Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-pipeline
msc
sextractor
Commits
07ea5e95
Commit
07ea5e95
authored
Dec 20, 2017
by
Emmanuel Bertin
Browse files
Doc: added further paragraphs to the model-fitting section.
Doc: added a first batch of model-fitting parameters to the list of measurements.
parent
9182a3e3
Changes
6
Hide whitespace changes
Inline
Side-by-side
doc/src/Model.rst
View file @
07ea5e95
...
...
@@ -5,86 +5,182 @@
Model
fitting
=============
Fitting
procedure
-----------------
SExtractor
can
fit
models
to
the
images
of
detected
objects
since
version
2.8
.
The
fit
is
performed
by
minimizing
the
loss
function
..
math
::
:
label
:
loss_func
\
lambda
(\
boldsymbol
{
q
})
=
\
sum_i
\
left
(
g
\
left
(\
frac
{
p_i
-
\
hat
{
m
}
_i
(\
boldsymbol
{
q
})}{\
sigma_i
}\
right
)\
right
)^
2
+
\
sum_j
\
frac
{
q_j
-
\
mu_j
}{}
\
lambda
(\
boldsymbol
{
q
})
=
\
sum_i
\
left
(
g
\
left
(\
frac
{
p_i
-
\
tilde
{
m
}
_i
(\
boldsymbol
{
q
})}{\
sigma_i
}\
right
)\
right
)^
2
+
\
sum_j
\
frac
{
q_j
-
\
mu_j
}{}
with
respect
to
components
of
the
model
parameter
vector
:
math
:`\
boldsymbol
{
q
}`.
:
math
:`\
boldsymbol
{
q
}`
comprises
parameters
describing
the
shape
of
the
model
and
the
model
pixel
coordinates
:
math
:`\
boldsymbol
{
x
}`.
The
first
term
in
:
eq
:`
loss_func
`
is
a
modified
`
weighted
sum
of
squares
<
http
://
en
.
wikipedia
.
org
/
wiki
/
Least_squares
#
Weighted_least_squares
>`
_
that
aims
at
minimizing
the
residuals
of
the
fit
.
:
math
:`
p_i
`,
:
math
:`\
hat
{
m
}
_i
(\
boldsymbol
{
q
})`
and
:
math
:`\
sigma_i
`
are
respectively
the
pixel
value
above
the
background
,
the
value
of
the
resampled
model
,
and
the
pixel
value
uncertainty
at
image
pixel
:
math
:`
i
`.
:
math
:`
g
(
u
)`
is
a
derivable
monotonous
function
that
reduces
the
influence
of
large
deviations
from
the
model
(
e
.
g
.,
contamination
by
neighbors
):
Modified
least
squares
~~~~~~~~~~~~~~~~~~~~~~
The
first
term
in
:
eq
:`
loss_func
`
is
a
modified
`
weighted
sum
of
squares
<
http
://
en
.
wikipedia
.
org
/
wiki
/
Least_squares
#
Weighted_least_squares
>`
_
that
aims
at
minimizing
the
residuals
of
the
fit
.
:
math
:`
p_i
`,
:
math
:`\
tilde
{
m
}
_i
(\
boldsymbol
{
q
})`
and
:
math
:`\
sigma_i
`
are
respectively
the
pixel
value
above
the
background
,
the
value
of
the
resampled
model
,
and
the
pixel
value
uncertainty
at
image
pixel
:
math
:`
i
`.
:
math
:`
g
(
u
)`
is
a
derivable
monotonous
function
that
reduces
the
influence
of
large
deviations
from
the
model
,
such
as
the
contamination
by
neighbors
(:
numref
:`
fig_robustgalfit
`):
..
math
::
:
label
:
loss_func
:
label
:
modified_lsq
g
(
u
)
=
\
left
\{
\
begin
{
array
}{
rl
}
u_0
\
log
\
left
(
1
+
\
frac
{
u
}{
u_0
}\
right
)
&
\
mbox
{
if
}
u
\
ge
0
,\\
-
u_0
\
log
\
left
(
1
-
\
frac
{
u
}{
u_0
}\
right
)
&
\
mbox
{
otherwise
.
}\\
-
u_0
\
log
\
left
(
1
-
\
frac
{
u
}{
u_0
}\
right
)
&
\
mbox
{
otherwise
}
.
\\
\
end
{
array
}
\
right
.
The
vector
:
math
:`\
hat
{\
boldsymbol
{
m
}}(\
boldsymbol
{
q
})`
is
obtained
by
convolving
the
high
resolution
model
:
math
:`\
boldsymbol
{
m
}(\
boldsymbol
{
q
})`
with
the
local
PSF
model
:
math
:`\
boldsymbol
{\
phi
}`
and
applying
a
resampling
operator
:
math
:`\
mathbf
{
R
}(\
boldsymbol
{
x
})`
to
generate
the
final
model
raster
at
position
:
math
:`\
boldsymbol
{
x
}`
at
the
nominal
image
resolution
:
:
math
:`
u_0
`
sets
the
level
below
which
:
math
:`
g
(
u
)\
approx
u
`.
In
practice
,
choosing
:
math
:`
u_0
=
\
kappa
\
sigma_i
`
with
:
math
:`\
kappa
=
10
`
makes
the
first
term
in
:
eq
:`
loss_func
`
behave
like
a
traditional
weighted
sum
of
squares
for
residuals
close
to
the
noise
level
.
..
_fig_robustgalfit
:
..
figure
::
figures
/
robustgalfit
.*
:
figwidth
:
100
%
:
align
:
center
Effect
of
the
modified
least
squares
loss
function
on
fitting
a
model
to
a
galaxy
with
a
bright
neighbor
.
*
Left
*:
the
original
image
;
*
Middle
*:
residuals
of
the
model
fitting
with
a
regular
least
squares
(:
math
:`\
kappa
=
+\
infty
`);
*
Right
*:
modified
least
squares
with
:
math
:`\
kappa
=
10
`.
The
vector
:
math
:`\
tilde
{\
boldsymbol
{
m
}}(\
boldsymbol
{
q
})`
is
obtained
by
convolving
the
high
resolution
model
:
math
:`\
boldsymbol
{
m
}(\
boldsymbol
{
q
})`
with
the
local
PSF
model
:
math
:`\
boldsymbol
{\
phi
}`
and
applying
a
resampling
operator
:
math
:`\
mathbf
{
R
}(\
boldsymbol
{
x
})`
to
generate
the
final
model
raster
at
position
:
math
:`\
boldsymbol
{
x
}`
at
the
nominal
image
resolution
:
..
math
::
:
label
:
model_convolution
\
tilde
{\
boldsymbol
{
m
}}(\
boldsymbol
{
q
})
=
\
mathbf
{
R
}(\
boldsymbol
{
x
})
(\
boldsymbol
{
m
}(\
boldsymbol
{
q
})*\
boldsymbol
{\
phi
}).
:
math
:`\
mathbf
{
R
}(\
boldsymbol
{
x
})`
depends
on
the
pixel
coordinates
:
math
:`\
boldsymbol
{
x
}`
of
the
model
centroid
:
..
math
::
:
label
:
model_resampling
\
hat
{\
boldsymbol
{
m
}}(\
boldsymbol
{
q
})
=
\
mathbf
{
R
}(\
boldsymbol
{
x
})
(\
boldsymbol
{
m
}(\
boldsymbol
{
q
})*\
boldsymbol
{\
phi
}).
\
mathbf
{
R
}
_
{
ij
}(\
boldsymbol
{
x
})
=
h
\
left
(\
boldsymbol
{
x
}
_j
-
\
eta
.(\
boldsymbol
{
x
}
_i
-
\
boldsymbol
{
x
})\
right
),
where
:
math
:`
h
`
is
a
2
-
dimensional
interpolant
(
interpolating
function
),
:
math
:`\
boldsymbol
{
x
}
_i
`
is
the
coordinate
vector
of
image
pixel
:
math
:`
i
`,
:
math
:`\
boldsymbol
{
x
}
_j
`
the
coordinate
vector
of
model
sample
:
math
:`
j
`,
and
:
math
:`\
eta
`
is
the
image
-
to
-
model
sampling
step
ratio
(
sampling
factor
)
which
is
by
default
defined
by
the
PSF
model
sampling
.
We
adopt
a
L
á
nczos
-
4
function
:
cite
:`
duchon1979
`
as
interpolant
.
Regularization
~~~~~~~~~~~~~~
..
_model_minimization_def
:
Minimization
~~~~~~~~~~~~
Minimization
of
the
loss
function
:
math
:`\
lambda
(\
boldsymbol
{
q
})`
is
carried
out
using
the
`
Levenberg
-
Marquardt
algorithm
<
http
://
en
.
wikipedia
.
org
/
wiki
/
Levenberg
%
E2
%
80
%
93
Marquardt_algorithm
>`
_
,
and
more
specifically
the
|
LevMar
|
_
implementation
:
cite
:`
lourakis04LM
`.
The
fit
is
done
inside
a
disk
which
diameter
is
scaled
to
include
the
isophotal
footprint
of
the
object
,
plus
the
FWHM
of
the
PSF
,
plus
a
20
%
margin
.
The
number
of
iterations
is
returned
in
the
:
param
:`
NITER_MODEL
`
measurement
parameter
.
It
is
generally
a
few
tens
.
The
final
value
of
the
modified
chi
square
term
in
:
eq
:`
loss_func
`,
divided
by
the
number
of
degrees
of
freedom
,
is
returned
in
:
param
:`
CHI2_MODEL
`.
The
:
param
:`
FLAGS_MODEL
`
parameter
flags
various
issues
which
may
happen
during
the
fitting
process
(
see
the
flags
section
for
details
on
how
flags
are
managed
in
|
SExtractor
|):
..
csv
-
table
::
:
param
:`
FLAGS_MODEL
`
flag
description
:
header
:
"Value"
,
"Meaning"
:
widths
:
3
60
1
,
"the unconvolved, supersampled model raster exceeds 512×512 pixels and had to be resized"
2
,
"the convolved, resampled model raster exceeds 512×512 pixels and had to be resized"
4
,
"not enough pixels are available for model fitting on the measurement image (less pixels than fit parameters)"
8
,
"at least one of the fitted parameters hits the lower bound"
16
,
"at least one of the fitted parameters hits the upper bound"
:
math
:`
1
\,\
sigma
`
error
estimates
are
provided
for
most
measurement
parameters
;
they
are
obtained
by
marginalizing
the
full
covariance
matrix
of
the
fit
.
Levenberg
-
Marquardt
minimization
,
inside
a
disk
which
diameter
is
scaled
to
include
the
isophotal
footprint
plus
a
20
%
margin
,
plus
the
size
of
the
PSF
model
image
.
..
_models_def
:
The
models
that
can
be
fit
are
:
Models
------
-
Exponential
disk
Models
contain
one
or
more
components
,
which
share
their
central
coordinates
.
For
instance
,
a
galaxy
model
may
be
composed
of
a
spheroid
(
bulge
)
and
a
disk
components
.
Both
components
are
concentric
but
they
may
have
different
scales
,
aspect
ratios
and
position
angles
.
Adding
a
component
is
done
simply
by
invoking
one
of
its
measurement
parameters
in
the
parameter
file
,
e
.
g
.,
:
param
:`
DISK_SCALE_IMAGE
`.
..
math
::
The
present
version
of
|
SExtractor
|
supports
the
following
models
\
Sigma_
{\
tt
ExpDisk
}(
R
)
=
\
Sigma
(
0
)
\
exp
\
left
(-
{
R
\
over
h
}\
right
)
\
label
{
expdisk
}
-
:
param
:`
BACKOFFSET
`:
flat
background
offset
-
S
é
rsic
(:
math
:`
R
^{
1
/
n
}`)
spheroid
(
bulg
)
Relevant
measurement
parameters
:
:
param
:`
FLUX_BACKOFFSET
`,
:
param
:`
FLUXERR_BACKOFFSET
`
..
math
::
..
math
::
:
label
:
backoffset_model
m_
{\
tt
BACKOFFSET
}(
r
)
=
m_0
\
Sigma_
{\
tt
Sersic
}(
R
)
=
\
Sigma
(
0
)
\
exp
\
left
[-
b
(
n
)\,\
left
({
R
\
over
R_e
}\
right
)^{
1
/
n
}\
right
]
\
,
\
label
{
sersic
}
where
,
for
the
:
raw
-
latex
:`\
cite
{
sersic
:
1968
}`
model
,
:
math
:`
b
(
n
)`
is
the
solution
of
-
:
param
:`
POINT_SOURCE
`:
point
source
..
math
::
Relevant
measurement
parameters
:
:
param
:`
FLUX_POINTSOURCE
`,
:
param
:`
FLUXERR_POINTSOURCE
`,
:
param
:`
MAG_POINTSOURCE
`,
:
param
:`
MAGERR_POINTSOURCE
`,
:
param
:`
FLUXRATIO_POINTSOURCE
`,
:
param
:`
FLUXRATIOERR_POINTSOURCE
`
2
\
gamma
[
2
\,
n
,
b
(
n
)]
=
\
Gamma
(
2
\,
n
)
\
label
{
bofn
}
..
math
::
:
label
:
pointsource_model
m_
{\
tt
POINTSOURCE
}(
r
)
=
m_0
\
delta
(
r
)
-
:
param
:`
DISK
`:
exponential
disk
Relevant
measurement
parameters
:
:
param
:`
FLUX_DISK
`,
:
param
:`
FLUXERR_DISK
`,
:
param
:`
MAG_DISK
`,
:
param
:`
MAGERR_DISK
`,
:
param
:`
FLUXRATIO_DISK
`,
:
param
:`
FLUXRATIOERR_DISK
`,
:
param
:`
FLUX_MAX_DISK
`,
:
param
:`
MU_MAX_DISK
`,
:
param
:`
FLUX_EFF_DISK
`,
:
param
:`
MU_EFF_DISK
`,
:
param
:`
FLUX_MEAN_DISK
`,
:
param
:`
MU_MEAN_DISK
`,
:
param
:`
DISK_SCALE_IMAGE
`,
:
param
:`
DISK_SCALEERR_IMAGE
`,
:
param
:`
DISK_SCALE_WORLD
`,
:
param
:`
DISK_SCALEERR_WORLD
`,
:
param
:`
DISK_ASPECT_IMAGE
`,
:
param
:`
DISK_ASPECTERR_IMAGE
`,
:
param
:`
DISK_ASPECT_WORLD
`,
:
param
:`
DISK_ASPECTERR_WORLD
`,
:
param
:`
DISK_INCLINATION
`,
:
param
:`
DISK_INCLINATIONERR
`,
:
param
:`
DISK_THETA_IMAGE
`,
:
param
:`
DISK_THETAERR_IMAGE
`,
:
param
:`
DISK_THETA_WORLD
`,
:
param
:`
DISK_THETAERR_WORLD
`,
:
param
:`
DISK_THETA_SKY
`,
:
param
:`
DISK_THETA_J2000
`,
:
param
:`
DISK_THETA_B1950
`
..
math
::
:
label
:
disk_model
m_
{\
tt
DISK
}(
r
)
=
m_0
\
exp
\
left
(
-
{
r
\
over
h
}\
right
)
-
:
param
:`
SPHEROID
`:
S
é
rsic
(:
math
:`
R
^{
1
/
n
}`)
spheroid
:
param
:`
FLUX_SPHEROID
`,
:
param
:`
FLUXERR_SPHEROID
`,
:
param
:`
MAG_SPHEROID
`,
:
param
:`
MAGERR_SPHEROID
`,
:
param
:`
FLUXRATIO_SPHEROID
`,
:
param
:`
FLUXRATIOERR_SPHEROID
`,
:
param
:`
FLUX_MAX_SPHEROID
`,
:
param
:`
MU_MAX_SPHEROID
`,
:
param
:`
FLUX_EFF_SPHEROID
`,
:
param
:`
MU_EFF_SPHEROID
`,
:
param
:`
FLUX_MEAN_SPHEROID
`,
:
param
:`
MU_MEAN_SPHEROID
`,
:
param
:`
SPHEROID_SCALE_IMAGE
`,
:
param
:`
SPHEROID_SCALEERR_IMAGE
`,
:
param
:`
SPHEROID_SCALE_WORLD
`,
:
param
:`
SPHEROID_SCALEERR_WORLD
`,
:
param
:`
SPHEROID_ASPECT_IMAGE
`,
:
param
:`
SPHEROID_ASPECTERR_IMAGE
`,
:
param
:`
SPHEROID_ASPECT_WORLD
`,
:
param
:`
SPHEROID_ASPECTERR_WORLD
`,
:
param
:`
SPHEROID_INCLINATION
`,
:
param
:`
SPHEROID_INCLINATIONERR
`,
:
param
:`
SPHEROID_THETA_IMAGE
`,
:
param
:`
SPHEROID_THETAERR_IMAGE
`,
:
param
:`
SPHEROID_THETA_WORLD
`,
:
param
:`
SPHEROID_THETAERR_WORLD
`,
:
param
:`
SPHEROID_THETA_SKY
`,
:
param
:`
SPHEROID_THETA_J2000
`,
:
param
:`
SPHEROID_THETA_B1950
`
:
param
:`
SPHEROID_SERSICN
`,
:
param
:`
SPHEROID_SERSICNERR
`
An
accurate
approximation
for
the
solution
for
:
math
:`
b
(
n
)`
of
equation
(
bofn
)
is
:
raw
-
latex
:`\
citep
{
ciotti
:
bertin
:
1999
}`
..
math
::
:
label
:
spheroid_model
..
math
::
m_
{\
tt
SPHEROID
}(
r
)
=
m_0
\
exp
\
left
(-
b
(
n
)\,\
left
({
R
\
over
R_e
}\
right
)^{
1
/
n
}\
right
),
b
(
n
)
=
2
\,
n
-
{
1
\
over3
}
+
{
4
\
over
405
\,
n
}
+
{
46
\
over
25515
\,
n
^
2
}
+
{
131
\
over
1148175
\,
n
^
3
}
where
,
for
the
:
cite
:`
1968
adga_book_S
`
model
,
:
math
:`
b
(
n
)`
is
the
solution
to
-
:
raw
-
latex
:`\
cite
{
devaucouleurs48
}`
spheroid
(
bulge
,
eq
.
[[
sersic
]],
with
:
math
:`
n
=
4
`)
..
math
::
:
label
:
bofn
-
Exponential
disk
+
S
é
rsic
(:
math
:`
R
^{
1
/
n
}`)
spheroid
(
bulge
)
2
\
gamma
[
2
\,
n
,
b
(
n
)]
=
\
Gamma
(
2
\,
n
)
-
Point
source
An
accurate
approximation
for
the
solution
for
:
math
:`
b
(
n
)`
of
:
eq
:`
bofn
`
is
:
cite
:`
1999
AA_352_447C
`:
-
Background
(
constant
)
..
math
::
For
these
models
,
SExtractor
can
compute
fluxes
and
magnitudes
,
as
well
as
sizes
(
disk
scale
length
for
the
disks
and
effective
—
projected
half
-
light
—
radii
for
the
spheroids
),
characteristic
surface
magnitudes
,
and
S
é
rsic
index
,
as
well
as
their
uncertainties
.
b
(
n
)
=
2
\,
n
-
{
1
\
over3
}
+
{
4
\
over
405
\,
n
}
+
{
46
\
over
25515
\,
n
^
2
}
+
{
131
\
over
1148175
\,
n
^
3
}
The
models
are
concentric
(
they
assume
the
same
center
)
and
are
all
convolved
with
the
PSF
,
given
by
the
.
psf
file
,
which
must
be
determined
by
first
running
PSFEx
(
see
below
).
Experience
shows
that
the
de
Vaucouleurs
spheroid
+
exponential
disk
combination
provides
fairly
accurate
and
robust
fits
for
moderately
resolved
faint
galaxies
.
An
adjustable
S
é
rsic
index
may
offer
lower
residuals
on
spheroids
and
/
or
well
-
resolved
galaxies
,
but
makes
the
fit
less
robust
and
more
sensitive
to
PSF
model
errors
.
Unfortunately
,
t
he
S
é
rsic
profile
is
very
cuspy
in
the
center
for
T
he
S
é
rsic
profile
is
very
cuspy
in
the
center
for
:
math
:`
n
>
2
`.
To
avoid
huge
wings
in
the
FFTs
when
convolving
the
profile
with
the
PSF
,
the
profile
is
split
between
a
3
rd
order
polynomial
,
analytically
fit
to
match
,
in
intensity
and
its
1
st
and
2
nd
spatial
...
...
@@ -100,9 +196,8 @@ ellipticities greater than unity, SExtractor avoids dichotomies of
position
angle
when
the
ellipticity
is
very
low
.
The
S
é
rsic
index
is
allowed
values
between
1
and
10.
Models
are
measured
according
to
the
following
table
.
..
math
::
..
Models
are
measured
according
to
the
following
table
.
\
begin
{
aligned
}
\
hbox
{{\
tt
FLUX
\
_BACKOFFSET
}
or
{\
tt
FLUXERR
\
_BACKOFFSET
}}
&\
to
&
\
hbox
{
background
}
...
...
@@ -113,54 +208,47 @@ Models are measured according to the following table.
\hbox{{\tt SPHEROID\_xxx} without {\tt SPEHEROID\_SERSICN[ERR]}} &\to&
\hbox{de Vaucouleurs (}n=4 \hbox{ S\'
ersic
)}
\
nonumber
\\
\
hbox
{{\
tt
MODEL
\
_xxx
}
only
}
&\
to
&
\
hbox
{
S
\
'ersic [???]} \nonumber \\
\hbox{{\tt SPHEROID\_xxx} and {\tt DISK\_xxx}}&\to& \hbox{S\'
ersic
spheroid
+
exponential
disk
[???]}
\
nonumber
\
end
{
aligned
}
Table
[
modeltriggers
]
should
be
interpreted
as
meaning
that
if
one
of
the
parameters
given
in
the
parameter
file
(
e
.
g
.
default
.
param
)
includes
the
string
on
the
left
of
the
arrow
,
the
model
to
the
right
of
the
arrow
is
triggered
.
For
example
,
when
including
parameters
that
contain
the
string
‘
MODEL
’
,
both
galaxies
and
stars
are
fit
with
convolutions
of
S
é
rsic
models
with
the
PSF
.
If
no
SPHEROID
\
_xxx
or
DISK
\
_xxx
parameter
is
present
,
but
the
model
-
fitting
process
is
nevertheless
triggered
by
the
presence
of
other
measurement
parameters
or
relevant
CHECKIMAGE
\
_TYPEs
,
a
single
component
with
S
é
rsic
profile
and
adjustable
S
é
rsic
index
:
math
:`
n
`
is
fitted
.
The
number
of
parameters
that
are
fit
are
2
for
the
global
center
,
4
per
model
for
the
scale
,
normalization
,
aspect
ratio
and
position
angle
,
plus
the
index
for
the
S
é
rsic
model
.
For
example
,
fitting
a
S
é
rsic
+
exponential
disk
involves
a
fitting
11
parameters
.
\hbox{{\tt SPHEROID\_xxx} and {\tt DISK\_xxx}}&\to& \hbox{S\'
ersic
spheroid
+
exponential
disk
[???]}
\
nonumber
\
end
{
aligned
}
Table
[
modeltriggers
]
should
be
interpreted
as
meaning
that
if
one
of
the
parameters
given
in
the
parameter
file
(
e
.
g
.
default
.
param
)
includes
the
string
on
the
left
of
the
arrow
,
the
model
to
the
right
of
the
arrow
is
triggered
.
For
example
,
when
including
parameters
that
contain
the
string
‘
MODEL
’
,
both
galaxies
and
stars
are
fit
with
convolutions
of
S
é
rsic
models
with
the
PSF
.
If
no
SPHEROID
\
_xxx
or
DISK
\
_xxx
parameter
is
present
,
but
the
model
-
fitting
process
is
nevertheless
triggered
by
the
presence
of
other
measurement
parameters
or
relevant
CHECKIMAGE
\
_TYPEs
,
a
single
component
with
S
é
rsic
profile
and
adjustable
S
é
rsic
index
:
math
:`
n
`
is
fitted
.
The
number
of
parameters
that
are
fit
are
2
for
the
global
center
,
4
per
model
for
the
scale
,
normalization
,
aspect
ratio
and
position
angle
,
plus
the
index
for
the
S
é
rsic
model
.
For
example
,
fitting
a
S
é
rsic
+
exponential
disk
involves
a
fitting
11
parameters
.
Experience
shows
that
the
de
Vaucouleurs
spheroid
+
exponential
disk
combination
provides
fairly
accurate
and
robust
fits
for
moderately
resolved
faint
galaxies
.
An
adjustable
S
é
rsic
index
may
offer
lower
residuals
on
spheroids
and
/
or
well
-
resolved
galaxies
,
but
makes
the
fit
less
robust
and
more
sensitive
to
PSF
model
errors
.
One
might
think
of
adding
some
mechanism
to
lock
or
unlock
the
S
é
rsic
index
automatically
in
future
versions
of
SExtractor
.
The
measurement
parameters
related
to
model
-
fitting
follow
the
usual
SExtractor
rules
:
The
measurement
parameters
related
to
model
-
fitting
follow
the
usual
SExtractor
rules
:
Flux
measurements
are
available
in
ADUs
(
FLUX
\
_xxx
parameters
)
or
magnitudes
(
MAG
\
_xxx
parameters
),
Coordinates
and
radii
are
available
in
pixels
or
celestial
units
(
provided
that
the
FITS
image
header
contains
the
appropriate
WCS
information
).
Flux
measurements
are
available
in
ADUs
(
FLUX
\
_xxx
parameters
)
or
magnitudes
(
MAG
\
_xxx
parameters
),
Coordinates
and
radii
are
available
in
pixels
or
celestial
units
(
provided
that
the
FITS
image
header
contains
the
appropriate
WCS
information
).
xxxMODEL
\
_yyy
measurement
parameters
deal
with
the
global
fitted
model
,
i
.
e
.
the
sum
of
all
components
(
e
.
g
.
chi
-
square
per
d
.
o
.
f
.
CHI2
\
_MODEL
,
PSF
-
corrected
ellipticities
E1
/
2
MODEL
\
_IMAGE
,
EPS1
/
2
MODEL
\
_IMAGE
).
xxxMODEL
\
_yyy
measurement
parameters
deal
with
the
global
fitted
model
,
i
.
e
.
the
sum
of
all
components
(
e
.
g
.
chi
-
square
per
d
.
o
.
f
.
CHI2
\
_MODEL
,
PSF
-
corrected
ellipticities
E1
/
2
MODEL
\
_IMAGE
,
EPS1
/
2
MODEL
\
_IMAGE
).
:
math
:`
1
\,\
sigma
`
error
estimates
xxxERR
\
_yyy
are
provided
for
most
measurement
parameters
;
they
are
obtained
by
marginalizing
the
full
covariance
matrix
of
the
fit
.
:
math
:`
1
\,\
sigma
`
error
estimates
xxxERR
\
_yyy
are
provided
for
most
measurement
parameters
;
they
are
obtained
by
marginalizing
the
full
covariance
matrix
of
the
fit
.
Since
the
model
fitting
involves
convolution
with
the
PSF
,
it
is
imperative
to
launch
PSFEx
before
launching
SExtractor
.
In
practice
,
the
sequence
of
operations
is
:
Since
the
model
fitting
involves
convolution
with
the
PSF
,
it
is
imperative
to
launch
PSFEx
before
launching
SExtractor
.
In
practice
,
the
sequence
of
operations
is
:
#.
Run
SExtractor
to
prepare
PSFEx
;
#.
Run
SExtractor
to
prepare
PSFEx
;
#.
Run
PSFEx
to
prepare
model
fits
in
SExtractor
;
#.
Run
PSFEx
to
prepare
model
fits
in
SExtractor
;
#.
Run
SExtractor
with
model
fit
parameters
.
#.
Run
SExtractor
with
model
fit
parameters
.
doc/src/Param.rst
View file @
07ea5e95
...
...
@@ -86,9 +86,10 @@ of their meaning.
:header: "Name", "Unit", "Description"
:widths: 15 10 30
NUMBER,, Running object number
ID_PARENT,..., Parent ID (before deblending)
EXT_NUMBER,..., FITS extension number
_`NUMBER`,, Running object number
_`ID_PARENT`,..., Parent ID (before deblending)
_`EXT_NUMBER`,..., FITS extension number
_`FLAGS`,..., Extraction flags
_`FLUX_ISO`, count, :ref:`Isophotal flux <flux_iso_def>`
_`FLUXERR_ISO`, count, :ref:`RMS error estimate for the isophotal flux <flux_iso_def>`
_`MAG_ISO`, magnitude, :ref:`Isophotal magnitude <flux_iso_def>`
...
...
@@ -153,4 +154,95 @@ of their meaning.
_`AWIN_IMAGE`, pixel, :ref:`Windowed image major axis <shape_win_def>`
_`BWIN_IMAGE`, pixel, :ref:`Windowed image minor axis <shape_win_def>`
_`THETAWIN_IMAGE`, degree, :ref:`Windowed image position angle <shape_win_def>`
_`VECTOR_MODEL`, ..., :ref:`Model-fitting coefficients <models_def>`
_`VECTOR_MODELERR`, ..., :ref:`Model-fitting coefficient uncertainties <models_def>`
_`MATRIX_MODELERR`, ..., :ref:`Model-fitting covariance matrix <model_minimization_def>`
_`CHI2_MODEL`, ..., :ref:`Reduced modified Chi2 of the fit <model_minimization_def>`
_`FLAGS_MODEL`, ..., :ref:`Model-fitting flags <model_minimization_def>`
_`NITER_MODEL`, ..., :ref:`Number of model-fitting iterations <model_minimization_def>`
_`FLUX_MODEL`, count, :ref:`Flux from model-fitting <models_def>`
_`FLUXERR_MODEL`, count, :ref:`RMS error estimate for the model-fitting flux <models_def>`
_`MAG_MODEL`, magnitude, :ref:`Magnitude from model-fitting <models_def>`
_`MAGERR_MODEL`, count, :ref:`RMS error estimate for the model-fitting magnitude <models_def>`
_`FLUX_MAX_MODEL`, count, :ref:`Peak model flux above the background <models_def>`
_`FLUX_EFF_MODEL`, count, :ref:`Effective model flux above the background <models_def>`
_`FLUX_EFF_MODEL`, count, :ref:`Mean effective model flux above the background <models_def>`
_`MU_MAX_MODEL`, mag.arcsec\ :sup:`-2`, :ref:`Peak model surface brightness above the background <models_def>`
_`MU_EFF_MODEL`, mag.arcsec\ :sup:`-2`, :ref:`Effective model surface brightness above the background <models_def>`
_`MU_MEAN_MODEL`, mag.arcsec\ :sup:`-2`, :ref:`Mean effective model surface brightness above the background <models_def>`
_`XMODEL_IMAGE`, pixel, :ref:`x coordinate from model-fitting <models_def>`
_`YMODEL_IMAGE`, pixel, :ref:`y coordinate from model-fitting <models_def>`
..
#XMODEL_WORLD Fitted position along world x axis [deg]
#YMODEL_WORLD Fitted position along world y axis [deg]
#ALPHAMODEL_SKY Fitted position along right ascension (native) [deg]
#DELTAMODEL_SKY Fitted position along declination (native) [deg]
#ALPHAMODEL_J2000 Fitted position along right ascension (J2000) [deg]
#DELTAMODEL_J2000 Fitted position along declination (J2000) [deg]
#ALPHAMODEL_B1950 Fitted position along right ascension (B1950) [deg]
#DELTAMODEL_B1950 Fitted position along declination (B1950) [deg]
#ERRX2MODEL_IMAGE Variance of fitted position along x [pixel**2]
#ERRY2MODEL_IMAGE Variance of fitted position along y [pixel**2]
#ERRXYMODEL_IMAGE Covariance of fitted position between x and y [pixel**2]
#ERRX2MODEL_WORLD Variance of fitted position along X-WORLD (alpha) [deg**2]
#ERRY2MODEL_WORLD Variance of fitted position along Y-WORLD (delta) [deg**2]
#ERRXYMODEL_WORLD Covariance of fitted position X-WORLD/Y-WORLD [deg**2]
#ERRCXXMODEL_IMAGE Cxx error ellipse parameter of fitted position [pixel**(-2)]
#ERRCYYMODEL_IMAGE Cyy error ellipse parameter of fitted position [pixel**(-2)]
#ERRCXYMODEL_IMAGE Cxy error ellipse parameter of fitted position [pixel**(-2)]
#ERRCXXMODEL_WORLD Cxx fitted error ellipse parameter (WORLD units) [deg**(-2)]
#ERRCYYMODEL_WORLD Cyy fitted error ellipse parameter (WORLD units) [deg**(-2)]
#ERRCXYMODEL_WORLD Cxy fitted error ellipse parameter (WORLD units) [deg**(-2)]
#ERRAMODEL_IMAGE RMS error of fitted position along major axis [pixel]
#ERRBMODEL_IMAGE RMS error of fitted position along minor axis [pixel]
#ERRTHETAMODEL_IMAGE Error ellipse pos.angle of fitted position (CCW/x) [deg]
#ERRAMODEL_WORLD World RMS error of fitted position along major axis [deg]
#ERRBMODEL_WORLD World RMS error of fitted position along minor axis [deg]
#ERRTHETAMODEL_WORLD Error ellipse pos.angle of fitted position (CCW/world-x) [deg]
#ERRTHETAMODEL_SKY Native fitted error ellipse pos. angle (east of north) [deg]
#ERRTHETAMODEL_J2000 J2000 fitted error ellipse pos. angle (east of north) [deg]
#ERRTHETAMODEL_B1950 B1950 fitted error ellipse pos. angle (east of north) [deg]
#X2MODEL_IMAGE Variance along x from model-fitting [pixel**2]
#Y2MODEL_IMAGE Variance along y from model-fitting [pixel**2]
#XYMODEL_IMAGE Covariance between x and y from model-fitting [pixel**2]
#ELLIP1MODEL_IMAGE Ellipticity component from model-fitting
#ELLIP2MODEL_IMAGE Ellipticity component from model-fitting
#POLAR1MODEL_IMAGE Ellipticity component (quadratic) from model-fitting
#POLAR2MODEL_IMAGE Ellipticity component (quadratic) from model-fitting
#ELLIP1ERRMODEL_IMAGE Ellipticity component std.error from model-fitting
#ELLIP2ERRMODEL_IMAGE Ellipticity component std.error from model-fitting
#ELLIPCORRMODEL_IMAGE Corr.coeff between ellip.components from model-fitting
#POLAR1ERRMODEL_IMAGE Polarisation component std.error from model-fitting
#POLAR2ERRMODEL_IMAGE Polarisation component std.error from model-fitting
#POLARCORRMODEL_IMAGE Corr.coeff between polar. components from fitting
#X2MODEL_WORLD Variance along X-WORLD (alpha) from model-fitting [deg**2]
#Y2MODEL_WORLD Variance along Y_WORLD (delta) from model-fitting [deg**2]
#XYMODEL_WORLD Covariance between X-WORLD and Y-WORLD from model-fitting [deg**2]
#ELLIP1MODEL_WORLD Ellipticity component from model-fitting
#ELLIP2MODEL_WORLD Ellipticity component from model-fitting
#POLAR1MODEL_WORLD Polarisation component from model-fitting
#POLAR2MODEL_WORLD Polarisation component from model-fitting
#ELLIP1ERRMODEL_WORLD Ellipticity component std.error from model-fitting
#ELLIP2ERRMODEL_WORLD Ellipticity component std.error from model-fitting
#ELLIPCORRMODEL_WORLD Corr.coeff between ellip.components from model-fitting
#POLAR1ERRMODEL_WORLD Polarisation component std.error from model-fitting
#POLAR2ERRMODEL_WORLD Polarisation component std.error from model-fitting
#POLARCORRMODEL_WORLD Corr.coeff between polar. components from fitting
#CXXMODEL_IMAGE Cxx ellipse parameter from model-fitting [pixel**(-2)]
#CYYMODEL_IMAGE Cyy ellipse parameter from model-fittinh [pixel**(-2)]
#CXYMODEL_IMAGE Cxy ellipse parameter from model-fitting [pixel**(-2)]
#CXXMODEL_WORLD Cxx ellipse parameter (WORLD) from model-fitting [deg**(-2)]
#CYYMODEL_WORLD Cyy ellipse parameter (WORLD) from model-fitting [deg**(-2)]
#CXYMODEL_WORLD Cxy ellipse parameter (WORLD) from model-fitting [deg**(-2)]
#AMODEL_IMAGE Model RMS along major axis [pixel]
#BMODEL_IMAGE Model RMS along minor axis [pixel]
#THETAMODEL_IMAGE Model position angle (CCW/x) [deg]
#AMODEL_WORLD Model RMS along major axis (WORLD units) [deg]
#BMODEL_WORLD Model RMS along minor axis (WORLD units) [deg]
#THETAMODEL_WORLD Model position angle (CCW/WORLD-x) [deg]
#THETAMODEL_SKY Model position angle (east of north) (native) [deg]
#THETAMODEL_J2000 Model position angle (east of north) (J2000) [deg]
#THETAMODEL_B1950 Model position angle (east of north) (B1950) [deg]
#SPREAD_MODEL Spread parameter from model-fitting
doc/src/Position.rst
View file @
07ea5e95
...
...
@@ -224,7 +224,7 @@ parameters can be derived from the 2nd order moments:
:figwidth: 100%
:align: center
Meaning of shape parameters.
Meaning of
basic
shape parameters.
.. _poserr_iso_def:
...
...
doc/src/figures/robustgalfit.png
0 → 100644
View file @
07ea5e95
153 KB
doc/src/keys.rst
View file @
07ea5e95
...
...
@@ -19,6 +19,9 @@
.. |Intel| replace:: Intel\ :sup:`®`\
.. _Intel: http://intel.com
.. |LevMar| replace:: :program:`LevMar`
.. _LevMar: http://users.ics.forth.gr/~lourakis/levmar
.. |MEF| replace:: :abbr:`MEF (Multi-Extension FITS)`
.. _MEF: http://www.stsci.edu/hst/HST_overview/documents/datahandbook/intro_ch23.html
...
...
doc/src/references.bib
View file @
07ea5e95
...
...
@@ -27,6 +27,30 @@
adsnote
=
{Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE
{
1999AA_352_447C
,
author
=
{{Ciotti}, L. and {Bertin}, G.}
,
title
=
"{Analytical properties of the R^(1/m) law}"
,
journal
=
{A&A}
,
eprint
=
{astro-ph/9911078}
,
keywords
=
{GALAXIES: ELLIPTICAL AND LENTICULAR, CD, GALAXIES: FUNDAMENTAL PARAMETERS, GALAXIES: KINEMATICS AND DYNAMICS, GALAXIES: PHOTOMETRY}
,
year
=
1999
,
month
=
dec
,
volume
=
352
,
pages
=
{447-451}
,
adsurl
=
{http://adsabs.harvard.edu/abs/1999A&A...352..447C}
,
adsnote
=
{Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE
{
duchon1979
,
author
=
{{Duchon}, C.~E.}
,
title
=
"{Lanczos Filtering in One and Two Dimensions}"
,
journal
=
{Journal of Applied Meteorology}
,
year
=
1979
,
month
=
aug
,
volume
=
18
,
pages
=
{1016-1022}
,
doi
=
{10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2}
,
}
@ARTICLE
{
2002AA_395_1061G
,
author
=
{{Greisen}, E.~W. and {Calabretta}, M.~R.}
,
title
=
"{Representations of world coordinates in FITS}"
,
...
...
@@ -153,6 +177,16 @@ booktitle = {Conference on Applications of Digital Image Processing to Astronomy
adsnote
=
{Provided by the SAO/NASA Astrophysics Data System}
}
@BOOK
{
1968adga_book_S
,
author
=
{{Sérsic}, J.~L.}
,
title
=
"{Atlas de Galaxias Australes}"
,
keywords
=
{GALAXIES, GROUPS OF GALAXIES, ATLASES}
,
publisher
=
{Cordoba, Argentina: Observatorio Astronomico, 1968}
,
year
=
1968
,
adsurl
=
{http://adsabs.harvard.edu/abs/1968adga.book.....S}
,
adsnote
=
{Provided by the SAO/NASA Astrophysics Data System}
}
@PHDTHESIS
{
1996PhDT_68B
,
author
=
{{Bertin}, E.}
,
title
=
"{Photom\'etrie automatique de galaxies et contraintes sur leur \'evolution r\'ecente}"
,
...
...
@@ -163,4 +197,10 @@ booktitle = {Conference on Applications of Digital Image Processing to Astronomy
adsnote
=
{Provided by the SAO/NASA Astrophysics Data System}
}
@misc
{
lourakis04LM
,
author
=
{M.I.A. Lourakis}
,
title
=
{levmar: Levenberg-Marquardt nonlinear least squares algorithms in {C}/{C}++}
,
url
=
{http://www.ics.forth.gr/~lourakis/levmar/}
,
year
=
{2004}
}
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment