poly.c 15.1 KB
Newer Older
1
2
/*
*				poly.c
Emmanuel Bertin's avatar
Emmanuel Bertin committed
3
*
4
* Manage polynomials.
Emmanuel Bertin's avatar
Emmanuel Bertin committed
5
*
6
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Emmanuel Bertin's avatar
Emmanuel Bertin committed
7
*
8
*	This file part of:	AstrOmatic WCS library
Emmanuel Bertin's avatar
Emmanuel Bertin committed
9
*
10
*	Copyright:		(C) 1998-2011 Emmanuel Bertin -- IAP/CNRS/UPMC
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*
*	License:		GNU General Public License
*
*	AstrOmatic software is free software: you can redistribute it and/or
*	modify it under the terms of the GNU General Public License as
*	published by the Free Software Foundation, either version 3 of the
*	License, or (at your option) any later version.
*	AstrOmatic software is distributed in the hope that it will be useful,
*	but WITHOUT ANY WARRANTY; without even the implied warranty of
*	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*	GNU General Public License for more details.
*	You should have received a copy of the GNU General Public License
*	along with AstrOmatic software.
*	If not, see <http://www.gnu.org/licenses/>.
*
26
*	Last modified:		30/08/2011
27
28
*
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
Emmanuel Bertin's avatar
Emmanuel Bertin committed
29
30
31
32
33
34
35
36
37
38
39

#ifdef HAVE_CONFIG_H
#include	"config.h"
#endif

#include	<math.h>
#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>

#include	"poly.h"
40
41
42
#ifdef HAVE_ATLAS
#include	ATLAS_LAPACK_H
#endif
Emmanuel Bertin's avatar
Emmanuel Bertin committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

#define	QCALLOC(ptr, typ, nel) \
		{if (!(ptr = (typ *)calloc((size_t)(nel),sizeof(typ)))) \
		  qerror("Not enough memory for ", \
			#ptr " (" #nel " elements) !");;}

#define	QMALLOC(ptr, typ, nel) \
		{if (!(ptr = (typ *)malloc((size_t)(nel)*sizeof(typ)))) \
		  qerror("Not enough memory for ", \
			#ptr " (" #nel " elements) !");;}

/********************************* qerror ************************************/
/*
I hope it will never be used!
*/
void	qerror(char *msg1, char *msg2)
  {
  fprintf(stderr, "\n> %s%s\n\n",msg1,msg2);
  exit(-1);
  }


/****** poly_init ************************************************************
PROTO   polystruct *poly_init(int *group, int ndim, int *degree, int ngroup)
PURPOSE Allocate and initialize a polynom structure.
INPUT   1D array containing the group for each parameter,
        number of dimensions (parameters),
        1D array with the polynomial degree for each group,
        number of groups.
OUTPUT  polystruct pointer.
NOTES   -.
AUTHOR  E. Bertin (IAP)
75
VERSION 30/08/2011
Emmanuel Bertin's avatar
Emmanuel Bertin committed
76
77
78
79
80
81
82
83
 ***/
polystruct	*poly_init(int *group, int ndim, int *degree, int ngroup)
  {
   void	qerror(char *msg1, char *msg2);
   polystruct	*poly;
   char		str[512];
   int		nd[POLY_MAXDIM];
   int		*groupt,
84
		d,g,n, num,den, dmax;
Emmanuel Bertin's avatar
Emmanuel Bertin committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

  QCALLOC(poly, polystruct, 1);
  if ((poly->ndim=ndim) > POLY_MAXDIM)
    {
    sprintf(str, "The dimensionality of the polynom (%d) exceeds the maximum\n"
		"allowed one (%d)", ndim, POLY_MAXDIM);
    qerror("*Error*: ", str);
    }

  if (ndim)
    QMALLOC(poly->group, int, poly->ndim);
    for (groupt=poly->group, d=ndim; d--;)
      *(groupt++) = *(group++)-1;

  poly->ngroup = ngroup;
  if (ngroup)
    {
    group = poly->group;	/* Forget the original *group */

    QMALLOC(poly->degree, int, poly->ngroup);

/*-- Compute the number of context parameters for each group */
    memset(nd, 0, ngroup*sizeof(int));
    for (d=0; d<ndim; d++)
      {
      if ((g=group[d])>=ngroup)
        qerror("*Error*: polynomial GROUP out of range", "");
      nd[g]++;
      }
    }

/* Compute the total number of coefficients */
  poly->ncoeff = 1;
  for (g=0; g<ngroup; g++)
    {
120
    if ((dmax=poly->degree[g]=*(degree++))>POLY_MAXDEGREE)
Emmanuel Bertin's avatar
Emmanuel Bertin committed
121
122
123
124
125
126
      {
      sprintf(str, "The degree of the polynom (%d) exceeds the maximum\n"
		"allowed one (%d)", poly->degree[g], POLY_MAXDEGREE);
      qerror("*Error*: ", str);
      }

127
128
129
130
/*-- There are (n+d)!/(n!d!) coeffs per group = Prod_(i<=d)(n+i)/Prod_(i<=d)i */
    n = nd[g];
    d = dmax>n? n: dmax;
    for (num=den=1; d; num*=(n+dmax--), den*=d--);
Emmanuel Bertin's avatar
Emmanuel Bertin committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    poly->ncoeff *= num/den;
    }

  QMALLOC(poly->basis, double, poly->ncoeff);
  QCALLOC(poly->coeff, double, poly->ncoeff);

  return poly;
  }


/****** poly_end *************************************************************
PROTO   void poly_end(polystruct *poly)
PURPOSE Free a polynom structure and everything it contains.
INPUT   polystruct pointer.
OUTPUT  -.
NOTES   -.
AUTHOR  E. Bertin (IAP, Leiden observatory & ESO)
VERSION 09/04/2000
 ***/
void	poly_end(polystruct *poly)
  {
  if (poly)
    {
    free(poly->coeff);
    free(poly->basis);
    free(poly->degree);
    free(poly->group);
    free(poly);
    }
  }


/****** poly_func ************************************************************
PROTO   double poly_func(polystruct *poly, double *pos)
PURPOSE Evaluate a multidimensional polynom.
INPUT   polystruct pointer,
        pointer to the 1D array of input vector data.
OUTPUT  Polynom value.
NOTES   Values of the basis functions are updated in poly->basis.
AUTHOR  E. Bertin (IAP)
VERSION 03/03/2004
 ***/
double	poly_func(polystruct *poly, double *pos)
  {
   double	xpol[POLY_MAXDIM+1];
   double      	*post, *xpolt, *basis, *coeff, xval;
   long double	val;
   int		expo[POLY_MAXDIM+1], gexpo[POLY_MAXDIM+1];
   int	       	*expot, *degree,*degreet, *group,*groupt, *gexpot,
			d,g,t, ndim;

/* Prepare the vectors and counters */
  ndim = poly->ndim;
  basis = poly->basis;
  coeff = poly->coeff;
  group = poly->group;
  degree = poly->degree;
  if (ndim)
    {
    for (xpolt=xpol, expot=expo, post=pos, d=ndim; --d;)
      {
      *(++xpolt) = 1.0;
      *(++expot) = 0;
      }
    for (gexpot=gexpo, degreet=degree, g=poly->ngroup; g--;)
      *(gexpot++) = *(degreet++);
    if (gexpo[*group])
      gexpo[*group]--;
    }

/* The constant term is handled separately */
  val = *(coeff++);
  *(basis++) = 1.0;
  *expo = 1;
  *xpol = *pos;

/* Compute the rest of the polynom */
  for (t=poly->ncoeff; --t; )
    {
/*-- xpol[0] contains the current product of the x^n's */
    val += (*(basis++)=*xpol)**(coeff++);
/*-- A complex recursion between terms of the polynom speeds up computations */
/*-- Not too good for roundoff errors (prefer Horner's), but much easier for */
/*-- multivariate polynomials: this is why we use a long double accumulator */
    post = pos;
    groupt = group;
    expot = expo;
    xpolt = xpol;
    for (d=0; d<ndim; d++, groupt++)
      if (gexpo[*groupt]--)
        {
        ++*(expot++);
        xval = (*(xpolt--) *= *post);
        while (d--)
          *(xpolt--) = xval;
        break;
        }
      else
        {
        gexpo[*groupt] = *expot;
        *(expot++) = 0;
        *(xpolt++) = 1.0;
        post++;
        }
    }

  return (double)val;
  }


/****** poly_fit *************************************************************
PROTO   double poly_fit(polystruct *poly, double *x, double *y, double *w,
        int ndata, double *extbasis)
PURPOSE Least-Square fit of a multidimensional polynom to weighted data.
INPUT   polystruct pointer,
        pointer to the (pseudo)2D array of inputs to basis functions,
        pointer to the 1D array of data values,
        pointer to the 1D array of data weights,
        number of data points,
        pointer to a (pseudo)2D array of computed basis function values.
OUTPUT  Chi2 of the fit.
NOTES   If different from NULL, extbasis can be provided to store the
        values of the basis functions. If x==NULL and extbasis!=NULL, the
        precomputed basis functions stored in extbasis are used (which saves
        CPU). If w is NULL, all points are given identical weight.
AUTHOR  E. Bertin (IAP, Leiden observatory & ESO)
VERSION 08/03/2005
 ***/
void	poly_fit(polystruct *poly, double *x, double *y, double *w, int ndata,
		double *extbasis)
  {
   void	qerror(char *msg1, char *msg2);
   double	/*offset[POLY_MAXDIM],*/x2[POLY_MAXDIM],
		*alpha,*alphat, *beta,*betat, *basis,*basis1,*basis2, *coeff,
		*extbasist,*xt,
		val,wval,yval;
   int		ncoeff, ndim, matsize,
		d,i,j,n;

  if (!x && !extbasis)
    qerror("*Internal Error*: One of x or extbasis should be "
	"different from NULL\nin ", "poly_func()");
  ncoeff = poly->ncoeff;
  ndim = poly->ndim;
  matsize = ncoeff*ncoeff;
  basis = poly->basis;
  extbasist = extbasis;
  QCALLOC(alpha, double, matsize);
  QCALLOC(beta, double, ncoeff);

/* Subtract an average offset to maintain precision (droped for now ) */
/*
  if (x)
    {
    for (d=0; d<ndim; d++)
      offset[d] = 0.0;
    xt = x;
    for (n=ndata; n--;)
      for (d=0; d<ndim; d++)
        offset[d] += *(xt++);
    for (d=0; d<ndim; d++)
      offset[d] /= (double)ndata;    
    }
*/ 
/* Build the covariance matrix */
  xt = x;
  for (n=ndata; n--;)
    {
    if (x)
      {
/*---- If x!=NULL, compute the basis functions */
      for (d=0; d<ndim; d++)
        x2[d] = *(xt++)/* - offset[d]*/;     
      poly_func(poly, x2);
/*---- If, in addition, extbasis is provided, then fill it */
      if (extbasis)
        for (basis1=basis,j=ncoeff; j--;)
          *(extbasist++) = *(basis1++);
      }
    else
/*---- If x==NULL, then rely on pre-computed basis functions */
      for (basis1=basis,j=ncoeff; j--;)
        *(basis1++) = *(extbasist++);

    basis1 = basis;
    wval = w? *(w++) : 1.0;
    yval = *(y++);
    betat = beta;
    alphat = alpha;
    for (j=ncoeff; j--;)
      {
      val = *(basis1++)*wval;
      *(betat++) += val*yval;
      for (basis2=basis,i=ncoeff; i--;)
        *(alphat++) += val**(basis2++);
      }
    }

/* Solve the system */
  poly_solve(alpha,beta,ncoeff);

  free(alpha);

/* Now fill the coeff array with the result of the fit */
  betat = beta;
  coeff = poly->coeff;
  for (j=ncoeff; j--;)
    *(coeff++) = *(betat++);
/*
  poly_addcste(poly, offset);
*/
  free(beta);

  return;
  }


/****** poly_addcste *********************************************************
PROTO   void poly_addcste(polystruct *poly, double *cste)
PURPOSE Modify matrix coefficients to mimick the effect of adding a cst to
	the input of a polynomial.
INPUT   Pointer to the polynomial structure,
        Pointer to the vector of cst.
OUTPUT  -.
NOTES   Requires quadruple-precision. **For the time beeing, this function
	returns completely wrong results!!**
AUTHOR  E. Bertin (IAP)
358
VERSION 05/10/2010
Emmanuel Bertin's avatar
Emmanuel Bertin committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
 ***/
void	poly_addcste(polystruct *poly, double *cste)
  {
   long double	*acoeff;
   double	*coeff,*mcoeff,*mcoefft,
		val;
   int		*mpowers,*powers,*powerst,*powerst2,
		i,j,n,p, denum, flag, maxdegree, ncoeff, ndim;

  ncoeff = poly->ncoeff;
  ndim = poly->ndim;
  maxdegree = 0;
  for (j=0; j<poly->ngroup; j++)
    if (maxdegree < poly->degree[j])
      maxdegree = poly->degree[j];
  maxdegree++;		/* Actually we need maxdegree+1 terms */
  QCALLOC(acoeff, long double, ncoeff);
  QCALLOC(mcoeff, double, ndim*maxdegree);
  QCALLOC(mpowers, int, ndim);
  mcoefft = mcoeff;		/* To avoid gcc -Wall warnings */
  powerst = powers = poly_powers(poly);
  coeff = poly->coeff;
  for (i=0; i<ncoeff; i++)
    {
    for (j=0; j<ndim; j++)
      {
      mpowers[j] = n = *(powerst++);
      mcoefft = mcoeff+j*maxdegree+n;
      denum = 1;
      val = 1.0;
      for (p=n+1; p--;)
        {
        *(mcoefft--) = val;
        val *= (cste[j]*(n--))/(denum++);	/* This is C_n^p X^(n-p) */
        }
      }
/*-- Update all valid coefficients */
    powerst2 = powers;
    for (p=0; p<ncoeff; p++)
      {
/*---- Check that this combination of powers is included in the series above */
      flag = 0;
      for (j=0; j<ndim; j++)
        if (mpowers[j] < powerst2[j])
	  {
          flag = 1;
          powerst2 += ndim;
          break;
          }
      if (flag == 1)
        continue;
      val = 1.0;
      mcoefft = mcoeff;
      for (j=ndim; j--; mcoefft += maxdegree)
        val *= mcoefft[*(powerst2++)];
      acoeff[i] += val*coeff[p];
      }
    }

/* Add the new coefficients to the previous ones */

  for (i=0; i<ncoeff; i++)
    coeff[i] = (double)acoeff[i];

  free(acoeff);
  free(mcoeff);
  free(mpowers);
  free(powers);

  return;
  }

/****** poly_solve ************************************************************
PROTO   void poly_solve(double *a, double *b, int n)
433
PURPOSE Solve a system of linear equations, using Cholesky decomposition.
Emmanuel Bertin's avatar
Emmanuel Bertin committed
434
435
436
437
438
439
INPUT   Pointer to the (pseudo 2D) matrix of coefficients,
        pointer to the 1D column vector,
        matrix size.
OUTPUT  -.
NOTES   -.
AUTHOR  E. Bertin (IAP, Leiden observatory & ESO)
440
VERSION 26/10/2010
Emmanuel Bertin's avatar
Emmanuel Bertin committed
441
442
443
444
 ***/
void	poly_solve(double *a, double *b, int n)
  {

445
446
447
#ifdef HAVE_ATLAS
  clapack_dposv(CblasRowMajor, CblasUpper, n, 1, a, n, b, n);
#else
Emmanuel Bertin's avatar
Emmanuel Bertin committed
448
  if (cholsolve(a,b,n))
449
450
    qerror("*Error*: singular matrix found ", "while deprojecting" );
#endif
Emmanuel Bertin's avatar
Emmanuel Bertin committed
451
452
453
454

  return;
  }

455

Emmanuel Bertin's avatar
Emmanuel Bertin committed
456
/****** cholsolve *************************************************************
457
458
459
460
461
462
463
464
465
466
PROTO	void cholsolve(double *a, double *b, int n)
PURPOSE	Solve a system of linear equations, using Cholesky decomposition.
INPUT	Pointer to the (pseudo 2D) matrix of coefficients,
	pointer to the 1D column vector,
 	matrix size.
OUTPUT	-1 if the matrix is not positive-definite, 0 otherwise.
NOTES	Based on algorithm described in Numerical Recipes, 2nd ed. (Chap 2.9).
	The matrix of coefficients must be symmetric and positive definite.
AUTHOR	E. Bertin (IAP)
VERSION	10/10/2010
Emmanuel Bertin's avatar
Emmanuel Bertin committed
467
468
469
470
471
472
473
474
475
476
477
478
479
 ***/
int	cholsolve(double *a, double *b, int n)
  {
   double	*p, *x, sum;
   int		i,j,k;

/* Allocate memory to store the diagonal elements */
  QMALLOC(p, double, n);

/* Cholesky decomposition */
  for (i=0; i<n; i++)
    for (j=i; j<n; j++)
      {
480
481
      sum = a[i*n+j];
      for (k=i; k--;)
Emmanuel Bertin's avatar
Emmanuel Bertin committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
        sum -= a[i*n+k]*a[j*n+k];
      if (i==j)
        {
        if (sum <= 0.0)
	  {
          free(p);
          return -1;
          }
        p[i] = sqrt(sum);
        }
      else
        a[j*n+i] = sum/p[i];
      }

/* Solve the system */
  x = b;		/* Just to save memory:  the solution replaces b */
  for (i=0; i<n; i++)
    {
500
    for (sum=b[i],k=i; k--;)
Emmanuel Bertin's avatar
Emmanuel Bertin committed
501
502
503
504
      sum -= a[i*n+k]*x[k];
    x[i] = sum/p[i];
    }

505
  for (i=n; i--;)
Emmanuel Bertin's avatar
Emmanuel Bertin committed
506
    {
507
508
    sum = x[i];
    for (k=i; ++k<n;)
Emmanuel Bertin's avatar
Emmanuel Bertin committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
      sum -= a[k*n+i]*x[k];
    x[i] = sum/p[i];
    }

  free(p);

  return 0;
  }


/****** poly_powers ***********************************************************
PROTO   int *poly_powers(polystruct *poly)
PURPOSE	Return an array of powers of polynom terms
INPUT   polystruct pointer,
OUTPUT  Pointer to an array of polynom powers (int *), (ncoeff*ndim numbers).
NOTES   The returned pointer is mallocated.
AUTHOR  E. Bertin (IAP)
VERSION 23/10/2003
 ***/
int	*poly_powers(polystruct *poly)
  {
   int		expo[POLY_MAXDIM+1], gexpo[POLY_MAXDIM+1];
   int	       	*expot, *degree,*degreet, *group,*groupt, *gexpot,
		*powers, *powerst,
		d,g,t, ndim;

/* Prepare the vectors and counters */
  ndim = poly->ndim;
  group = poly->group;
  degree = poly->degree;
  QMALLOC(powers, int, ndim*poly->ncoeff);
  if (ndim)
    {
    for (expot=expo, d=ndim; --d;)
      *(++expot) = 0;
    for (gexpot=gexpo, degreet=degree, g=poly->ngroup; g--;)
      *(gexpot++) = *(degreet++);
    if (gexpo[*group])
      gexpo[*group]--;
    }

/* The constant term is handled separately */
  powerst = powers;
  for (d=0; d<ndim; d++)
    *(powerst++) = 0;
  *expo = 1;

/* Compute the rest of the polynom */
  for (t=poly->ncoeff; --t; )
    {
    for (d=0; d<ndim; d++)
      *(powerst++) = expo[d];
/*-- A complex recursion between terms of the polynom speeds up computations */
    groupt = group;
    expot = expo;
    for (d=0; d<ndim; d++, groupt++)
      if (gexpo[*groupt]--)
        {
        ++*(expot++);
        break;
        }
      else
        {
        gexpo[*groupt] = *expot;
        *(expot++) = 0;
        }
    }

  return powers;
  }