PositionWin.rst 8.59 KB
Newer Older
1
2
3
4
5
.. File PositionWin.rst

Windowed positional parameters
==============================

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Measurements performed through a *window* function (an *envelope*) do not have many of the drawbacks of isophotal measurements. |SExtractor| implements “windowed” versions for most
of the measurements described in the :ref:`previous section<position_iso>`:

.. note::
  Unless otherwise noted, all parameter names given below are only prefixes. They must be followed by _IMAGE if the results shall be expressed in pixel coordinates or _WORLD, _SKY, _J2000 or _B1950 for |WCS|_ coordinates (see :ref:`coord_suffix`).

+----------------------+-------------------------------+
| Isophotal parameters | Equivalent windowed parameters|
+======================+===============================+
| X, Y                 | XWIN, YWIN                    |
+----------------------+-------------------------------+
| ERRA, ERRB, ERRTHETA | ERRAWIN, ERRBWIN, ERRTHETAWIN |
+----------------------+-------------------------------+
| A, B, THETA          | AWIN, BWIN, THETAWIN          |
+----------------------+-------------------------------+
| X2, Y2, XY           | X2WIN, Y2WIN, XYWIN           |
+----------------------+-------------------------------+
| CXX, CYY, CXY        | CXXWIN, CYYWIN, CXYWIN        |
+----------------------+-------------------------------+
25
26
27
28
29
30
31
32

The computations involved are roughly the same except that the pixel
values are integrated within a circular Gaussian window as opposed to
the object’s isophotal footprint. The Gaussian window is scaled to each
object; its FWHM is the diameter of the disk that contains half of the
object flux (:math:`d_{50}`). Note that in double-image mode
(§[chap:using]) the window is scaled based on the *measurement* image.

33
34
.. _xywin:

35
36
37
38
39
40
41
42
43
44
45
Windowed centroid: XWIN, YWIN
-----------------------------

This is an iterative process. The computation starts by initializing the
windowed centroid coordinates :math:`\overline{x_{\tt WIN}}^{(0)}` and
:math:`\overline{y_{\tt WIN}}^{(0)}` to their basic :math:`\overline{x}`
and :math:`\overline{y}` isophotal equivalents, respectively. Then at
each iteration :math:`t`, :math:`\overline{x_{\tt WIN}}` and
:math:`\overline{y_{\tt WIN}}` are refined using:

.. math::
46
  :label: xywin
47
48
49
50
51
52
53
54
55
56
57
58
59
60

   \begin{aligned}
   {\tt XWIN}^{(t+1)} & = & \overline{x_{\tt WIN}}^{(t+1)}
   = \overline{x_{\tt WIN}}^{(t)} + 2\,\frac{\sum_{r_i^{(t)} < r_{\rm max}}
   w_i^{(t)} I_i \ (x_i  - \overline{x_{\tt WIN}}^{(t)})}
   {\sum_{r_i^{(t)} < r_{\rm max}} w_i^{(t)} I_i},\\
   \label{eq:ywin}
   {\tt YWIN}^{(t+1)} & = & \overline{y_{\tt WIN}}^{(t+1)}
   = \overline{y_{\tt WIN}}^{(t)} + 2\,\frac{\sum_{r_i^{(t)} < r_{\rm max}}
   w_i^{(t)} I_i\ (y_i - \overline{y_{\tt WIN}}^{(t)})}
   {\sum_{r_i^{(t)} < r_{\rm max}} w_i^{(t)} I_i},\end{aligned}

where

61
62
63
64
.. math::
  :label: wi_t

  w_i^{(t)} = \exp \left(-\frac{r_i^{(t)^2}}{2s_{\tt WIN}^2} \right),
65
66
67
68

with

.. math::
69
  :label: ri_t
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

   r_i^{(t)} = \sqrt{\left(x_i - \overline{x_{\tt WIN}}^{(t)}\right)^2 + \left(y_i
   - \overline{y_{\tt WIN}}^{(t)}\right)^2}

and :math:`s_{\tt WIN} = d_{50} / \sqrt{8 \ln 2}`. The process stops
when the change in position between two iterations is less than
:math:`2\times10^{-4}` pixel, a condition which is generally achieved in
about 3 to 5 iterations.

Although the iterative nature of the processing slows down the
processing , it is recommended to use whenever possible windowed
parameters instead of their isophotal equivalents, since the
measurements they provide are much more precise (:numref:`fig_xwinprec`).
The precision in centroiding offered by XWIN_IMAGE and YWIN_IMAGE is
actually very close to that of PSF-fitting on focused and properly
sampled star images, and can also be applied to galaxies. It has been
verified that for isolated, Gaussian-like PSFs, its accuracy is close to
87
the theoretical limit set by image noise [#win_accuracy]_.
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

.. _fig_xwinprec:

.. figure:: figures/xwinprec.*
   :figwidth: 100%
   :align: center

   Comparison between isophotal and windowed centroid measurement residuals on
   simulated, background noise-limited images.
   *Left*: histogram of the difference between X_IMAGE and the true centroid
   in x.
   *Right*: histogram of the difference between XWIN_IMAGE and the true centroid
   in x.

Windowed 2nd order moments: X2, Y2, XY
--------------------------------------

105
Windowed second-order moments are computed on the image data once the :ref:`centering process <xywin>` has converged:
106
107

.. math::
108
  :label: x2y2win
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

   \begin{aligned}
   {\tt X2WIN} & = \overline{x_{\tt WIN}^2}
   = & \frac{\sum_{r_i < r_{\rm max}} w_i I_i (x_i - \overline{x_{\tt WIN}})^2}
   {\sum_{r_i < r_{\rm max}} w_i I_i},\\
   {\tt Y2WIN} & = \overline{y_{\tt WIN}^2}
   = & \frac{\sum_{r_i < r_{\rm max}} w_i I_i (y_i - \overline{y_{\tt WIN}})^2}
   {\sum_{r_i < r_{\rm max}} w_i I_i},\\
   {\tt XYWIN} & = \overline{xy_{\tt WIN}}
   = & \frac{\sum_{r_i < r_{\rm max}} w_i I_i (x_i - \overline{x_{\tt WIN}})
   (y_i - \overline{y_{\tt WIN}})}
   {\sum_{r_i < r_{\rm max}} w_i I_i}.\end{aligned}

Windowed second-order moments are typically twice smaller than their
isophotal equivalent.

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
Windowed shape parameters: AWIN, BWIN, THETAWIN
-----------------------------------------------

They are computed from the windowed 2nd order moments exactly the same
way as in :eq:`theta0_3` and :eq:`aimage_2` from the :ref:`isophotal shape parameter<shape_iso>` section:

.. math::
  :label: shapewin

   \begin{aligned}
   {\tt AWIN}^2 & = & \frac{\overline{x_{\tt WIN}^2}+\overline{y_{\tt WIN}^2}}{2}
       + \sqrt{\left(\frac{\overline{x_{\tt WIN}^2}-\overline{y_{\tt WIN}^2}}{2}\right)^2 + \overline{xy_{\tt WIN}}^2},\\
   {\tt BWIN}^2 & = & \frac{\overline{x_{\tt WIN}^2}+\overline{y_{\tt WIN}^2}}{2}
       - \sqrt{\left(\frac{\overline{x_{\tt WIN}^2}-\overline{y_{\tt WIN}^2}}{2}\right)^2 + \overline{xy_{\tt WIN}}^2},\\
   \tan (2\,{\tt THETAWIN}) & = & 2 \frac{\overline{xy_{\tt WIN}}}{\overline{x_{\tt WIN}^2} - \overline{y_{\tt WIN}^2}}.
   \end{aligned}


143
144
145
146
Windowed ellipse parameters: CXXWIN, CYYWIN, CXYWIN
---------------------------------------------------

They are computed from the windowed 2nd order moments exactly the same
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
way as in :eq:`ellipse_2` describing the :ref:`isophotal ellipse parameters<ellipse_iso>`:

.. math::
  :label: ellipsewin_2

   \begin{aligned}
   {\tt CXXWIN} & = & \frac{\cos^2 {\tt THETAWIN}}{{\tt AWIN}^2} + \frac{\sin^2
   {\tt THETAWIN}}{{\tt BWIN}^2} =
   \frac{\overline{y_{\tt WIN}^2}}{\overline{x_{\tt WIN}^2} \overline{y_{\tt WIN}^2} - \overline{xy_{\tt WIN}}^2}\\
   {\tt CYYWIN} & = & \frac{\sin^2 {\tt THETAWIN}}{{\tt
   AWIN}^2} + \frac{\cos^2 {\tt THETAWIN}}{{\tt BWIN}^2} =
   \frac{\overline{x_{\tt WIN}^2}}{\overline{x_{\tt WIN}^2} \overline{y_{\tt WIN}^2} - \overline{xy_{\tt WIN}}^2}\\
   {\tt CXYWIN} & = & 2 \,\cos {\tt THETAWIN}\,\sin {\tt
   THETAWIN} \left( \frac{1}{{\tt AWIN}^2} - \frac{1}{{\tt BWIN}^2}\right) = -2\,
   \frac{\overline{xy_{\tt WIN}}}{\overline{x_{\tt WIN}^2} \overline{y_{\tt WIN}^2} - \overline{xy_{\tt WIN}}^2}\end{aligned}
162
163
164
165
166

Windowed position uncertainties: ERRX2WIN, ERRY2WIN, ERRXYWIN, ERRAWIN, ERRBWIN, ERRTHETAWIN, ERRCXXWIN, ERRCYYWIN, ERRCXYWIN
-----------------------------------------------------------------------------------------------------------------------------

Windowed position uncertainties are computed on the image data once the
167
centering process of the :ref:`windowed centroid <xywin>` has converged. Assuming that
168
noise is uncorrelated among pixels, standard error propagation applied
169
to :eq:`xywin` writes:
170
171

.. math::
172
  :label: errwin
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

   \begin{aligned}
   {\tt ERRX2WIN} & = {\rm var}(\overline{x_{\tt WIN}})
   = & 4\,\frac{\sum_{r_i < r_{\rm max}} w_i^2 \sigma^2_i (x_i-\overline{x})^2}
   {\left(\sum_{r_i < r_{\rm max}} w_i I_i\right)^2},\\
   {\tt ERRY2WIN} & = {\rm var}(\overline{y_{\tt WIN}})
   = & 4\,\frac{\sum_{r_i < r_{\rm max}} w_i^2 \sigma^2_i (y_i-\overline{y})^2}
   {\left(\sum_{r_i < r_{\rm max}} w_i I_i\right)^2},\\
   {\tt ERRXYWIN} & = {\rm cov}(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})
   = & 4\,\frac{\sum_{r_i < r_{\rm max}}
   w_i^2 \sigma^2_i (x_i-\overline{x_{\tt WIN}})(y_i-\overline{y_{\tt WIN}})}
   {\left(\sum_{r_i < r_{\rm max}} w_i I_i\right)^2}.\end{aligned}

The semi-major axis ERRAWIN, semi-minor axis ERRBWIN, and position angle
ERRTHETAWIN of the :math:`1\sigma` position error ellipse are computed
from the covariance matrix elements
:math:`{\rm var}(\overline{x_{\tt WIN}})`,
:math:`{\rm var}(\overline{y_{\tt WIN}})`,
:math:`{\rm cov}(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})`,
192
similarly to the :ref:`isophotal error ellipse <poserr>`.
193

194
.. [#win_accuracy] See http://www.astromatic.net/forum/showthread.php?tid=581 .
195
196
197

.. include:: keys.rst