565
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
566
567
568
569
570
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
                this_n_frame = this_obsgroup_plan[i_obsid]["n_frame"]
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
571
572

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
573
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
574
575
576
577
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
578
                )
BO ZHANG's avatar
BO ZHANG committed
579

BO ZHANG's avatar
BO ZHANG committed
580
581
582
583
584
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
                    this_n_file_expected = (this_n_frame, this_n_frame * 2)
                    this_success &= this_n_file_found in this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
585
                else:
BO ZHANG's avatar
BO ZHANG committed
586
587
588
589
590
591
592
593
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
594
595
                    )

BO ZHANG's avatar
BO ZHANG committed
596
597
598
599
600
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
601
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
602
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
603
604
                    n_relevant_plan=len(this_obsgroup_plan),
                    n_relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
605
606
607
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
608

BO ZHANG's avatar
tweaks    
BO ZHANG committed
609
610
611
    def dispatch_obsgroup_detector(self):
        pass

BO ZHANG's avatar
BO ZHANG committed
612
    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
613
614
615
616
617
618
619
620
621
622
623
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
            _["n_frame"] = (
                _["params"]["n_epec_frame"] if _["instrument"] == "HSTDM" else 1
            )
BO ZHANG's avatar
BO ZHANG committed
624
        # 未来如果HSTDM的设定简化一些,这里n_frame可以改成n_file,更直观
BO ZHANG's avatar
BO ZHANG committed
625
626
627
628
629
630
631
632
633
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis