Commit 2d749c48 authored by Yan Zhaojun's avatar Yan Zhaojun
Browse files

test

parent b5eb986d
Pipeline #4032 failed with stage
in 0 seconds
...@@ -243,71 +243,71 @@ def ill2flux(E,path): ...@@ -243,71 +243,71 @@ def ill2flux(E,path):
############################################################## ##############################################################
########################################################## ##########################################################
def zodiacal(ra, dec, time): # def zodiacal(ra, dec, time):
""" # """
For given RA, DEC and TIME, return the interpolated zodical spectrum in Leinert-1998. # For given RA, DEC and TIME, return the interpolated zodical spectrum in Leinert-1998.
:param ra: RA in unit of degree, ICRS frame # :param ra: RA in unit of degree, ICRS frame
:param dec: DEC in unit of degree, ICRS frame # :param dec: DEC in unit of degree, ICRS frame
:param time: the specified string that in ISO format i.e., yyyy-mm-dd. # :param time: the specified string that in ISO format i.e., yyyy-mm-dd.
:return: # :return:
wave_A: wavelength of the zodical spectrum # wave_A: wavelength of the zodical spectrum
spec_mjy: flux of the zodical spectrum, in unit of MJy/sr # spec_mjy: flux of the zodical spectrum, in unit of MJy/sr
spec_erg: flux of the zodical spectrum, in unit of erg/s/cm^2/A/sr # spec_erg: flux of the zodical spectrum, in unit of erg/s/cm^2/A/sr
""" # """
# get solar position # # get solar position
dt = datetime.fromisoformat(time) # dt = datetime.fromisoformat(time)
#jd = julian.to_jd(dt, fmt='jd') # #jd = julian.to_jd(dt, fmt='jd')
jd = time2jd(dt) # jd = time2jd(dt)
t = Time(jd, format='jd', scale='utc') # t = Time(jd, format='jd', scale='utc')
astro_sun = get_sun(t) # astro_sun = get_sun(t)
ra_sun, dec_sun = astro_sun.gcrs.ra.deg, astro_sun.gcrs.dec.deg # ra_sun, dec_sun = astro_sun.gcrs.ra.deg, astro_sun.gcrs.dec.deg
radec_sun = SkyCoord(ra=ra_sun*u.degree, dec=dec_sun*u.degree, frame='gcrs') # radec_sun = SkyCoord(ra=ra_sun*u.degree, dec=dec_sun*u.degree, frame='gcrs')
lb_sun = radec_sun.transform_to('geocentrictrueecliptic') # lb_sun = radec_sun.transform_to('geocentrictrueecliptic')
# get offsets between the target and sun. # # get offsets between the target and sun.
radec_obj = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs') # radec_obj = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs')
lb_obj = radec_obj.transform_to('geocentrictrueecliptic') # lb_obj = radec_obj.transform_to('geocentrictrueecliptic')
beta = abs(lb_obj.lat.degree) # beta = abs(lb_obj.lat.degree)
lamda = abs(lb_obj.lon.degree - lb_sun.lon.degree) # lamda = abs(lb_obj.lon.degree - lb_sun.lon.degree)
# interpolated zodical surface brightness at 0.5 um # # interpolated zodical surface brightness at 0.5 um
zodi = pd.read_csv(self.information['dir_path']+'MCI_inputData/refs/zodi_map.dat', sep='\s+', header=None, comment='#') # zodi = pd.read_csv(self.information['dir_path']+'MCI_inputData/refs/zodi_map.dat', sep='\s+', header=None, comment='#')
beta_angle = np.array([0, 5, 10, 15, 20, 25, 30, 45, 60, 75]) # beta_angle = np.array([0, 5, 10, 15, 20, 25, 30, 45, 60, 75])
lamda_angle = np.array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, # lamda_angle = np.array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45,
60, 75, 90, 105, 120, 135, 150, 165, 180]) # 60, 75, 90, 105, 120, 135, 150, 165, 180])
xx, yy = np.meshgrid(beta_angle, lamda_angle) # xx, yy = np.meshgrid(beta_angle, lamda_angle)
#xx, yy = np.meshgrid(beta_angle, lamda_angle,indexing='ij', sparse=True) # #xx, yy = np.meshgrid(beta_angle, lamda_angle,indexing='ij', sparse=True)
f = interpolate.interp2d(xx, yy, zodi, kind='linear') # f = interpolate.interp2d(xx, yy, zodi, kind='linear')
