Commit 41b0c78a authored by Yan Zhaojun's avatar Yan Zhaojun
Browse files

debug

parent e6a27c29
......@@ -34,10 +34,10 @@ import astropy.coordinates as coord
import ctypes
import sys
from csst_ifs_sim.support import IFSinstrumentModel
from csst_ifs_sim.support import cosmicrays
from csst_ifs_sim.support import logger as lg
from csst_ifs_sim.CTI import CTI
# from csst_ifs_sim.support import IFSinstrumentModel
# from csst_ifs_sim.support import cosmicrays
# from csst_ifs_sim.support import logger as lg
# from csst_ifs_sim.CTI import CTI
sys.path.append('./csst_ifs_sim')
conf.auto_max_age = None
......@@ -90,9 +90,531 @@ Note:: This class is Python 3 compatible.
2024.5.10 ---updata and correct the bug of frame transfer effect simulation
"""
#### functions definition #####
######################## functions definition ################################
"""
Charge Transfer Inefficiency
============================
This file contains a simple class to run a CDM03 CTI model developed by Alex Short (ESA).
This now contains both the official CDM03 and a new version that allows different trap
parameters in parallel and serial direction.
:requires: NumPy
:requires: CDM03 (FORTRAN code, f2py -c -m cdm03bidir cdm03bidir.f90)
"""
#CDM03bidir
class CDM03bidir():
"""
Class to run CDM03 CTI model, class Fortran routine to perform the actual CDM03 calculations.
:param settings: input parameters
:type settings: dict
:param data: input data to be radiated
:type data: ndarray
:param log: instance to Python logging
:type log: logging instance
"""
def __init__(self, settings, data, log=None):
"""
Class constructor.
:param settings: input parameters
:type settings: dict
:param data: input data to be radiated
:type data: ndarray
:param log: instance to Python logging
:type log: logging instance
"""
self.data = data
self.values = dict(quads=(0,1,2,3), xsize=2048, ysize=2066, dob=0.0, rdose=8.0e9)
self.values.update(settings)
self.log = log
self._setupLogger()
# #default CDM03 settings
# self.params = dict(beta_p=0.6, beta_s=0.6, fwc=200000., vth=1.168e7, vg=6.e-11, t=20.48e-3,
# sfwc=730000., svg=1.0e-10, st=5.0e-6, parallel=1., serial=1.)
self.params = dict(beta_p=0.6, beta_s=0.6, fwc=100000., vth=1.168e7, vg=6.e-11, t=1.0e-3,
sfwc=700000., svg=1.0e-10, st=1.0e-6, parallel=1., serial=0.)
#update with inputs
self.params.update(self.values)
#read in trap information
trapdata = np.loadtxt(self.values['dir_path']+self.values['paralleltrapfile'])
if trapdata.ndim > 1:
self.nt_p = trapdata[:, 0]
self.sigma_p = trapdata[:, 1]
self.taur_p = trapdata[:, 2]
else:
#only one trap species
self.nt_p = [trapdata[0],]
self.sigma_p = [trapdata[1],]
self.taur_p = [trapdata[2],]
trapdata = np.loadtxt(self.values['dir_path']+self.values['serialtrapfile'])
if trapdata.ndim > 1:
self.nt_s = trapdata[:, 0]
self.sigma_s = trapdata[:, 1]
self.taur_s = trapdata[:, 2]
else:
#only one trap species
self.nt_s = [trapdata[0],]
self.sigma_s = [trapdata[1],]
self.taur_s = [trapdata[2],]
#scale thibaut's values
if 'thibaut' in self.values['parallelTrapfile']:
self.nt_p /= 0.576 #thibaut's values traps / pixel
self.sigma_p *= 1.e4 #thibaut's values in m**2
if 'thibaut' in self.values['serialTrapfile']:
self.nt_s *= 0.576 #thibaut's values traps / pixel #should be division?
self.sigma_s *= 1.e4 #thibaut's values in m**2
def _setupLogger(self):
"""
Set up the logger.
"""
self.logger = True
# if self.log is None:
# self.logger = False
def applyRadiationDamage(self, data, iquadrant=0):
"""
Apply radian damage based on FORTRAN CDM03 model. The method assumes that
input data covers only a single quadrant defined by the iquadrant integer.
:param data: imaging data to which the CDM03 model will be applied to.
:type data: ndarray
:param iquandrant: number of the quadrant to process
:type iquandrant: int
cdm03 - Function signature::
sout = cdm03(sinp,iflip,jflip,dob,rdose,in_nt,in_sigma,in_tr,[xdim,ydim,zdim])
Required arguments:
sinp : input rank-2 array('d') with bounds (xdim,ydim)
iflip : input int
jflip : input int
dob : input float
rdose : input float
in_nt : input rank-1 array('d') with bounds (zdim)
in_sigma : input rank-1 array('d') with bounds (zdim)
in_tr : input rank-1 array('d') with bounds (zdim)
Optional arguments:
xdim := shape(sinp,0) input int
ydim := shape(sinp,1) input int
zdim := len(in_nt) input int
Return objects:
sout : rank-2 array('d') with bounds (xdim,ydim)
.. Note:: Because Python/NumPy arrays are different row/column based, one needs
to be extra careful here. NumPy.asfortranarray will be called to get
an array laid out in Fortran order in memory. Before returning the
array will be laid out in memory in C-style (row-major order).
:return: image that has been run through the CDM03 model
:rtype: ndarray
"""""
#return data
iflip = iquadrant / 2
jflip = iquadrant % 2
params = [self.params['beta_p'], self.params['beta_s'], self.params['fwc'], self.params['vth'],
self.params['vg'], self.params['t'], self.params['sfwc'], self.params['svg'], self.params['st'],
self.params['parallel'], self.params['serial']]
if self.logger:
self.log.info('nt_p=' + str(self.nt_p))
self.log.info('nt_s=' + str(self.nt_s))
self.log.info('sigma_p= ' + str(self.sigma_p))
self.log.info('sigma_s= ' + str(self.sigma_s))
self.log.info('taur_p= ' + str(self.taur_p))
self.log.info('taur_s= ' + str(self.taur_s))
self.log.info('dob=%f' % self.values['dob'])
self.log.info('rdose=%e' % self.values['rdose'])
self.log.info('xsize=%i' % data.shape[1])
self.log.info('ysize=%i' % data.shape[0])
self.log.info('quadrant=%i' % iquadrant)
self.log.info('iflip=%i' % iflip)
self.log.info('jflip=%i' % jflip)
#################################################################################
###modify
#sys.path.append('../so')
from ifs_so import cdm03bidir
# from ifs_so.cdm03.cpython-38-x86_64-linux-gnu import cdm03bidir
# import cdm03bidir
CTIed = cdm03bidir.cdm03(np.asfortranarray(data),
jflip, iflip,
self.values['dob'], self.values['rdose'],
self.nt_p, self.sigma_p, self.taur_p,
self.nt_s, self.sigma_s, self.taur_s,
params,
[data.shape[0], data.shape[1], len(self.nt_p), len(self.nt_s), len(self.params)])
return np.asanyarray(CTIed)
#################################################################################################################
#################################################################################################################
"""
These functions can be used for logging information.
.. Warning:: logger is not multiprocessing safe.
:version: 0.3
"""
import logging
import logging.handlers
def setUpLogger(log_filename, loggername='logger'):
"""
Sets up a logger.
:param: log_filename: name of the file to save the log.
:param: loggername: name of the logger
:return: logger instance
"""
# create logger
logger = logging.getLogger(loggername)
logger.setLevel(logging.DEBUG)
# Add the log message handler to the logger
handler = logging.handlers.RotatingFileHandler(log_filename)
#maxBytes=20, backupCount=5)
# create formatter
formatter = logging.Formatter('%(asctime)s - %(module)s - %(funcName)s - %(levelname)s - %(message)s')
# add formatter to ch
handler.setFormatter(formatter)
# add handler to logger
if (logger.hasHandlers()):
logger.handlers.clear()
logger.addHandler(handler)
return logger
##############################################################################
"""
IFS Instrument Model
====================
The file provides a function that returns IFS related information such as pixel
size, dark current, gain...
"""
def IFSinformation():
"""
Returns a dictionary describing VIS. The following information is provided (id: value - reference)::
:return: instrument model parameters
:rtype: dict
"""
#########################################################################################################
#out = dict(readnoise=4, pixel_size=0.1, dark=0.0008333, fullwellcapacity=90000, bluesize=4000, redsize=6000, readtime=300.)
out=dict()
out.update({'dob' : 0, 'rdose' : 8.0e9,
'parallelTrapfile' : 'cdm_euclid_parallel.dat', 'serialTrapfile' : 'cdm_euclid_serial.dat',
'beta_s' : 0.6, 'beta_p': 0.6, 'fwc' : 90000, 'vth' : 1.168e7, 't' : 20.48e-3, 'vg' : 6.e-11,
'st' : 5.0e-6, 'sfwc' : 730000., 'svg' : 1.0e-10})
return out
def CCDnonLinearityModel(data, beta=6e-7):
"""
The non-linearity is modelled based on the results presented.
:param data: data to which the non-linearity model is being applied to
:type data: ndarray
:return: input data after conversion with the non-linearity model
:rtype: float or ndarray
"""
out = data-beta*data**2
return out
#############################################################################
"""
Cosmic Rays
===========
This simple class can be used to include cosmic ray events to an image.
By default the cosmic ray events are drawn from distributions describing
the length and energy of the events. Such distributions can be generated
for example using Stardust code (http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04636917).
The energy of the cosmic ray events can also be set to constant for
testing purposes. The class can be used to draw a single cosmic ray
event or up to a covering fraction.
:requires: NumPy
:requires: SciPy
:version: 0.2
"""
from scipy.interpolate import InterpolatedUnivariateSpline
class cosmicrays():
"""
Cosmic ray generation class. Can either draw events from distributions or
set the energy of the events to a constant.
:param log: logger instance
:param image: image to which cosmic rays are added to (a copy is made not to change the original numpy array)
:param crInfo: column information (cosmic ray file)
:param information: cosmic ray track information (file containing track length and energy information) and
exposure time.
"""
def __init__(self, log, image, crInfo=None, information=None):
"""
Cosmic ray generation class. Can either draw events from distributions or
set the energy of the events to a constant.
:param log: logger instance
:param image: image to which cosmic rays are added to (a copy is made not to change the original numpy array)
:param crInfo: column information (cosmic ray file)
:param information: cosmic ray track information (file containing track length and energy information) and
exposure time.
"""
#setup logger
self.log = log
#image and size
self.image = image.copy()
self.ysize, self.xsize = self.image.shape
#set up the information dictionary, first with defaults and then overwrite with inputs if given
self.information = (dict(cosmicraylengths='/home/yan/csst-master/data/cdf_cr_length.dat',
cosmicraydistance='/home/yan/csst-master/data/cdf_cr_total.dat',
exptime=565))
if information is not None:
self.information.update(information)
if crInfo is not None:
self.cr = crInfo
else:
self._readCosmicrayInformation()
##############################################################################
def _cosmicRayIntercepts(self, lum, x0, y0, l, phi):
"""
Derive cosmic ray streak intercept points.
:param lum: luminosities of the cosmic ray tracks
:param x0: central positions of the cosmic ray tracks in x-direction
:param y0: central positions of the cosmic ray tracks in y-direction
:param l: lengths of the cosmic ray tracks
:param phi: orientation angles of the cosmic ray tracks
:return: cosmic ray map (image)
:rtype: nd-array
"""
#create empty array
crImage = np.zeros((self.ysize, self.xsize), dtype=np.float64)
#x and y shifts
dx = l * np.cos(phi) / 2.
dy = l * np.sin(phi) / 2.
mskdx = np.abs(dx) < 1e-8
mskdy = np.abs(dy) < 1e-8
dx[mskdx] = 0.
dy[mskdy] = 0.
#pixels in x-direction
ilo = np.round(x0.copy() - dx)
msk = ilo < 0.
ilo[msk] = 0
ilo = ilo.astype(int)
ihi = 1 + np.round(x0.copy() + dx)
msk = ihi > self.xsize
ihi[msk] = self.xsize
ihi = ihi.astype(int)
#pixels in y-directions
jlo = np.round(y0.copy() - dy)
msk = jlo < 0.
jlo[msk] = 0
jlo = jlo.astype(int)
jhi = 1 + np.round(y0.copy() + dy)
msk = jhi > self.ysize
jhi[msk] = self.ysize
jhi = jhi.astype(int)
#loop over the individual events
for i, luminosity in enumerate(lum):
n = 0 # count the intercepts
u = []
x = []
y = []
#Compute X intercepts on the pixel grid
if ilo[i] < ihi[i]:
for xcoord in range(ilo[i], ihi[i]):
ok = (xcoord - x0[i]) / dx[i]
if np.abs(ok) <= 0.5:
n += 1
u.append(ok)
x.append(xcoord)
y.append(y0[i] + ok * dy[i])
else:
for xcoord in range(ihi[i], ilo[i]):
ok = (xcoord - x0[i]) / dx[i]
if np.abs(ok) <= 0.5:
n += 1
u.append(ok)
x.append(xcoord)
y.append(y0[i] + ok * dy[i])
#Compute Y intercepts on the pixel grid
if jlo[i] < jhi[i]:
for ycoord in range(jlo[i], jhi[i]):
ok = (ycoord - y0[i]) / dy[i]
if np.abs(ok) <= 0.5:
n += 1
u.append(ok)
x.append(x0[i] + ok * dx[i])
y.append(ycoord)
else:
for ycoord in range(jhi[i], jlo[i]):
ok = (ycoord - y0[i]) / dy[i]
if np.abs(ok) <= 0.5:
n += 1
u.append(ok)
x.append(x0[i] + ok * dx[i])
y.append(ycoord)
#check if no intercepts were found
if n < 1:
xc = int(np.floor(x0[i]))
yc = int(np.floor(y0[i]))
crImage[yc, xc] += luminosity
#Find the arguments that sort the intersections along the track
u = np.asarray(u)
x = np.asarray(x)
y = np.asarray(y)
args = np.argsort(u)
u = u[args]
x = x[args]
y = y[args]
#Decide which cell each interval traverses, and the path length
for i in range(1, n - 1):
w = u[i + 1] - u[i]
cx = int(1 + np.floor((x[i + 1] + x[i]) / 2.))
cy = int(1 + np.floor((y[i + 1] + y[i]) / 2.))
if 0 <= cx < self.xsize and 0 <= cy < self.ysize:
crImage[cy, cx] += (w * luminosity)
return crImage
def _drawEventsToCoveringFactor(self, coveringFraction=3.0, limit=1000, verbose=False):
"""
Generate cosmic ray events up to a covering fraction and include it to a cosmic ray map (self.cosmicrayMap).
:param coveringFraction: covering fraction of cosmic rya events in per cent of total number of pixels
:type coveringFraction: float
:param limit: limiting energy for the cosmic ray event [None = draw from distribution]
:type limit: None or float
:param verbose: print out information to stdout
:type verbose: bool
:return: None
"""
self.cosmicrayMap = np.zeros((self.ysize, self.xsize))
#how many events to draw at once, too large number leads to exceeding the covering fraction
cr_n = int(295 * self.information['exptime'] / 565. * coveringFraction / 1.4)
covering = 0.0
while covering < coveringFraction:
#pseudo-random numbers taken from a uniform distribution between 0 and 1
np.random.seed()
luck = np.random.rand(cr_n)
#draw the length of the tracks
ius = InterpolatedUnivariateSpline(self.cr['cr_cdf'], self.cr['cr_u'])
self.cr['cr_l'] = ius(luck)
if limit is None:
ius = InterpolatedUnivariateSpline(self.cr['cr_cde'], self.cr['cr_v'])
self.cr['cr_e'] = ius(luck)
else:
#set the energy directly to the limit
self.cr['cr_e'] = np.asarray([limit,])
#Choose the properties such as positions and an angle from a random Uniform dist
np.random.seed()
cr_x = self.xsize * np.random.rand(int(np.floor(cr_n)))
np.random.seed()
cr_y = self.ysize * np.random.rand(int(np.floor(cr_n)))
np.random.seed()
cr_phi = np.pi * np.random.rand(int(np.floor(cr_n)))
#find the intercepts
self.cosmicrayMap += self._cosmicRayIntercepts(self.cr['cr_e'], cr_x, cr_y, self.cr['cr_l'], cr_phi)
#count the covering factor
area_cr = np.count_nonzero(self.cosmicrayMap)
covering = 100.*area_cr / (self.xsize*self.ysize)
def addUpToFraction(self, coveringFraction, limit=None, verbose=False):
"""
Add cosmic ray events up to the covering Fraction.
:param coveringFraction: covering fraction of cosmic rya events in per cent of total number of pixels
:type coveringFraction: float
:param limit: limiting energy for the cosmic ray event [None = draw from distribution]
:type limit: None or float
:param verbose: print out information to stdout
:type verbose: bool
:return: image with cosmic rays
:rtype: ndarray
"""
self._drawEventsToCoveringFactor(coveringFraction, limit=limit, verbose=verbose)
#paste cosmic rays
self.image += self.cosmicrayMap
return self.image
###############################################################################
def transRaDec2D(ra, dec):
"""
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment