Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-pipeline
msc
sextractor
Commits
09fb0a79
Commit
09fb0a79
authored
Nov 22, 2017
by
Emmanuel Bertin
Browse files
Doc: added WIN error ellipse equations.
parent
2e62b5e8
Changes
2
Hide whitespace changes
Inline
Side-by-side
doc/src/Position.rst
View file @
09fb0a79
...
...
@@ -285,7 +285,7 @@ error ellipse are computed from the covariance matrix exactly like in
\tan (2{\tt ERRTHETA}) & = & 2 \,\frac{{\rm cov}(\overline{x},\overline{y})}
{{\rm var}(\overline{x}) - {\rm var}(\overline{y})}.\end{aligned}
And the ellipse parameters are:
And the
error
ellipse parameters are:
.. math::
:label: errellipse
...
...
doc/src/PositionWin.rst
View file @
09fb0a79
...
...
@@ -173,10 +173,10 @@ to :eq:`xywin` writes:
\begin{aligned}
{\tt ERRX2WIN} & = {\rm var}(\overline{x_{\tt WIN}})
= & 4\,\frac{\sum_{r_i < r_{\rm max}} w_i^2 \sigma^2_i (x_i-\overline{x})^2}
= & 4\,\frac{\sum_{r_i < r_{\rm max}} w_i^2 \sigma^2_i (x_i-\overline{x
_{\tt WIN}
})^2}
{\left(\sum_{r_i < r_{\rm max}} w_i I_i\right)^2},\\
{\tt ERRY2WIN} & = {\rm var}(\overline{y_{\tt WIN}})
= & 4\,\frac{\sum_{r_i < r_{\rm max}} w_i^2 \sigma^2_i (y_i-\overline{y})^2}
= & 4\,\frac{\sum_{r_i < r_{\rm max}} w_i^2 \sigma^2_i (y_i-\overline{y
_{\tt WIN}
})^2}
{\left(\sum_{r_i < r_{\rm max}} w_i I_i\right)^2},\\
{\tt ERRXYWIN} & = {\rm cov}(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})
= & 4\,\frac{\sum_{r_i < r_{\rm max}}
...
...
@@ -189,7 +189,44 @@ from the covariance matrix elements
:math:`{\rm var}(\overline{x_{\tt WIN}})`,
:math:`{\rm var}(\overline{y_{\tt WIN}})`,
:math:`{\rm cov}(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})`,
similarly to the :ref:`isophotal error ellipse <poserr>`.
similarly to the :ref:`isophotal error ellipse <poserr>`:
.. math::
:label: errabthetawin
\begin{aligned}
{\tt ERRAWIN}^2 & = & \frac{{\rm var}(\overline{x_{\tt WIN}})+{\rm var}(\overline{y_{\tt WIN}})}{2}
+ \sqrt{\left(\frac{{\rm var}(\overline{x_{\tt WIN}})-{\rm var}(\overline{y_{\tt WIN}})}{2}\right)^2
+ {\rm cov}^2(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})},\\
{\tt ERRBWIN}^2 & = & \frac{{\rm var}(\overline{x_{\tt WIN}})+{\rm var}(\overline{y_{\tt WIN}})}{2}
- \sqrt{\left(\frac{{\rm var}(\overline{x_{\tt WIN}})-{\rm var}(\overline{y_{\tt WIN}})}{2}\right)^2
+ {\rm cov}^2(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})},\\
\tan (2{\tt ERRTHETAWIN}) & = & 2 \,\frac{{\rm cov}(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})}
{{\rm var}(\overline{x_{\tt WIN}}) - {\rm var}(\overline{y_{\tt WIN}})}.
\end{aligned}
And the error ellipse parameters are:
.. math::
:label: errellipsewin
\begin{aligned}
{\tt ERRCXXWIN} & = & \frac{\cos^2 {\tt ERRTHETAWIN}}{{\tt ERRAWIN}^2} +
\frac{\sin^2 {\tt ERRTHETAWIN}}{{\tt ERRBWIN}^2} = \frac{{\rm
var}(\overline{y_{\tt WIN}})}{{\rm var}(\overline{x_{\tt WIN}}) {\rm var}(\overline{y_{\tt WIN}}) -
{\rm cov}^2(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})},\\
{\tt ERRCYYWIN} & = & \frac{\sin^2 {\tt ERRTHETAWIN}}{{\tt ERRAWIN}^2} +
\frac{\cos^2 {\tt ERRTHETAWIN}}{{\tt ERRBWIN}^2} =
\frac{{\rm var}(\overline{x_{\tt WIN}})}{{\rm var}(\overline{x_{\tt WIN}}) {\rm var}(\overline{y_{\tt WIN}}) -
{\rm cov}^2(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})},\\
{\tt ERRCXYWIN} & = & 2 \cos {\tt
ERRTHETAWIN}\sin {\tt ERRTHETAWIN} \left( \frac{1}{{\tt ERRAWIN}^2} -
\frac{1}{{\tt ERRBWIN}^2}\right)\\ & = & -2 \frac{{\rm
cov}(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})}{{\rm var}(\overline{x_{\tt WIN}}) {\rm var}(\overline{y_{\tt WIN}}) -
{\rm cov}^2(\overline{x_{\tt WIN}},\overline{y_{\tt WIN}})}.
\end{aligned}
.. [#win_accuracy] See http://www.astromatic.net/forum/showthread.php?tid=581 .
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment