lin.c 11.4 KB
Newer Older
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/*=============================================================================
*
*   WCSLIB - an implementation of the FITS WCS proposal.
*   Copyright (C) 1995-1999, Mark Calabretta
*
*   This library is free software; you can redistribute it and/or modify it
*   under the terms of the GNU Library General Public License as published
*   by the Free Software Foundation; either version 2 of the License, or (at
*   your option) any later version.
*
*   This library is distributed in the hope that it will be useful, but
*   WITHOUT ANY WARRANTY; without even the implied warranty of
*   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library
*   General Public License for more details.
*
*   You should have received a copy of the GNU Library General Public License
*   along with this library; if not, write to the Free Software Foundation,
*   Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*   Correspondence concerning WCSLIB may be directed to:
*      Internet email: mcalabre@atnf.csiro.au
*      Postal address: Dr. Mark Calabretta,
*                      Australia Telescope National Facility,
*                      P.O. Box 76,
*                      Epping, NSW, 2121,
*                      AUSTRALIA
*
*=============================================================================
*
*   C routines which implement the FITS World Coordinate System (WCS)
*   convention.
*
*   Summary of routines
*   -------------------
*   These utility routines apply the linear transformation defined by the WCS
*   FITS header cards.  There are separate routines for the image-to-pixel,
*   linfwd(), and pixel-to-image, linrev(), transformations.
*
*   An initialization routine, linset(), computes intermediate values from
*   the transformation parameters but need not be called explicitly - see the
*   explanation of lin.flag below.
*
*   An auxiliary matrix inversion routine, matinv(), is included.  It uses
*   LU-triangular factorization with scaled partial pivoting.
*
*
*   Initialization routine; linset()
*   --------------------------------
*   Initializes members of a linprm data structure which hold intermediate
*   values.  Note that this routine need not be called directly; it will be
*   invoked by linfwd() and linrev() if the "flag" structure member is
*   anything other than a predefined magic value.
*
*   Given and/or returned:
*      lin      linprm*  Linear transformation parameters (see below).
*
*   Function return value:
*               int      Error status
*                           0: Success.
*                           1: Memory allocation error.
*                           2: PC matrix is singular.
*
*   Forward transformation; linfwd()
*   --------------------------------
*   Compute pixel coordinates from image coordinates.  Note that where
*   celestial coordinate systems are concerned the image coordinates
*   correspond to (x,y) in the plane of projection, not celestial (lng,lat).
*
*   Given:
*      imgcrd   const double[]
*                        Image (world) coordinate.
*
*   Given and returned:
*      lin      linprm*  Linear transformation parameters (see below).
*
*   Returned:
*      pixcrd   d[]      Pixel coordinate.
*
*   Function return value:
*               int      Error status
*                           0: Success.
*                           1: The transformation is not invertible.
*
*   Reverse transformation; linrev()
*   --------------------------------
*   Compute image coordinates from pixel coordinates.  Note that where
*   celestial coordinate systems are concerned the image coordinates
*   correspond to (x,y) in the plane of projection, not celestial (lng,lat).
*
*   Given:
*      pixcrd   const double[]
*                        Pixel coordinate.
*
*   Given and/or returned:
*      lin      linprm*  Linear transformation parameters (see below).
*
*   Returned:
*      imgcrd   d[]      Image (world) coordinate.
*
*   Function return value:
*               int      Error status
*                           0: Success.
*                           1: Error.
*
*   Linear transformation parameters
*   --------------------------------
*   The linprm struct consists of the following:
*
*      int flag
*         This flag must be set to zero whenever any of the following members
*         are set or modified.  This signals the initialization routine,
*         linset(), to recompute intermediaries.
*      int naxis
*         Number of image axes.
*      double *crpix
*         Pointer to the first element of an array of double containing the
*         coordinate reference pixel, CRPIXn.
*      double *pc
*         Pointer to the first element of the PC (pixel coordinate)
*         transformation matrix.
*      double *cdelt
*         Pointer to the first element of an array of double containing the
*         coordinate increments, CDELTn.
*
*   The remaining members of the linprm struct are maintained by the
*   initialization routine and should not be modified.
*
*      double *piximg
*         Pointer to the first element of the matrix containing the product
*         of the CDELTn diagonal matrix and the PC matrix.
*      double *imgpix
*         Pointer to the first element of the inverse of the piximg matrix.
*
*   linset allocates storage for the above arrays using malloc().  Note,
*   however, that these routines do not free this storage so if a linprm
*   variable has itself been malloc'd then these structure members must be
*   explicitly freed before the linprm variable is free'd otherwise a memory
*   leak will result.
*
*   Author: Mark Calabretta, Australia Telescope National Facility
*   $Id: lin.c,v 1.1.1.1 2003/07/09 19:06:26 bertin Exp $
*===========================================================================*/

#ifdef HAVE_CONFIG_H
#include	"config.h"
#endif

#ifdef HAVE_MATHIMF_H
#include <mathimf.h>
#else
#include <math.h>
#endif
#include <stdlib.h>
#include "lin.h"

/* Map error number to error message for each function. */
const char *linset_errmsg[] = {
   0,
   "Memory allocation error",
   "PC matrix is singular"};

const char *linfwd_errmsg[] = {
   0,
   "Memory allocation error",
   "PC matrix is singular"};

const char *linrev_errmsg[] = {
   0,
   "Memory allocation error",
   "PC matrix is singular"};

int linset(lin)

struct linprm *lin;

{
   int i, ij, j, mem, n;

   n = lin->naxis;

   /* Allocate memory for internal arrays. */
   mem = n * n * sizeof(double);
   lin->piximg = (double*)malloc(mem);
   if (lin->piximg == (double*)0) return 1;

   lin->imgpix = (double*)malloc(mem);
   if (lin->imgpix == (double*)0) {
      free(lin->piximg);
      return 1;
   }

   /* Compute the pixel-to-image transformation matrix. */
   for (i = 0, ij = 0; i < n; i++) {
      for (j = 0; j < n; j++, ij++) {
         lin->piximg[ij] = lin->cdelt[i] * lin->pc[ij];
      }
   }

   /* Compute the image-to-pixel transformation matrix. */
   if (matinv(n, lin->piximg, lin->imgpix)) return 2;

   lin->flag = LINSET;

   return 0;
}

/*--------------------------------------------------------------------------*/

int linfwd(imgcrd, lin, pixcrd)

const double imgcrd[];
struct linprm *lin;
double pixcrd[];

{
   int i, ij, j, n;

   n = lin->naxis;

   if (lin->flag != LINSET) {
      if (linset(lin)) return 1;
   }

   for (i = 0, ij = 0; i < n; i++) {
      pixcrd[i] = 0.0;
      for (j = 0; j < n; j++, ij++) {
         pixcrd[i] += lin->imgpix[ij] * imgcrd[j];
      }
   }

   for (j = 0; j < n; j++) {
      pixcrd[j] += lin->crpix[j];
   }

   return 0;
}

/*--------------------------------------------------------------------------*/

int linrev(pixcrd, lin, imgcrd)

const double pixcrd[];
struct linprm *lin;
double imgcrd[];

{
   int i, ij, j, n;
   double temp;

   n = lin->naxis;

   if (lin->flag != LINSET) {
      if (linset(lin)) return 1;
   }

   for (i = 0; i < n; i++) {
      imgcrd[i] = 0.0;
   }

   for (j = 0; j < n; j++) {
      temp = pixcrd[j] - lin->crpix[j];
      for (i = 0, ij = j; i < n; i++, ij+=n) {
         imgcrd[i] += lin->piximg[ij] * temp;
      }
   }

   return 0;
}

/*--------------------------------------------------------------------------*/

int matinv(n, mat, inv)

const int n;
const double mat[];
double inv[];

{
   register int i, ij, ik, j, k, kj, pj;
   int    itemp, mem, *mxl, *lxm, pivot;
   double colmax, *lu, *rowmax, dtemp;


   /* Allocate memory for internal arrays. */
   mem = n * sizeof(int);
   if ((mxl = (int*)malloc(mem)) == (int*)0) return 1;
   if ((lxm = (int*)malloc(mem)) == (int*)0) {
      free(mxl);
      return 1;
   }

   mem = n * sizeof(double);
   if ((rowmax = (double*)malloc(mem)) == (double*)0) {
      free(mxl);
      free(lxm);
      return 1;
   }

   mem *= n;
   if ((lu = (double*)malloc(mem)) == (double*)0) {
      free(mxl);
      free(lxm);
      free(rowmax);
      return 1;
   }


   /* Initialize arrays. */
   for (i = 0, ij = 0; i < n; i++) {
      /* Vector which records row interchanges. */
      mxl[i] = i;

      rowmax[i] = 0.0;

      for (j = 0; j < n; j++, ij++) {
         dtemp = fabs(mat[ij]);
         if (dtemp > rowmax[i]) rowmax[i] = dtemp;

         lu[ij] = mat[ij];
      }

      /* A row of zeroes indicates a singular matrix. */
      if (rowmax[i] == 0.0) {
         free(mxl);
         free(lxm);
         free(rowmax);
         free(lu);
         return 2;
      }
   }


   /* Form the LU triangular factorization using scaled partial pivoting. */
   for (k = 0; k < n; k++) {
      /* Decide whether to pivot. */
      colmax = fabs(lu[k*n+k]) / rowmax[k];
      pivot = k;

      for (i = k+1; i < n; i++) {
         ik = i*n + k;
         dtemp = fabs(lu[ik]) / rowmax[i];
         if (dtemp > colmax) {
            colmax = dtemp;
            pivot = i;
         }
      }

      if (pivot > k) {
         /* We must pivot, interchange the rows of the design matrix. */
         for (j = 0, pj = pivot*n, kj = k*n; j < n; j++, pj++, kj++) {
            dtemp = lu[pj];
            lu[pj] = lu[kj];
            lu[kj] = dtemp;
         }

         /* Amend the vector of row maxima. */
         dtemp = rowmax[pivot];
         rowmax[pivot] = rowmax[k];
         rowmax[k] = dtemp;

         /* Record the interchange for later use. */
         itemp = mxl[pivot];
         mxl[pivot] = mxl[k];
         mxl[k] = itemp;
      }

      /* Gaussian elimination. */
      for (i = k+1; i < n; i++) {
         ik = i*n + k;

         /* Nothing to do if lu[ik] is zero. */
         if (lu[ik] != 0.0) {
            /* Save the scaling factor. */
            lu[ik] /= lu[k*n+k];

            /* Subtract rows. */
            for (j = k+1; j < n; j++) {
               lu[i*n+j] -= lu[ik]*lu[k*n+j];
            }
         }
      }
   }


   /* mxl[i] records which row of mat corresponds to row i of lu.  */
   /* lxm[i] records which row of lu  corresponds to row i of mat. */
   for (i = 0; i < n; i++) {
      lxm[mxl[i]] = i;
   }


   /* Determine the inverse matrix. */
   for (i = 0, ij = 0; i < n; i++) {
      for (j = 0; j < n; j++, ij++) {
         inv[ij] = 0.0;
      }
   }

   for (k = 0; k < n; k++) {
      inv[lxm[k]*n+k] = 1.0;

      /* Forward substitution. */
      for (i = lxm[k]+1; i < n; i++) {
         for (j = lxm[k]; j < i; j++) {
            inv[i*n+k] -= lu[i*n+j]*inv[j*n+k];
         }
      }

      /* Backward substitution. */
      for (i = n-1; i >= 0; i--) {
         for (j = i+1; j < n; j++) {
            inv[i*n+k] -= lu[i*n+j]*inv[j*n+k];
         }
         inv[i*n+k] /= lu[i*n+i];
      }
   }

   free(mxl);
   free(lxm);
   free(rowmax);
   free(lu);

   return 0;
}