TestSpecDisperse.py 24.4 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
import unittest
from ObservationSim.MockObject.SpecDisperser import rotate90, SpecDisperser

Fang Yuedong's avatar
Fang Yuedong committed
4
from ObservationSim.Config import ChipOutput, Config
Fang Yuedong's avatar
Fang Yuedong committed
5
6
7
8
9
10
11
12
13
14
15
16
17
from ObservationSim.Instrument import Telescope, Chip, FilterParam, Filter, FocalPlane
from ObservationSim.MockObject import MockObject, Star
from ObservationSim.PSF import PSFGauss

import numpy as np
import galsim
from astropy.table import Table
from scipy import interpolate

import matplotlib.pyplot as plt

from lmfit.models import LinearModel, GaussianModel

Fang Yuedong's avatar
Fang Yuedong committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from ObservationSim.Config.Header import generateExtensionHeader
import math
import yaml


def getAngle132(x1=0, y1=0, z1=0, x2=0, y2=0, z2=0, x3=0, y3=0, z3=0):
    cosValue = 0;
    angle = 0;

    x11 = x1 - x3;
    y11 = y1 - y3;
    z11 = z1 - z3;

    x22 = x2 - x3;
    y22 = y2 - y3;
    z22 = z2 - z3;

    tt = np.sqrt((x11 * x11 + y11 * y11 + z11 * z11) * (x22 * x22 + y22 * y22 + z22 * z22));
    if (tt == 0):
        return 0;

    cosValue = (x11 * x22 + y11 * y22 + z11 * z22) / tt;

    if (cosValue > 1):
        cosValue = 1;
    if (cosValue < -1):
        cosValue = -1;
    angle = math.acos(cosValue);
    return angle * 360 / (2 * math.pi);

Fang Yuedong's avatar
Fang Yuedong committed
48
49
50
51
52
53
54
55
56
57

def fit_SingleGauss(xX, yX, contmX, iHa0):
    background = LinearModel(prefix='line_')
    pars = background.make_params(intercept=yX.max(), slope=0)
    pars = background.guess(yX, x=xX)

    gauss = GaussianModel(prefix='g_')
    pars.update(gauss.make_params())
    pars['g_center'].set(iHa0, min=iHa0 - 3, max=iHa0 + 3)
    pars['g_amplitude'].set(50, min=0)
Fang Yuedong's avatar
Fang Yuedong committed
58
    pars['g_sigma'].set(12, min=0.0001)
Fang Yuedong's avatar
Fang Yuedong committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    mod = gauss + background
    init = mod.eval(pars, x=xX)
    outX = mod.fit(yX, pars, x=xX)
    compsX = outX.eval_components(x=xX)
    # print(outX.fit_report(min_correl=0.25))
    # print outX.params['g_center']
    outX.fit_report(min_correl=0.25)
    # print(outX.fit_report(min_correl=0.25))
    line_slopeX = float(outX.fit_report(min_correl=0.25).split('line_slope:')[1].split('+/-')[0]) * contmX
    err_line_slopeX = float(
        outX.fit_report(min_correl=0.25).split('line_slope:')[1].split('+/-')[1].split('(')[0]) * contmX

    line_interceptX = float(outX.fit_report(min_correl=0.25).split('line_intercept:')[1].split('+/-')[0]) * contmX
    err_line_interceptX = float(
        outX.fit_report(min_correl=0.25).split('line_intercept:')[1].split('+/-')[1].split('(')[0]) * contmX

    sigmaX = float(outX.fit_report(min_correl=0.25).split('g_sigma:')[1].split('+/-')[0])
    err_sigmaX = float(outX.fit_report(min_correl=0.25).split('g_sigma:')[1].split('+/-')[1].split('(')[0])

    fwhmX = float(outX.fit_report(min_correl=0.25).split('g_fwhm:')[1].split('+/-')[0])
    err_fwhmX = float(outX.fit_report(min_correl=0.25).split('g_fwhm:')[1].split('+/-')[1].split('(')[0])

    centerX = float(outX.fit_report(min_correl=0.25).split('g_center:')[1].split('+/-')[0])
    err_centerX = float(outX.fit_report(min_correl=0.25).split('g_center:')[1].split('+/-')[1].split('(')[0])

    return sigmaX, err_sigmaX, fwhmX, err_fwhmX, centerX, err_centerX

Fang Yuedong's avatar
Fang Yuedong committed
87
def produceObj(x,y,chip, ra, dec, pa):
Fang Yuedong's avatar
Fang Yuedong committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    pos_img = galsim.PositionD(chip.bound.xmin + x, chip.bound.ymin + y)

    param = {}
    param["star"] = 1
    param["id"] = 1
    param["ra"] = chip.img.wcs.posToWorld(pos_img).ra.deg
    param["dec"] = chip.img.wcs.posToWorld(pos_img).dec.deg
    param["z"] = 0
    param["sed_type"] = 1
    param["model_tag"] = 1
    param["mag_use_normal"] = 10

    obj = Star(param)

Fang Yuedong's avatar
Fang Yuedong committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    header_wcs = generateExtensionHeader(
        xlen=chip.npix_x,
        ylen=chip.npix_y,
        ra=ra,
        dec=dec,
        pa=pa,
        gain=chip.gain,
        readout=chip.read_noise,
        dark=chip.dark_noise,
        saturation=90000,
        psize=chip.pix_scale,
        row_num=chip.rowID,
        col_num=chip.colID,
        extName='raw')

    pos_img, offset, local_wcs, _ = obj.getPosImg_Offset_WCS(img=chip.img, chip=chip, img_header=header_wcs)
Fang Yuedong's avatar
Fang Yuedong committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    wave = np.arange(2500, 11000.5, 0.5)
    # sedLen = wave.shape[0]
    flux = pow(wave, -2) * 1e8
    flux[200] = flux[200] * 10
    flux[800] = flux[800] * 30
    flux[2000] = flux[2000] * 5

    obj.sed = Table(np.array([wave, flux]).T,
                    names=('WAVELENGTH', 'FLUX'))
    return obj, pos_img


class TestSpecDisperse(unittest.TestCase):

    def __init__(self, methodName='runTest',conff = '', throughputf = ''):
        super(TestSpecDisperse,self).__init__(methodName)
        self.conff = conff
        self.throughputf = throughputf

    def test_rotate901(self):
        m = np.array([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20],[21,22,23,24,25]])
        m1 = np.array([[21,16,11,6,1],[22,17,12,7,2],[23,18,13,8,3],[24,19,14,9,4],[25,20,15,10,5]])
        m2 = np.array([[5,10,15,20,25],[4,9,14,19,24],[3,8,13,18,23],[2,7,12,17,22],[1,6,11,16,21]])
        xc = 2
        yc = 2
        isClockwise = 0
        m1, xc1, yc1 = rotate90(array_orig=m, xc=xc, yc=yc, isClockwise=isClockwise)
        self.assertTrue(xc1-xc == 0)
        self.assertTrue(yc1-yc == 0)
        self.assertTrue(np.sum(m-m1) == 0)

    def test_rotate902(self):
        m = np.array([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20],[21,22,23,24,25]])
        m1 = np.array([[21,16,11,6,1],[22,17,12,7,2],[23,18,13,8,3],[24,19,14,9,4],[25,20,15,10,5]])
        m2 = np.array([[5,10,15,20,25],[4,9,14,19,24],[3,8,13,18,23],[2,7,12,17,22],[1,6,11,16,21]])
        xc = 2
        yc = 2
        isClockwise =1
        m1, xc1, yc1 = rotate90(array_orig=m, xc=xc, yc=yc, isClockwise=isClockwise)
        self.assertTrue(xc1-xc == 0)
        self.assertTrue(yc1-yc == 0)
        self.assertTrue(np.sum(m-m2) == 0)


    def test_Specdistperse1(self):
        star = galsim.Gaussian(fwhm=0.39)
        g_img = galsim.Image(100, 100, scale=0.074)
        starImg = star.drawImage(image=g_img)

        wave = np.arange(6200, 10000.5, 0.5)
        # sedLen = wave.shape[0]
        flux = pow(wave, -2) * 1e8
        # flux[200] = flux[200] * 10
        # flux[800] = flux[800] * 30
        # flux[2000] = flux[2000] * 5

        sed = Table(np.array([wave, flux]).T,
                    names=('WAVELENGTH', 'FLUX'))
        conff = self.conff
        throughput_f = self.throughputf
        thp = Table.read(throughput_f)
        thp_i = interpolate.interp1d(thp['WAVELENGTH'], thp['SENSITIVITY'])
        sdp = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=6200,
                            band_end=10000, isAlongY=0, conf=conff, gid=0)
        spec = sdp.compute_spec_orders()
        Aimg = spec['A'][0]
        wave_pix = spec['A'][5]
        wave_pos = spec['A'][3]
        sens = spec['A'][6]
        sh = Aimg.shape
        spec_pix = np.zeros(sh[1])
        for i in range(sh[1]):
            spec_pix[i] = sum(Aimg[:, i])
        # figure()
        # imshow(Aimg)

        wave_flux = np.zeros(wave_pix.shape[0])
        for i in np.arange(1, wave_pix.shape[0] - 1):
            w = wave_pix[i]
            thp_w = thp_i(w)
            deltW = (w - wave_pix[i - 1]) / 2 + (wave_pix[i + 1] - w) / 2
            f = spec_pix[wave_pos[0] - 1 + i]

            if 6200 <= w <= 10000:
                f = f / thp_w
            else:
                f = 0
            wave_flux[i] = f / deltW
        sed_i = interpolate.interp1d(sed['WAVELENGTH'], sed['FLUX'])
        ids = wave_pix < 9700
        ids1 = wave_pix[ids] > 6500
        print('Spec disperse flux test')
        self.assertTrue(np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1]))<0.004)
        plt.figure()
        plt.plot(wave_pix, wave_flux)
        plt.plot(sed['WAVELENGTH'], sed['FLUX'])
        plt.xlim(6200, 10000)
        plt.ylim(1, 3)
        plt.yscale('log')
        plt.xlabel('$\lambda$')
        plt.ylabel('$F\lambda$')
        plt.legend(['extracted', 'input'])
        plt.show()

    def test_Specdistperse2(self):

        psf_fwhm = 0.39
        pix_scale = 0.074
        star = galsim.Gaussian(fwhm=psf_fwhm)
        g_img = galsim.Image(100, 100, scale=pix_scale)
        starImg = star.drawImage(image=g_img)

        wave = np.arange(6200, 10000.5, 0.5)
        # sedLen = wave.shape[0]
        flux = pow(wave, -2) * 1e8
        flux[200] = flux[200] * 10
        flux[800] = flux[800] * 30
        flux[2000] = flux[2000] * 5

        sed = Table(np.array([wave, flux]).T,
                    names=('WAVELENGTH', 'FLUX'))
        conff = self.conff
        throughput_f = self.throughputf
        thp = Table.read(throughput_f)
        thp_i = interpolate.interp1d(thp['WAVELENGTH'], thp['SENSITIVITY'])
        sdp = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=6200,
                            band_end=10000, isAlongY=0, conf=conff, gid=0)
        spec = sdp.compute_spec_orders()
        Aimg = spec['A'][0]
        wave_pix = spec['A'][5]
        wave_pos = spec['A'][3]
        sens = spec['A'][6]
        sh = Aimg.shape
        spec_pix = np.zeros(sh[1])
        for i in range(sh[1]):
            spec_pix[i] = sum(Aimg[:, i])
        # figure()
        # imshow(Aimg)

        wave_flux = np.zeros(wave_pix.shape[0])
        for i in np.arange(1, wave_pix.shape[0] - 1):
            w = wave_pix[i]
            thp_w = thp_i(w)
            deltW = (w - wave_pix[i - 1]) / 2 + (wave_pix[i + 1] - w) / 2
            f = spec_pix[wave_pos[0] - 1 + i]

            if 6200 <= w <= 10000:
                f = f / thp_w
            else:
                f = 0
            wave_flux[i] = f / deltW
        sed_i = interpolate.interp1d(sed['WAVELENGTH'], sed['FLUX'])
        input_em_lam = 6600
        ids = wave_pix < input_em_lam+200
        ids1 = wave_pix[ids] > input_em_lam-200
        deltLamda_pix = (max(wave_pix[ids][ids1]) - min(wave_pix[ids][ids1])) / (wave_pix[ids][ids1].shape[0] - 1)
        _, _, fwhmx, fwhmx_err, center, center_err = fit_SingleGauss(wave_pix[ids][ids1], wave_flux[ids][ids1], 1.0, 6600)

        print('Emission line position and shape test')

        self.assertTrue(input_em_lam-center < deltLamda_pix)

        self.assertTrue(fwhmx/deltLamda_pix*pix_scale - psf_fwhm  < np.abs(0.01))
        # print('error is ',np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1])))
        # self.assertTrue(np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1]))<0.004)
        plt.figure()
        plt.plot(wave_pix, wave_flux)
        plt.plot(sed['WAVELENGTH'], sed['FLUX'])
        plt.xlim(6200, 10000)
        plt.ylim(1, 75)
        plt.yscale('log')
        plt.xlabel('$\lambda$')
        plt.ylabel('$F\lambda$')
        plt.legend(['extracted', 'input'])
        plt.show()

    def test_Specdistperse3(self):

        psf_fwhm = 0.39
        pix_scale = 0.074
        star = galsim.Gaussian(fwhm=psf_fwhm)
        g_img = galsim.Image(100, 100, scale=pix_scale)
        starImg = star.drawImage(image=g_img)

        wave = np.arange(6200, 10000.5, 0.5)
        # sedLen = wave.shape[0]
        flux = pow(wave, -2) * 1e8
        flux[200] = flux[200] * 10
        flux[800] = flux[800] * 30
        flux[2000] = flux[2000] * 5

        sed = Table(np.array([wave, flux]).T,
                    names=('WAVELENGTH', 'FLUX'))
        conff = self.conff
        throughput_f = self.throughputf
        thp = Table.read(throughput_f)
        thp_i = interpolate.interp1d(thp['WAVELENGTH'], thp['SENSITIVITY'])
        sdp = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=6200,
                            band_end=8000, isAlongY=0, conf=conff, gid=0)
        sdp1 = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=8000,
                             band_end=10000, isAlongY=0, conf=conff, gid=0)
        spec = sdp.compute_spec_orders()
        spec1 = sdp1.compute_spec_orders()
        Aimg = spec['A'][0] + spec1['A'][0]
        wave_pix = spec['A'][5]
        wave_pos = spec['A'][3]
        sens = spec['A'][6]
        sh = Aimg.shape
        spec_pix = np.zeros(sh[1])
        for i in range(sh[1]):
            spec_pix[i] = sum(Aimg[:, i])


        wave_flux = np.zeros(wave_pix.shape[0])
        for i in np.arange(1, wave_pix.shape[0] - 1):
            w = wave_pix[i]
            thp_w = thp_i(w)
            deltW = (w - wave_pix[i - 1]) / 2 + (wave_pix[i + 1] - w) / 2
            f = spec_pix[wave_pos[0] - 1 + i]

            if 6200 <= w <= 10000:
                f = f / thp_w
            else:
                f = 0
            wave_flux[i] = f / deltW

        sdp2 = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=6200,
                             band_end=10000, isAlongY=0, conf=conff, gid=0)

        spec2 = sdp2.compute_spec_orders()
        Aimg2 = spec2['A'][0]

        spec_pix2 = np.zeros(sh[1])
        for i in range(sh[1]):
            spec_pix2[i] = sum(Aimg2[:, i])

        wave_flux2 = np.zeros(wave_pix.shape[0])
        for i in np.arange(1, wave_pix.shape[0] - 1):
            w = wave_pix[i]
            thp_w = thp_i(w)
            deltW = (w - wave_pix[i - 1]) / 2 + (wave_pix[i + 1] - w) / 2
            f = spec_pix2[wave_pos[0] - 1 + i]

            if 6200 <= w <= 10000:
                f = f / thp_w
            else:
                f = 0
            wave_flux2[i] = f / deltW

        r1_i = interpolate.interp1d(wave_pix, wave_flux2)
        r2_i = interpolate.interp1d(wave_pix, wave_flux)

        print('Spec Splicing test')
        self.assertTrue(r1_i(8000)-r2_i(8000) < np.abs(0.0001))

        # self.assertTrue(fwhmx/deltLamda_pix*pix_scale - psf_fwhm  < np.abs(0.01))
        # print('error is ',np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1])))
        # self.assertTrue(np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1]))<0.004)
        plt.figure()
        plt.plot(wave_pix, wave_flux2)
        plt.plot(wave_pix, wave_flux)
        # plt.plot(sed['WAVELENGTH'], sed['FLUX'])
        plt.xlim(6200, 10000)
        plt.ylim(1, 4)
        plt.yscale('log')
        plt.xlabel('$\lambda$')
        plt.ylabel('$F\lambda$')
        plt.legend(['one spec', 'split in 8000 A'])
        plt.show()



    def test_double_disperse(self):
        work_dir = "/public/home/fangyuedong/CSST_unittest/CSST/test/"
        # data_dir = "/Volumes/Extreme SSD/SimData/"
        data_dir = "/data/simudata/CSSOSDataProductsSims/data/"
Fang Yuedong's avatar
Fang Yuedong committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        configFn = '/Users/zhangxin/Work/SlitlessSim/CSST_SIM/CSST_C6/csst-simulation/config/config_C6.yaml'
        normFilterFn = "/Users/zhangxin/Work/SlitlessSim/CSST_SIM/CSST_C6/csst-simulation/Catalog/data/SLOAN_SDSS.g.fits"
        norm_star = Table.read(normFilterFn)
        with open(configFn, "r") as stream:
            try:
                config = yaml.safe_load(stream)
                for key, value in config.items():
                    print(key + " : " + str(value))
            except yaml.YAMLError as exc:
                print(exc)
        # config = Config.read_config(configFn)
        # path_dict = Config.config_dir(config,work_dir=work_dir, data_dir=data_dir)


        filter_param = FilterParam()
        focal_plane = FocalPlane(survey_type=config["obs_setting"]["survey_type"])
        chip = Chip(1, config=config)
Fang Yuedong's avatar
Fang Yuedong committed
411
412
413
        filter_id, filter_type = chip.getChipFilter()
        filt = Filter(filter_id=filter_id, filter_type=filter_type, filter_param=filter_param,
                      ccd_bandpass=chip.effCurve)
Fang Yuedong's avatar
Fang Yuedong committed
414
        tel = Telescope()
Fang Yuedong's avatar
Fang Yuedong committed
415
416
417
418

        psf_model = PSFGauss(chip=chip)


Fang Yuedong's avatar
Fang Yuedong committed
419
        wcs_fp = focal_plane.getTanWCS(float(config["obs_setting"]["ra_center"]), float(config["obs_setting"]["dec_center"]), float(config["obs_setting"]["image_rot"]) * galsim.degrees, chip.pix_scale)
Fang Yuedong's avatar
Fang Yuedong committed
420
421
422
423
        chip.img = galsim.ImageF(chip.npix_x, chip.npix_y)
        chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
        chip.img.wcs = wcs_fp

Fang Yuedong's avatar
Fang Yuedong committed
424
        obj, pos_img = produceObj(2000,4500, chip,float(config["obs_setting"]["ra_center"]), float(config["obs_setting"]["dec_center"]), float(config["obs_setting"]["image_rot"]))
Fang Yuedong's avatar
Fang Yuedong committed
425
426
427
428
429
430
431
432
433
434
        obj.drawObj_slitless(
            tel=tel,
            pos_img=pos_img,
            psf_model=psf_model,
            bandpass_list=filt.bandpass_sub_list,
            filt=filt,
            chip=chip,
            g1=0,
            g2=0,
            exptime=150,
Fang Yuedong's avatar
Fang Yuedong committed
435
            normFilter=norm_star)
Fang Yuedong's avatar
Fang Yuedong committed
436

Fang Yuedong's avatar
Fang Yuedong committed
437
        obj, pos_img = produceObj(3685, 6500, chip,float(config["obs_setting"]["ra_center"]), float(config["obs_setting"]["dec_center"]), float(config["obs_setting"]["image_rot"]))
Fang Yuedong's avatar
Fang Yuedong committed
438
439
440
441
442
443
444
445
446
447
        obj.drawObj_slitless(
            tel=tel,
            pos_img=pos_img,
            psf_model=psf_model,
            bandpass_list=filt.bandpass_sub_list,
            filt=filt,
            chip=chip,
            g1=0,
            g2=0,
            exptime=150,
Fang Yuedong's avatar
Fang Yuedong committed
448
            normFilter=norm_star)
Fang Yuedong's avatar
Fang Yuedong committed
449

Fang Yuedong's avatar
Fang Yuedong committed
450
        obj, pos_img = produceObj(5000, 2500, chip, float(config["obs_setting"]["ra_center"]), float(config["obs_setting"]["dec_center"]), float(config["obs_setting"]["image_rot"]))
Fang Yuedong's avatar
Fang Yuedong committed
451
452
453
454
455
456
457
458
459
460
        obj.drawObj_slitless(
            tel=tel,
            pos_img=pos_img,
            psf_model=psf_model,
            bandpass_list=filt.bandpass_sub_list,
            filt=filt,
            chip=chip,
            g1=0,
            g2=0,
            exptime=150,
Fang Yuedong's avatar
Fang Yuedong committed
461
            normFilter=norm_star)
Fang Yuedong's avatar
Fang Yuedong committed
462
463
464
465
466
467
468
469
470

        print('Spec double disperse test')
        from astropy.io import fits
        fits.writeto('test.fits',chip.img.array, overwrite = True)

        # plt.figure()
        # plt.imshow(chip.img.array)
        # plt.show()

Fang Yuedong's avatar
Fang Yuedong committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    def test_SLSImage_rotation(self):
        from astropy.wcs import WCS
        configFn = '/Users/zhangxin/Work/SlitlessSim/CSST_SIM/CSST_C6/csst-simulation/config/config_C6.yaml'

        with open(configFn, "r") as stream:
            try:
                config = yaml.safe_load(stream)
                for key, value in config.items():
                    print(key + " : " + str(value))
            except yaml.YAMLError as exc:
                print(exc)
        chip = Chip(1, config=config)

        ra=float(config["obs_setting"]["ra_center"])
        dec=float(config["obs_setting"]["dec_center"])
        pa=float(config["obs_setting"]["image_rot"])

        header_wcs1 = generateExtensionHeader(
            xlen=chip.npix_x,
            ylen=chip.npix_y,
            ra=ra,
            dec=dec,
            pa=pa,
            gain=chip.gain,
            readout=chip.read_noise,
            dark=chip.dark_noise,
            saturation=90000,
            psize=chip.pix_scale,
            row_num=chip.rowID,
            col_num=chip.colID,
            extName='raw', center_rot=0)

        center = np.array([chip.npix_x / 2, chip.npix_y / 2])
        h_wcs1 = WCS(header_wcs1)
        x1, y1 = center + [100,0]
        sky_1 = h_wcs1.pixel_to_world(x1,y1)

        rot_angle = 1
        header_wcs2 = generateExtensionHeader(
            xlen=chip.npix_x,
            ylen=chip.npix_y,
            ra=ra,
            dec=dec,
            pa=pa,
            gain=chip.gain,
            readout=chip.read_noise,
            dark=chip.dark_noise,
            saturation=90000,
            psize=chip.pix_scale,
            row_num=chip.rowID,
            col_num=chip.colID,
            extName='raw', center_rot=rot_angle)

        h_wcs2 = WCS(header_wcs2)
        x2, y2 = h_wcs2.world_to_pixel(sky_1)
        angle = getAngle132(x1,y1,0,x2,y2,0,center[0],center[1],0)
        print(angle)
        self.assertTrue(rot_angle - angle < np.abs(0.001))

        rot_angle = 10
        header_wcs2 = generateExtensionHeader(
            xlen=chip.npix_x,
            ylen=chip.npix_y,
            ra=ra,
            dec=dec,
            pa=pa,
            gain=chip.gain,
            readout=chip.read_noise,
            dark=chip.dark_noise,
            saturation=90000,
            psize=chip.pix_scale,
            row_num=chip.rowID,
            col_num=chip.colID,
            extName='raw', center_rot=rot_angle)

        h_wcs2 = WCS(header_wcs2)
        x2, y2 = h_wcs2.world_to_pixel(sky_1)
        angle = getAngle132(x1, y1, 0, x2, y2, 0, center[0], center[1], 0)
        print(angle)
        self.assertTrue(rot_angle - angle < np.abs(0.001))

        rot_angle = 50
        header_wcs2 = generateExtensionHeader(
            xlen=chip.npix_x,
            ylen=chip.npix_y,
            ra=ra,
            dec=dec,
            pa=pa,
            gain=chip.gain,
            readout=chip.read_noise,
            dark=chip.dark_noise,
            saturation=90000,
            psize=chip.pix_scale,
            row_num=chip.rowID,
            col_num=chip.colID,
            extName='raw', center_rot=rot_angle)

        h_wcs2 = WCS(header_wcs2)
        x2, y2 = h_wcs2.world_to_pixel(sky_1)
        angle = getAngle132(x1, y1, 0, x2, y2, 0, center[0], center[1], 0)
        print(angle)
        self.assertTrue(rot_angle - angle < np.abs(0.001))


        chip = Chip(27, config=config)

        ra = float(config["obs_setting"]["ra_center"])
        dec = float(config["obs_setting"]["dec_center"])
        pa = float(config["obs_setting"]["image_rot"])

        header_wcs1 = generateExtensionHeader(
            xlen=chip.npix_x,
            ylen=chip.npix_y,
            ra=ra,
            dec=dec,
            pa=pa,
            gain=chip.gain,
            readout=chip.read_noise,
            dark=chip.dark_noise,
            saturation=90000,
            psize=chip.pix_scale,
            row_num=chip.rowID,
            col_num=chip.colID,
            extName='raw', center_rot=0)

        center = np.array([chip.npix_x / 2, chip.npix_y / 2])
        h_wcs1 = WCS(header_wcs1)
        x1, y1 = center + [100, 0]
        sky_1 = h_wcs1.pixel_to_world(x1, y1)

        rot_angle = 1
        header_wcs2 = generateExtensionHeader(
            xlen=chip.npix_x,
            ylen=chip.npix_y,
            ra=ra,
            dec=dec,
            pa=pa,
            gain=chip.gain,
            readout=chip.read_noise,
            dark=chip.dark_noise,
            saturation=90000,
            psize=chip.pix_scale,
            row_num=chip.rowID,
            col_num=chip.colID,
            extName='raw', center_rot=rot_angle)

        h_wcs2 = WCS(header_wcs2)
        x2, y2 = h_wcs2.world_to_pixel(sky_1)
        angle = getAngle132(x1, y1, 0, x2, y2, 0, center[0], center[1], 0)
        print(angle)
        self.assertTrue(rot_angle - angle < np.abs(0.001))

        rot_angle = 10
        header_wcs2 = generateExtensionHeader(
            xlen=chip.npix_x,
            ylen=chip.npix_y,
            ra=ra,
            dec=dec,
            pa=pa,
            gain=chip.gain,
            readout=chip.read_noise,
            dark=chip.dark_noise,
            saturation=90000,
            psize=chip.pix_scale,
            row_num=chip.rowID,
            col_num=chip.colID,
            extName='raw', center_rot=rot_angle)

        h_wcs2 = WCS(header_wcs2)
        x2, y2 = h_wcs2.world_to_pixel(sky_1)
        angle = getAngle132(x1, y1, 0, x2, y2, 0, center[0], center[1], 0)
        print(angle)
        self.assertTrue(rot_angle - angle < np.abs(0.001))

        rot_angle = 50
        header_wcs2 = generateExtensionHeader(
            xlen=chip.npix_x,
            ylen=chip.npix_y,
            ra=ra,
            dec=dec,
            pa=pa,
            gain=chip.gain,
            readout=chip.read_noise,
            dark=chip.dark_noise,
            saturation=90000,
            psize=chip.pix_scale,
            row_num=chip.rowID,
            col_num=chip.colID,
            extName='raw', center_rot=rot_angle)

        h_wcs2 = WCS(header_wcs2)
        x2, y2 = h_wcs2.world_to_pixel(sky_1)
        angle = getAngle132(x1, y1, 0, x2, y2, 0, center[0], center[1], 0)
        print(angle)
        self.assertTrue(rot_angle - angle < np.abs(0.001))


Fang Yuedong's avatar
Fang Yuedong committed
668
669
670


if __name__ == '__main__':
Fang Yuedong's avatar
Fang Yuedong committed
671
672
    conff='/Users/zhangxin/Work/SlitlessSim/CSST_SIM/CSST_C6/csst-simulation/ObservationSim/Instrument/data/sls_conf/CSST_GI2.conf'
    throughputf='/Users/zhangxin/Work/SlitlessSim/CSST_SIM/CSST_C6/csst-simulation/ObservationSim/Instrument/data/sls_conf/GI.Throughput.1st.fits'
Fang Yuedong's avatar
Fang Yuedong committed
673
674
675
676
677
678
679
680
681
682

    suit = unittest.TestSuite()
    case1 = TestSpecDisperse('test_Specdistperse1',conff,throughputf)
    suit.addTest(case1)
    case2 = TestSpecDisperse('test_Specdistperse2', conff, throughputf)
    suit.addTest(case2)
    case3 = TestSpecDisperse('test_Specdistperse3', conff, throughputf)
    suit.addTest(case3)
    case4 = TestSpecDisperse('test_double_disperse', conff, throughputf)
    suit.addTest(case4)
Fang Yuedong's avatar
Fang Yuedong committed
683
684
    case5 = TestSpecDisperse('test_SLSImage_rotation')
    suit.addTest(case5)
Fang Yuedong's avatar
Fang Yuedong committed
685
686
687
688

    unittest.TextTestRunner(verbosity=2).run(suit)
    # runner = unittest.TextTestRunner()
    # runner.run(suit)