#f = interpolate.RegularGridInterpolator((xx, yy), zodi, method='linear') # #f = interpolate.RegularGridInterpolator((xx, yy), zodi, method='linear')
zodi_obj = f(beta, lamda) # # zodi_obj = f(beta, lamda) #
# read the zodical spectrum in the ecliptic # # read the zodical spectrum in the ecliptic
cat_spec = pd.read_csv(self.information['dir_path']+'MCI_inputData/refs/solar_spec.dat', sep='\s+', header=None, comment='#') # cat_spec = pd.read_csv(self.information['dir_path']+'MCI_inputData/refs/solar_spec.dat', sep='\s+', header=None, comment='#')
wave = cat_spec[0].values # A # wave = cat_spec[0].values # A
spec0 = cat_spec[1].values # # spec0 = cat_spec[1].values #
zodi_norm = 252 # # zodi_norm = 252 #
spec = spec0 * (zodi_obj / zodi_norm) * 1e-8 # # spec = spec0 * (zodi_obj / zodi_norm) * 1e-8 #
# convert to the commonly used unit of MJy/sr, erg/s/cm^2/A/sr # # convert to the commonly used unit of MJy/sr, erg/s/cm^2/A/sr
wave_A = wave # A # wave_A = wave # A
#spec_mjy = spec * 0.1 * wave_A**2 / 3e18 * 1e23 * 1e-6 # MJy/sr # #spec_mjy = spec * 0.1 * wave_A**2 / 3e18 * 1e23 * 1e-6 # MJy/sr
spec_erg = spec * 0.1 # erg/s/cm^2/A/sr # spec_erg = spec * 0.1 # erg/s/cm^2/A/sr
spec_erg2 = spec_erg / 4.25452e10 # erg/s/cm^2/A/arcsec^2 # spec_erg2 = spec_erg / 4.25452e10 # erg/s/cm^2/A/arcsec^2
# self.zodiacal_wave=wave_A # in A # # self.zodiacal_wave=wave_A # in A
# self.zodiacal_flux=spec_erg2 # # self.zodiacal_flux=spec_erg2
return wave_A, spec_erg2 # return wave_A, spec_erg2
################################################################################### ###################################################################################
...@@ -1980,15 +1980,6 @@ class MCIsimulator(): ...@@ -1980,15 +1980,6 @@ class MCIsimulator():
nlayccd = 0 nlayccd = 0
############################################ ############################################
#### calculate sky noise , old code #####
# self.earthshine(self.earthshine_theta)
# self.zodiacal(self.information['ra_obj'], self.information['dec_obj'], self.dt.strftime("%Y-%m-%d"))
############### calculate the earthshine and zodiacal noise ,new code 2023.11.1 ############
###############
# self.earthshine(self.earthshine_theta)
# self.zodiacal(self.information['ra_obj'], self.information['dec_obj'], self.zodiacal_time)
ra = self.information['ra_pnt0'] ra = self.information['ra_pnt0']
dec = self.information['dec_pnt0'] dec = self.information['dec_pnt0']
...@@ -1999,7 +1990,7 @@ class MCIsimulator(): ...@@ -1999,7 +1990,7 @@ class MCIsimulator():
y_sat=float(self.orbit_pars[self.orbit_exp_num,2]) y_sat=float(self.orbit_pars[self.orbit_exp_num,2])
z_sat=float(self.orbit_pars[self.orbit_exp_num,3]) z_sat=float(self.orbit_pars[self.orbit_exp_num,3])
wave0, zodi0 = zodiacal(ra, dec, self.TianCe_day) # erg/s/cm^2/A/arcsec^2 wave0, zodi0 = self.zodiacal(ra, dec, self.TianCe_day) # erg/s/cm^2/A/arcsec^2
# EarthShine from straylight # EarthShine from straylight
sl = StrayLight(jtime=time_jd, sat=np.array([x_sat, y_sat, z_sat]), sl = StrayLight(jtime=time_jd, sat=np.array([x_sat, y_sat, z_sat]),
...@@ -2572,7 +2563,7 @@ class MCIsimulator(): ...@@ -2572,7 +2563,7 @@ class MCIsimulator():
y_sat=float(self.orbit_pars[self.orbit_exp_num,2]) y_sat=float(self.orbit_pars[self.orbit_exp_num,2])
z_sat=float(self.orbit_pars[self.orbit_exp_num,3]) z_sat=float(self.orbit_pars[self.orbit_exp_num,3])
wave0, zodi0 = zodiacal(ra, dec, self.TianCe_day) # erg/s/cm^2/A/arcsec^2 wave0, zodi0 = self.zodiacal(ra, dec, self.TianCe_day) # erg/s/cm^2/A/arcsec^2
# EarthShine from straylight # EarthShine from straylight
sl = StrayLight(jtime=time_jd, sat=np.array([x_sat, y_sat, z_sat]), sl = StrayLight(jtime=time_jd, sat=np.array([x_sat, y_sat, z_sat]),
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment