Commit 0f353503 authored by Yan Zhaojun's avatar Yan Zhaojun
Browse files

test

parent 2d749c48
Pipeline #4033 failed with stage
in 0 seconds
...@@ -242,80 +242,6 @@ def ill2flux(E,path): ...@@ -242,80 +242,6 @@ def ill2flux(E,path):
############################################################## ##############################################################
##########################################################
# def zodiacal(ra, dec, time):
# """
# For given RA, DEC and TIME, return the interpolated zodical spectrum in Leinert-1998.
# :param ra: RA in unit of degree, ICRS frame
# :param dec: DEC in unit of degree, ICRS frame
# :param time: the specified string that in ISO format i.e., yyyy-mm-dd.
# :return:
# wave_A: wavelength of the zodical spectrum
# spec_mjy: flux of the zodical spectrum, in unit of MJy/sr
# spec_erg: flux of the zodical spectrum, in unit of erg/s/cm^2/A/sr
# """
# # get solar position
# dt = datetime.fromisoformat(time)
# #jd = julian.to_jd(dt, fmt='jd')
# jd = time2jd(dt)
# t = Time(jd, format='jd', scale='utc')
# astro_sun = get_sun(t)
# ra_sun, dec_sun = astro_sun.gcrs.ra.deg, astro_sun.gcrs.dec.deg
# radec_sun = SkyCoord(ra=ra_sun*u.degree, dec=dec_sun*u.degree, frame='gcrs')
# lb_sun = radec_sun.transform_to('geocentrictrueecliptic')
# # get offsets between the target and sun.
# radec_obj = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs')
# lb_obj = radec_obj.transform_to('geocentrictrueecliptic')
# beta = abs(lb_obj.lat.degree)
# lamda = abs(lb_obj.lon.degree - lb_sun.lon.degree)
# # interpolated zodical surface brightness at 0.5 um
# zodi = pd.read_csv(self.information['dir_path']+'MCI_inputData/refs/zodi_map.dat', sep='\s+', header=None, comment='#')
# beta_angle = np.array([0, 5, 10, 15, 20, 25, 30, 45, 60, 75])
# lamda_angle = np.array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45,
# 60, 75, 90, 105, 120, 135, 150, 165, 180])
# xx, yy = np.meshgrid(beta_angle, lamda_angle)
# #xx, yy = np.meshgrid(beta_angle, lamda_angle,indexing='ij', sparse=True)
# f = interpolate.interp2d(xx, yy, zodi, kind='linear')
# #f = interpolate.RegularGridInterpolator((xx, yy), zodi, method='linear')
# zodi_obj = f(beta, lamda) #
# # read the zodical spectrum in the ecliptic
# cat_spec = pd.read_csv(self.information['dir_path']+'MCI_inputData/refs/solar_spec.dat', sep='\s+', header=None, comment='#')
# wave = cat_spec[0].values # A
# spec0 = cat_spec[1].values #
# zodi_norm = 252 #
# spec = spec0 * (zodi_obj / zodi_norm) * 1e-8 #
# # convert to the commonly used unit of MJy/sr, erg/s/cm^2/A/sr
# wave_A = wave # A
# #spec_mjy = spec * 0.1 * wave_A**2 / 3e18 * 1e23 * 1e-6 # MJy/sr
# spec_erg = spec * 0.1 # erg/s/cm^2/A/sr
# spec_erg2 = spec_erg / 4.25452e10 # erg/s/cm^2/A/arcsec^2
# # self.zodiacal_wave=wave_A # in A
# # self.zodiacal_flux=spec_erg2
# return wave_A, spec_erg2
###################################################################################
#from astropy import units as u
#from astropy.coordinates import SkyCoord
def earth_angle(time_jd, x_sat, y_sat, z_sat, ra_obj, dec_obj): def earth_angle(time_jd, x_sat, y_sat, z_sat, ra_obj, dec_obj):
ra_sat = np.arctan2(y_sat, x_sat) / np.pi * 180 ra_sat = np.arctan2(y_sat, x_sat) / np.pi * 180
...@@ -2521,7 +2447,7 @@ class MCIsimulator(): ...@@ -2521,7 +2447,7 @@ class MCIsimulator():
self.zodiacal_flux=spec_erg2 self.zodiacal_flux=spec_erg2
return return wave_A, spec_erg2
################################################################################### ###################################################################################
########################################################################## ##########################################################################
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment