effects.py 28.8 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
import galsim
from matplotlib.pyplot import flag
import numpy as np
from numpy.core.fromnumeric import mean, size
from numpy.random import Generator, PCG64
Wei Chengliang's avatar
Wei Chengliang committed
6
7
import math
import copy
Fang Yuedong's avatar
Fang Yuedong committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from numba import jit
from astropy import stats


def AddOverscan(GSImage, overscan=1000, gain=1, widthl=27, widthr=27, widtht=8, widthb=8, read_noise=5):
    """
    Add overscan/gain; gain=e-/ADU
    widthl: left pre-scan width
    widthr: right pre-scan width
    widtht: top over-scan width (the top of nd-array with small row-index)
    widthb: bottom over-scan width (the bottom of nd-array with large row-index)
    """
    imgshape = GSImage.array.shape
    newimg = galsim.Image(imgshape[1]+widthl+widthr, imgshape[0]+widtht+widthb, init_value=0)
    rng = galsim.UniformDeviate()
    NoiseOS = galsim.GaussianNoise(rng, sigma=read_noise)
    newimg.addNoise(NoiseOS)
    newimg = (newimg+overscan)/gain
Wei Chengliang's avatar
Wei Chengliang committed
26
    newimg.array[widtht:(widtht+imgshape[0]), widthl:(widthl+imgshape[1])] = GSImage.array
Fang Yuedong's avatar
Fang Yuedong committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    newimg.wcs = GSImage.wcs
    # if GSImage.wcs is not None:
    #     newwcs = GSImage.wcs.withOrigin(galsim.PositionD(widthl,widtht))
    #     newimg.wcs = newwcs
    # else:
    #     pass
    return newimg


def DefectivePixels(GSImage, IfHotPix=True, IfDeadPix=True, fraction=1E-4, seed=20210304, biaslevel=0):
    # Also called bad pixels, including hot pixels and dead pixels
    # Hot Pixel > 20e-/s
    # Dead Pixel < 70%*Mean
    rgf = Generator(PCG64(int(seed*1.1)))
Wei Chengliang's avatar
Wei Chengliang committed
41
    if IfHotPix is True and IfDeadPix is True:
Fang Yuedong's avatar
Fang Yuedong committed
42
        HotFraction = rgf.random()             # fraction in total bad pixels
Wei Chengliang's avatar
Wei Chengliang committed
43
    elif IfHotPix is False and IfDeadPix is False:
Fang Yuedong's avatar
Fang Yuedong committed
44
        return GSImage
Wei Chengliang's avatar
Wei Chengliang committed
45
    elif IfHotPix is True:
Fang Yuedong's avatar
Fang Yuedong committed
46
47
48
49
50
51
52
53
        HotFraction = 1
    else:
        HotFraction = 0

    NPix = GSImage.array.size
    NPixBad = int(NPix*fraction)
    NPixHot = int(NPix*fraction*HotFraction)
    NPixDead = NPixBad-NPixHot
Wei Chengliang's avatar
Wei Chengliang committed
54
55

    NPix_y, NPix_x = GSImage.array.shape
Fang Yuedong's avatar
Fang Yuedong committed
56
57
    mean = np.mean(GSImage.array)
    rgp = Generator(PCG64(int(seed)))
Wei Chengliang's avatar
Wei Chengliang committed
58
    yxposfrac = rgp.random((NPixBad, 2))
Wei Chengliang's avatar
Wei Chengliang committed
59
60
61
62
    YPositHot = np.array(NPix_y*yxposfrac[0:NPixHot, 0]).astype(np.int32)
    XPositHot = np.array(NPix_x*yxposfrac[0:NPixHot, 1]).astype(np.int32)
    YPositDead = np.array(NPix_y*yxposfrac[NPixHot:, 0]).astype(np.int32)
    XPositDead = np.array(NPix_x*yxposfrac[NPixHot:, 1]).astype(np.int32)
Fang Yuedong's avatar
Fang Yuedong committed
63
64
65

    rgh = Generator(PCG64(int(seed*1.2)))
    rgd = Generator(PCG64(int(seed*1.3)))
Wei Chengliang's avatar
Wei Chengliang committed
66
67
68
69
    if IfHotPix is True:
        GSImage.array[YPositHot, XPositHot] += rgh.gamma(2, 25*150, size=NPixHot)
    if IfDeadPix is True:
        GSImage.array[YPositDead, XPositDead] = rgd.random(NPixDead)*(mean-biaslevel)*0.7+biaslevel+rgp.standard_normal()*5
Fang Yuedong's avatar
Fang Yuedong committed
70
71
72
73
74
    return GSImage


def BadColumns(GSImage, seed=20240309, chipid=1, logger=None):
    # Set bad column values
Wei Chengliang's avatar
Wei Chengliang committed
75
    ysize, xsize = GSImage.array.shape
Fang Yuedong's avatar
Fang Yuedong committed
76
77
78
79
80
81
82
83
84
85
    subarr = GSImage.array[int(ysize*0.1):int(ysize*0.12), int(xsize*0.1):int(xsize*0.12)]
    subarr = stats.sigma_clip(subarr, sigma=4, cenfunc='median', maxiters=3, masked=False)
    meanimg = np.median(subarr)
    stdimg = np.std(subarr)
    seed += chipid
    rgn = Generator(PCG64(int(seed)))
    rgcollen = Generator(PCG64(int(seed*1.1)))
    rgxpos = Generator(PCG64(int(seed*1.2)))
    rgdn = Generator(PCG64(int(seed*1.3)))

Wei Chengliang's avatar
Wei Chengliang committed
86
87
    nbadsecA, nbadsecD = rgn.integers(low=1, high=5, size=2)
    collen = rgcollen.integers(low=int(ysize*0.1), high=int(ysize*0.7), size=(nbadsecA+nbadsecD))
Fang Yuedong's avatar
Fang Yuedong committed
88
89
90
91
92
93
94
    xposit = rgxpos.integers(low=int(xsize*0.05), high=int(xsize*0.95), size=(nbadsecA+nbadsecD))
    if logger is not None:
        logger.info(xposit+1)
    else:
        print(xposit+1)
    # signs = 2*rgdn.integers(0,2,size=(nbadsecA+nbadsecD))-1
    # if meanimg>0:
Wei Chengliang's avatar
Wei Chengliang committed
95
    dn = rgdn.integers(low=np.abs(meanimg)*1.3+50, high=np.abs(meanimg)*2+150, size=(nbadsecA+nbadsecD))  # *signs
Fang Yuedong's avatar
Fang Yuedong committed
96
97
98
    # elif meanimg<0:
    #     dn = rgdn.integers(low=meanimg*2-150, high=meanimg*1.3-50, size=(nbadsecA+nbadsecD)) #*signs
    for badcoli in range(nbadsecA):
Wei Chengliang's avatar
Wei Chengliang committed
99
        GSImage.array[(ysize-collen[badcoli]):ysize, xposit[badcoli]:(xposit[badcoli]+1)] = (np.abs(np.random.normal(0, stdimg*2, (collen[badcoli], 1)))+dn[badcoli])
Fang Yuedong's avatar
Fang Yuedong committed
100
    for badcoli in range(nbadsecD):
Wei Chengliang's avatar
Wei Chengliang committed
101
        GSImage.array[0:collen[badcoli+nbadsecA], xposit[badcoli+nbadsecA]:(xposit[badcoli+nbadsecA]+1)] = (np.abs(np.random.normal(0, stdimg*2, (collen[badcoli+nbadsecA], 1)))+dn[badcoli+nbadsecA])
Fang Yuedong's avatar
Fang Yuedong committed
102
103
104
    return GSImage


Wei Chengliang's avatar
Wei Chengliang committed
105
def AddBiasNonUniform16(GSImage, bias_level=500, nsecy=2, nsecx=8, seed=202102, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
106
107
108
    # Generate Bias and its non-uniformity, and add the 16 bias values to the GS-Image
    rg = Generator(PCG64(int(seed)))
    Random16 = (rg.random(nsecy*nsecx)-0.5)*20
Wei Chengliang's avatar
Wei Chengliang committed
109
110
111
    if int(bias_level) == 0:
        BiasLevel = np.zeros((nsecy, nsecx))
    elif bias_level > 0:
Wei Chengliang's avatar
Wei Chengliang committed
112
        BiasLevel = Random16.reshape((nsecy, nsecx)) + bias_level
Fang Yuedong's avatar
Fang Yuedong committed
113
114
115
116
    if logger is not None:
        msg = str(" Biases of 16 channels: " + str(BiasLevel))
        logger.info(msg)
    else:
Wei Chengliang's avatar
Wei Chengliang committed
117
        print(" Biases of 16 channels:\n", BiasLevel)
Fang Yuedong's avatar
Fang Yuedong committed
118
119
120
121
122
    arrshape = GSImage.array.shape
    secsize_x = int(arrshape[1]/nsecx)
    secsize_y = int(arrshape[0]/nsecy)
    for rowi in range(nsecy):
        for coli in range(nsecx):
Wei Chengliang's avatar
Wei Chengliang committed
123
            GSImage.array[rowi*secsize_y:(rowi+1)*secsize_y, coli*secsize_x:(coli+1)*secsize_x] += BiasLevel[rowi, coli]
Fang Yuedong's avatar
Fang Yuedong committed
124
125
126
127
128
    return GSImage


def MakeBiasNcomb(npix_x, npix_y, bias_level=500, ncombine=1, read_noise=5, gain=1, seed=202102, logger=None):
    # Start with 0 value bias GS-Image
Wei Chengliang's avatar
Wei Chengliang committed
129
    ncombine = int(ncombine)
Fang Yuedong's avatar
Fang Yuedong committed
130
    BiasSngImg0 = galsim.Image(npix_x, npix_y, init_value=0)
Wei Chengliang's avatar
Wei Chengliang committed
131
132
    BiasSngImg = AddBiasNonUniform16(BiasSngImg0,
                                     bias_level=bias_level,
Wei Chengliang's avatar
Wei Chengliang committed
133
                                     nsecy=2, nsecx=8,
Wei Chengliang's avatar
Wei Chengliang committed
134
135
                                     seed=int(seed),
                                     logger=logger)
Fang Yuedong's avatar
Fang Yuedong committed
136
137
138
139
140
141
142
    BiasCombImg = BiasSngImg*ncombine
    rng = galsim.UniformDeviate()
    NoiseBias = galsim.GaussianNoise(rng=rng, sigma=read_noise*ncombine**0.5)
    BiasCombImg.addNoise(NoiseBias)
    if ncombine == 1:
        BiasTag = 'Single'
        pass
Wei Chengliang's avatar
Wei Chengliang committed
143
    elif ncombine > 1:
Fang Yuedong's avatar
Fang Yuedong committed
144
145
146
147
148
149
150
        BiasCombImg /= ncombine
        BiasTag = 'Combine'
    # BiasCombImg.replaceNegative(replace_value=0)
    # BiasCombImg.quantize()
    return BiasCombImg, BiasTag


Wei Chengliang's avatar
Wei Chengliang committed
151
def ApplyGainNonUniform16(GSImage, gain=1, nsecy=2, nsecx=8, seed=202102, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
152
153
154
    # Generate Gain non-uniformity, and multipy the different factors (mean~1 with sigma~1%) to the GS-Image
    rg = Generator(PCG64(int(seed)))
    Random16 = (rg.random(nsecy*nsecx)-0.5)*0.04+1   # sigma~1%
Wei Chengliang's avatar
Wei Chengliang committed
155
    Gain16 = Random16.reshape((nsecy, nsecx))/gain
Fang Yuedong's avatar
Fang Yuedong committed
156
157
158
159
160
    gain_array = np.ones(nsecy*nsecx)*gain
    if logger is not None:
        msg = str("Gain of 16 channels: " + str(Gain16))
        logger.info(msg)
    else:
Wei Chengliang's avatar
Wei Chengliang committed
161
        print("Gain of 16 channels: ", Gain16)
Fang Yuedong's avatar
Fang Yuedong committed
162
163
164
165
166
    arrshape = GSImage.array.shape
    secsize_x = int(arrshape[1]/nsecx)
    secsize_y = int(arrshape[0]/nsecy)
    for rowi in range(nsecy):
        for coli in range(nsecx):
Wei Chengliang's avatar
Wei Chengliang committed
167
168
            GSImage.array[rowi*secsize_y:(rowi+1)*secsize_y, coli*secsize_x:(coli+1)*secsize_x] *= Gain16[rowi, coli]
            gain_array[rowi*nsecx+coli] = 1/Gain16[rowi, coli]
Fang Yuedong's avatar
Fang Yuedong committed
169
170
171
    return GSImage, gain_array


Wei Chengliang's avatar
Wei Chengliang committed
172
def GainsNonUniform16(GSImage, gain=1, nsecy=2, nsecx=8, seed=202102, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
173
174
175
    # Generate Gain non-uniformity, and multipy the different factors (mean~1 with sigma~1%) to the GS-Image
    rg = Generator(PCG64(int(seed)))
    Random16 = (rg.random(nsecy*nsecx)-0.5)*0.04+1   # sigma~1%
Wei Chengliang's avatar
Wei Chengliang committed
176
    Gain16 = Random16.reshape((nsecy, nsecx))/gain
Fang Yuedong's avatar
Fang Yuedong committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    if logger is not None:
        msg = str(seed-20210202, "Gains of 16 channels: " + str(Gain16))
        logger.info(msg)
    else:
        print(seed-20210202, "Gains of 16 channels:\n", Gain16)
    # arrshape = GSImage.array.shape
    # secsize_x = int(arrshape[1]/nsecx)
    # secsize_y = int(arrshape[0]/nsecy)
    # for rowi in range(nsecy):
    #     for coli in range(nsecx):
    #         GSImage.array[rowi*secsize_y:(rowi+1)*secsize_y,coli*secsize_x:(coli+1)*secsize_x] *= Gain16[rowi,coli]
    # return GSImage
    return Gain16


def MakeFlatSmooth(GSBounds, seed):
    rg = Generator(PCG64(int(seed)))
Wei Chengliang's avatar
Wei Chengliang committed
194
    r1, r2, r3, r4 = rg.random(4)
Fang Yuedong's avatar
Fang Yuedong committed
195
196
197
198
    a1 = -0.5 + 0.2*r1
    a2 = -0.5 + 0.2*r2
    a3 = r3+5
    a4 = r4+5
Wei Chengliang's avatar
Wei Chengliang committed
199
    xmin, xmax, ymin, ymax = GSBounds.getXMin(), GSBounds.getXMax(), GSBounds.getYMin(), GSBounds.getYMax()
Fang Yuedong's avatar
Fang Yuedong committed
200
201
    Flty, Fltx = np.mgrid[ymin:(ymax+1), xmin:(xmax+1)]
    rg = Generator(PCG64(int(seed)))
Wei Chengliang's avatar
Wei Chengliang committed
202
    p1, p2, bg = rg.poisson(1000, 3)
Fang Yuedong's avatar
Fang Yuedong committed
203
204
205
206
207
208
    Fltz = 0.6*1e-7*(a1 * (Fltx-p1) ** 2 + a2 * (Flty-p2) ** 2 - a3*Fltx - a4*Flty) + bg*20
    FlatImg = galsim.ImageF(Fltz)
    return FlatImg


def MakeFlatNcomb(flat_single_image, ncombine=1, read_noise=5, gain=1, overscan=500, biaslevel=500, seed_bias=20210311, logger=None):
Wei Chengliang's avatar
Wei Chengliang committed
209
    ncombine = int(ncombine)
Fang Yuedong's avatar
Fang Yuedong committed
210
211
212
213
214
215
216
217
218
    FlatCombImg = flat_single_image*ncombine
    rng = galsim.UniformDeviate()
    NoiseFlatPoi = galsim.PoissonNoise(rng=rng, sky_level=0)
    FlatCombImg.addNoise(NoiseFlatPoi)
    NoiseFlatReadN = galsim.GaussianNoise(rng=rng, sigma=read_noise*ncombine**0.5)
    FlatCombImg.addNoise(NoiseFlatReadN)
    # NoiseFlat = galsim.CCDNoise(rng, gain=gain, read_noise=read_noise*ncombine**0.5, sky_level=0)
    for i in range(ncombine):
        FlatCombImg = AddBiasNonUniform16(
Wei Chengliang's avatar
Wei Chengliang committed
219
220
221
            FlatCombImg,
            bias_level=biaslevel,
            nsecy=2, nsecx=8,
Fang Yuedong's avatar
Fang Yuedong committed
222
223
224
225
226
            seed=seed_bias,
            logger=logger)
    if ncombine == 1:
        FlatTag = 'Single'
        pass
Wei Chengliang's avatar
Wei Chengliang committed
227
    elif ncombine > 1:
Fang Yuedong's avatar
Fang Yuedong committed
228
229
230
231
232
233
234
235
        FlatCombImg /= ncombine
        FlatTag = 'Combine'
    # FlatCombImg.replaceNegative(replace_value=0)
    # FlatCombImg.quantize()
    return FlatCombImg, FlatTag


def MakeDarkNcomb(npix_x, npix_y, overscan=500, bias_level=500, seed_bias=202102, darkpsec=0.02, exptime=150, ncombine=10, read_noise=5, gain=1, logger=None):
Wei Chengliang's avatar
Wei Chengliang committed
236
    ncombine = int(ncombine)
Fang Yuedong's avatar
Fang Yuedong committed
237
238
239
240
241
242
243
244
245
246
    darkpix = darkpsec*exptime
    DarkSngImg = galsim.Image(npix_x, npix_y, init_value=darkpix)
    rng = galsim.UniformDeviate()
    NoiseDarkPoi = galsim.PoissonNoise(rng=rng, sky_level=0)
    NoiseReadN = galsim.GaussianNoise(rng=rng, sigma=read_noise*ncombine**0.5)
    DarkCombImg = DarkSngImg*ncombine
    DarkCombImg.addNoise(NoiseDarkPoi)
    DarkCombImg.addNoise(NoiseReadN)
    for i in range(ncombine):
        DarkCombImg = AddBiasNonUniform16(
Wei Chengliang's avatar
Wei Chengliang committed
247
248
            DarkCombImg,
            bias_level=bias_level,
Wei Chengliang's avatar
Wei Chengliang committed
249
            nsecy=2, nsecx=8,
Fang Yuedong's avatar
Fang Yuedong committed
250
251
252
253
254
            seed=int(seed_bias),
            logger=logger)
    if ncombine == 1:
        DarkTag = 'Single'
        pass
Wei Chengliang's avatar
Wei Chengliang committed
255
    elif ncombine > 1:
Fang Yuedong's avatar
Fang Yuedong committed
256
257
258
259
260
261
262
263
264
        DarkCombImg /= ncombine
        DarkTag = 'Combine'
    # DarkCombImg.replaceNegative(replace_value=0)
    # DarkCombImg.quantize()
    return DarkCombImg, DarkTag


def PRNU_Img(xsize, ysize, sigma=0.01, seed=202101):
    rg = Generator(PCG64(int(seed)))
Wei Chengliang's avatar
Wei Chengliang committed
265
    prnuarr = rg.normal(1, sigma, (ysize, xsize))
Fang Yuedong's avatar
Fang Yuedong committed
266
267
268
269
270
271
272
273
274
275
    prnuimg = galsim.ImageF(prnuarr)
    return prnuimg


def NonLinearity(GSImage, beta1=5E-7, beta2=0):
    NonLinear_f = lambda x, beta_1, beta_2: x - beta_1*x*x + beta_2*x*x*x
    GSImage.applyNonlinearity(NonLinear_f, beta1, beta2)
    return GSImage


Wei Chengliang's avatar
Wei Chengliang committed
276
# Saturation & Bleeding Start#
Fang Yuedong's avatar
Fang Yuedong committed
277
def BleedingTrail(aa, yy):
Wei Chengliang's avatar
Wei Chengliang committed
278
279
    if aa < 0.2:
        aa = 0.2
Fang Yuedong's avatar
Fang Yuedong committed
280
281
282
283
    else:
        pass
    try:
        fy = 0.5*(math.exp(math.log(yy+1)**3/aa)+np.exp(-1*math.log(yy+1)**3/aa))
Wei Chengliang's avatar
Wei Chengliang committed
284
        faa = 0.5*(math.e+1/math.e)
Fang Yuedong's avatar
Fang Yuedong committed
285
286
287
288
289
290
291
        trail_frac = 1-0.1*(fy-1)/(faa-1)
    except Exception as e:
        print(e)
        trail_frac = 1

    return trail_frac

Wei Chengliang's avatar
Wei Chengliang committed
292

Fang Yuedong's avatar
Fang Yuedong committed
293
294
295
296
def MakeTrail(imgarr, satuyxtuple, charge, fullwell=9e4, direction='up', trailcutfrac=0.9):
    '''
    direction: "up" or "down". For "up", bleeds along Y-decreasing direction; for "down", bleeds along Y-increasing direction.
    '''
Wei Chengliang's avatar
Wei Chengliang committed
297
    yi, xi = satuyxtuple
Fang Yuedong's avatar
Fang Yuedong committed
298
299
300
    aa = np.log(charge/fullwell)**3              # scale length of the bleeding trail
    yy = 1

Wei Chengliang's avatar
Wei Chengliang committed
301
302
    while charge > 0:
        if yi < 0 or yi > imgarr.shape[0]-1:
Fang Yuedong's avatar
Fang Yuedong committed
303
            break
Wei Chengliang's avatar
Wei Chengliang committed
304
305
        if yi == 0 or yi == imgarr.shape[0]-1:
            imgarr[yi, xi] = fullwell
Fang Yuedong's avatar
Fang Yuedong committed
306
            break
Wei Chengliang's avatar
Wei Chengliang committed
307
308
309
        if direction == 'up':
            if imgarr[yi-1, xi] >= fullwell:
                imgarr[yi, xi] = fullwell
Wei Chengliang's avatar
Wei Chengliang committed
310
                yi -= 1
Fang Yuedong's avatar
Fang Yuedong committed
311
                continue
Wei Chengliang's avatar
Wei Chengliang committed
312
313
314
315
        elif direction == 'down':
            if imgarr[yi+1, xi] >= fullwell:
                imgarr[yi, xi] = fullwell
                yi += 1
Fang Yuedong's avatar
Fang Yuedong committed
316
                continue
Wei Chengliang's avatar
Wei Chengliang committed
317
        if aa <= 1:
Wei Chengliang's avatar
Wei Chengliang committed
318
319
320
321
322
323
324
            while imgarr[yi, xi] >= fullwell:
                imgarr[yi, xi] = fullwell
                if direction == 'up':
                    imgarr[yi-1, xi] += charge
                    charge = imgarr[yi-1, xi]-fullwell
                    yi -= 1
                    if yi < 0:
Fang Yuedong's avatar
Fang Yuedong committed
325
                        break
Wei Chengliang's avatar
Wei Chengliang committed
326
327
328
329
330
                elif direction == 'down':
                    imgarr[yi+1, xi] += charge
                    charge = imgarr[yi+1, xi]-fullwell
                    yi += 1
                    if yi > imgarr.shape[0]:
Fang Yuedong's avatar
Fang Yuedong committed
331
332
333
                        break
        else:
            # calculate bleeding trail:
Wei Chengliang's avatar
Wei Chengliang committed
334
            trail_frac = BleedingTrail(aa, yy)
Fang Yuedong's avatar
Fang Yuedong committed
335
336

            # put charge upwards
Wei Chengliang's avatar
Wei Chengliang committed
337
338
339
340
341
342
            if trail_frac >= 0.99:
                imgarr[yi, xi] = fullwell
                if direction == 'up':
                    yi -= 1
                elif direction == 'down':
                    yi += 1
Fang Yuedong's avatar
Fang Yuedong committed
343
344
                yy += 1
            else:
Wei Chengliang's avatar
Wei Chengliang committed
345
                if trail_frac < trailcutfrac:
Fang Yuedong's avatar
Fang Yuedong committed
346
347
                    break
                charge = fullwell*trail_frac
Wei Chengliang's avatar
Wei Chengliang committed
348
349
350
351
352
353
354
355
                imgarr[yi, xi] += charge
                if imgarr[yi, xi] > fullwell:
                    imgarr[yi, xi] = fullwell

                if direction == 'up':
                    yi -= 1
                elif direction == 'down':
                    yi += 1
Fang Yuedong's avatar
Fang Yuedong committed
356
357
358
359
360
361
                yy += 1

    return imgarr


def ChargeFlow(imgarr, fullwell=9E4):
Wei Chengliang's avatar
Wei Chengliang committed
362
    size_y, size_x = imgarr.shape
Wei Chengliang's avatar
Wei Chengliang committed
363
    satupos_y, satupos_x = np.where(imgarr > fullwell)
Fang Yuedong's avatar
Fang Yuedong committed
364

Wei Chengliang's avatar
Wei Chengliang committed
365
    if satupos_y.shape[0] == 0:
Fang Yuedong's avatar
Fang Yuedong committed
366
367
368
369
370
371
372
373
374
        # make no change for the image array
        return imgarr
    elif satupos_y.shape[0]/imgarr.size > 0.5:
        imgarr.fill(fullwell)
        return imgarr

    chargedict = {}
    imgarrorig = copy.deepcopy(imgarr)

Wei Chengliang's avatar
Wei Chengliang committed
375
376
377
    for yi, xi in zip(satupos_y, satupos_x):
        yxidx = ''.join([str(yi), str(xi)])
        chargedict[yxidx] = imgarrorig[yi, xi]-fullwell
Fang Yuedong's avatar
Fang Yuedong committed
378

Wei Chengliang's avatar
Wei Chengliang committed
379
380
    for yi, xi in zip(satupos_y, satupos_x):
        yxidx = ''.join([str(yi), str(xi)])
Fang Yuedong's avatar
Fang Yuedong committed
381
382
383
384
385
386
        satcharge = chargedict[yxidx]
        chargeup = ((np.random.random()-0.5)*0.05+0.5)*satcharge
        chargedn = satcharge - chargeup

        try:
            # Charge Clump moves up
Wei Chengliang's avatar
Wei Chengliang committed
387
            if yi >= 0 and yi < imgarr.shape[0]:
Wei Chengliang's avatar
Wei Chengliang committed
388
                imgarr = MakeTrail(imgarr, (yi, xi), chargeup, fullwell=9e4, direction='up', trailcutfrac=0.9)
Fang Yuedong's avatar
Fang Yuedong committed
389
                # Charge Clump moves down
Wei Chengliang's avatar
Wei Chengliang committed
390
                imgarr = MakeTrail(imgarr, (yi, xi), chargedn, fullwell=9e4, direction='down', trailcutfrac=0.9)
Fang Yuedong's avatar
Fang Yuedong committed
391
        except Exception as e:
Wei Chengliang's avatar
Wei Chengliang committed
392
            print(e, '@pix ', (yi+1, xi+1))
Fang Yuedong's avatar
Fang Yuedong committed
393
394
395
            return imgarr
    return imgarr

Wei Chengliang's avatar
Wei Chengliang committed
396

Fang Yuedong's avatar
Fang Yuedong committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def SaturBloom(GSImage, nsect_x=1, nsect_y=1, fullwell=9e4):
    """
    To simulate digital detector's saturation and blooming effect. The blooming is along the read-out direction, perpendicular to the charge transfer direction. Charge clumpy overflows the pixel well will flow to two oposite directions with nearly same charges.
    Work together with chargeflow() function.
    Parameters:
      GSImage: a GalSim Image of a chip;
      nsect_x: number of sections divided along x direction;
      nsect_y: number of sections divided along y direction.
    Return: a saturated image array with the same size of input.
    """
    imgarr = GSImage.array
    size_y, size_x = imgarr.shape
    subsize_y = int(size_y/nsect_y)
    subsize_x = int(size_x/nsect_x)

    for i in range(nsect_y):
        for j in range(nsect_x):
            subimg = imgarr[subsize_y*i:subsize_y*(i+1), subsize_x*j:subsize_x*(j+1)]

            subimg = ChargeFlow(subimg, fullwell=fullwell)

            imgarr[subsize_y*i:subsize_y*(i+1), subsize_x*j:subsize_x*(j+1)] = subimg

    return GSImage

Wei Chengliang's avatar
Wei Chengliang committed
422
#    Saturation & Bleeding End    #
Fang Yuedong's avatar
Fang Yuedong committed
423
424
425
426
427


def readout16(GSImage, rowi=0, coli=0, overscan_value=0):
    # readout image as 16 outputs of sub-images plus prescan & overscan.
    # assuming image width and height sizes are both even.
Wei Chengliang's avatar
Wei Chengliang committed
428
    # assuming image has 2 columns and 8 rows of output channels.
Fang Yuedong's avatar
Fang Yuedong committed
429
430
431
432
433
    # 00  01
    # 10  11
    # 20  21
    # ...
    # return: GS Image Object
Wei Chengliang's avatar
Wei Chengliang committed
434
    npix_y, npix_x = GSImage.array.shape
Fang Yuedong's avatar
Fang Yuedong committed
435
436
437
    subheight = int(8+npix_y/2+8)
    subwidth = int(16+npix_x/8+27)
    OutputSubimg = galsim.ImageUS(subwidth, subheight, init_value=overscan_value)
Wei Chengliang's avatar
Wei Chengliang committed
438
    if rowi < 4 and coli == 0:
Fang Yuedong's avatar
Fang Yuedong committed
439
440
441
        subbounds = galsim.BoundsI(1, int(npix_x/2),  int(npix_y/8*rowi+1), int(npix_y/8*(rowi+1)))
        subbounds = subbounds.shift(galsim.PositionI(GSImage.bounds.getXMin()-1, GSImage.bounds.getYMin()-1))
        subimg = GSImage[subbounds]
Wei Chengliang's avatar
Wei Chengliang committed
442
443
        OutputSubimg.array[27:int(npix_y/8)+27, 8:int(npix_x/2)+8] = subimg.array
    elif rowi < 4 and coli == 1:
Fang Yuedong's avatar
Fang Yuedong committed
444
445
446
        subbounds = galsim.BoundsI(npix_x/2+1, npix_x,  npix_y/8*rowi+1, npix_y/8*(rowi+1))
        subbounds = subbounds.shift(galsim.PositionI(GSImage.bounds.getXMin()-1, GSImage.bounds.getYMin()-1))
        subimg = GSImage[subbounds]
Wei Chengliang's avatar
Wei Chengliang committed
447
448
        OutputSubimg.array[27:int(npix_y/8)+27, 8:int(npix_x/2)+8] = subimg.array
    elif rowi >= 4 and rowi < 8 and coli == 0:
Fang Yuedong's avatar
Fang Yuedong committed
449
450
451
        subbounds = galsim.BoundsI(1, npix_x/2,  npix_y/8*rowi+1, npix_y/8*(rowi+1))
        subbounds = subbounds.shift(galsim.PositionI(GSImage.bounds.getXMin()-1, GSImage.bounds.getYMin()-1))
        subimg = GSImage[subbounds]
Wei Chengliang's avatar
Wei Chengliang committed
452
453
        OutputSubimg.array[16:int(npix_y/8)+16, 8:int(npix_x/2)+8] = subimg.array
    elif rowi >= 4 and rowi < 8 and coli == 1:
Fang Yuedong's avatar
Fang Yuedong committed
454
455
456
        subbounds = galsim.BoundsI(npix_x/2+1, npix_x,  npix_y/8*rowi+1, npix_y/8*(rowi+1))
        subbounds = subbounds.shift(galsim.PositionI(GSImage.bounds.getXMin()-1, GSImage.bounds.getYMin()-1))
        subimg = GSImage[subbounds]
Wei Chengliang's avatar
Wei Chengliang committed
457
        OutputSubimg.array[16:int(npix_y/8)+16, 8:int(npix_x/2)+8] = subimg.array
Fang Yuedong's avatar
Fang Yuedong committed
458
459
460
461
462
463
464
465
466
    else:
        print("\n\033[31mError: "+"Wrong rowi or coli assignment. Permitted: 0<=rowi<=7, 0<=coli<=1."+"\033[0m\n")
        return OutputSubimg
    return OutputSubimg


def CTE_Effect(GSImage, threshold=27, direction='column'):
    # Devide the image into 4 sections and apply CTE effect with different trail directions.
    # GSImage: a GalSim Image object.
Wei Chengliang's avatar
Wei Chengliang committed
467
    size_y, size_x = GSImage.array.shape
Fang Yuedong's avatar
Fang Yuedong committed
468
469
470
471
    size_sect_y = int(size_y/2)
    size_sect_x = int(size_x/2)
    imgarr = GSImage.array
    if direction == 'column':
Wei Chengliang's avatar
Wei Chengliang committed
472
        imgarr[0:size_sect_y, :] = CTEModelColRow(imgarr[0:size_sect_y, :], trail_direction='down', direction='column', threshold=threshold)
Wei Chengliang's avatar
Wei Chengliang committed
473
        imgarr[size_sect_y:size_y, :] = CTEModelColRow(imgarr[size_sect_y:size_y, :], trail_direction='up', direction='column', threshold=threshold)
Fang Yuedong's avatar
Fang Yuedong committed
474
    elif direction == 'row':
Wei Chengliang's avatar
Wei Chengliang committed
475
476
        imgarr[:, 0:size_sect_x] = CTEModelColRow(imgarr[:, 0:size_sect_x], trail_direction='right', direction='row', threshold=threshold)
        imgarr[:, size_sect_x:size_x] = CTEModelColRow(imgarr[:, size_sect_x:size_x], trail_direction='left', direction='row', threshold=threshold)
Fang Yuedong's avatar
Fang Yuedong committed
477
478
479
480
    return GSImage


@jit()
Wei Chengliang's avatar
Wei Chengliang committed
481
def CTEModelColRow(img, trail_direction='up', direction='column', threshold=27):
Fang Yuedong's avatar
Fang Yuedong committed
482

Wei Chengliang's avatar
Wei Chengliang committed
483
484
485
    # total trail flux vs (pixel flux)^1/2 is approximately linear
    # total trail flux = trail_a * (pixel flux)^1/2 + trail_b
    # trail pixel flux = pow(0.5,x)/0.5, normalize to 1
Wei Chengliang's avatar
Wei Chengliang committed
486
    trail_a = 5.651803799619966
Fang Yuedong's avatar
Fang Yuedong committed
487
488
489
490
491
    trail_b = -2.671933068990729

    sh1 = img.shape[0]
    sh2 = img.shape[1]
    n_img = img*0
Wei Chengliang's avatar
Wei Chengliang committed
492
    idx = np.where(img < threshold)
Fang Yuedong's avatar
Fang Yuedong committed
493
494
    if len(idx[0]) == 0:
        pass
Wei Chengliang's avatar
Wei Chengliang committed
495
    elif len(idx[0]) > 0:
Fang Yuedong's avatar
Fang Yuedong committed
496
497
        n_img[idx] = img[idx]

Wei Chengliang's avatar
Wei Chengliang committed
498
    yidx, xidx = np.where(img >= threshold)
Fang Yuedong's avatar
Fang Yuedong committed
499
500
    if len(yidx) == 0:
        pass
Wei Chengliang's avatar
Wei Chengliang committed
501
    elif len(yidx) > 0:
Fang Yuedong's avatar
Fang Yuedong committed
502
        # print(index)
Wei Chengliang's avatar
Wei Chengliang committed
503
504
        for i, j in zip(yidx, xidx):
            f = img[i, j]
Fang Yuedong's avatar
Fang Yuedong committed
505
506
507
508
            trail_f = (np.sqrt(f)*trail_a + trail_b)*0.5
            # trail_f=5E-5*f**1.5
            xy_num = 10
            all_trail = np.zeros(xy_num)
Wei Chengliang's avatar
Wei Chengliang committed
509

Wei Chengliang's avatar
Wei Chengliang committed
510
            xy_upstr = np.arange(1, xy_num, 1)
Fang Yuedong's avatar
Fang Yuedong committed
511
512
513
514

            # all_trail_pix = np.sum(pow(0.5,xy_upstr)/0.5)
            all_trail_pix = 0
            for m in xy_upstr:
Wei Chengliang's avatar
Wei Chengliang committed
515
                a1 = 12.97059491
Wei Chengliang's avatar
Wei Chengliang committed
516
517
518
519
520
                b1 = 0.54286652
                c1 = 0.69093105
                a2 = 2.77298856
                b2 = 0.11231055
                c2 = -0.01038675
Fang Yuedong's avatar
Fang Yuedong committed
521
                # t_pow = 0
Wei Chengliang's avatar
Wei Chengliang committed
522
523
                am = 1
                bm = 1
Fang Yuedong's avatar
Fang Yuedong committed
524
525
526
527
528
                t_pow = am*np.exp(-bm*m)
                # if m < 5:
                #     t_pow = a1*np.exp(-b1*m)+c1
                # else:
                #     t_pow = a2*np.exp(-b2*m)+c2
Wei Chengliang's avatar
Wei Chengliang committed
529
                if t_pow < 0:
Fang Yuedong's avatar
Fang Yuedong committed
530
531
532
533
534
535
536
537
                    t_pow = 0

                all_trail_pix += t_pow
                all_trail[m] = t_pow
            trail_pix_eff = trail_f/all_trail_pix
            all_trail = trail_pix_eff*all_trail
            all_trail[0] = f - trail_f
            
Wei Chengliang's avatar
Wei Chengliang committed
538
            for m in np.arange(0, xy_num, 1):
Fang Yuedong's avatar
Fang Yuedong committed
539
540
541
542
543
                if direction == 'column':
                    if trail_direction == 'down':
                        y_pos = i + m
                    elif trail_direction == 'up':
                        y_pos = i - m
Wei Chengliang's avatar
Wei Chengliang committed
544
                    if y_pos < 0 or y_pos >= sh1:
Fang Yuedong's avatar
Fang Yuedong committed
545
                        break
Wei Chengliang's avatar
Wei Chengliang committed
546
                    n_img[y_pos, j] = n_img[y_pos, j] + all_trail[m]
Fang Yuedong's avatar
Fang Yuedong committed
547
548
549
550
551
                elif direction == 'row':
                    if trail_direction == 'left':
                        x_pos = j - m
                    elif trail_direction == 'right':
                        x_pos = j + m
Wei Chengliang's avatar
Wei Chengliang committed
552
                    if x_pos < 0 or x_pos >= sh2:
Fang Yuedong's avatar
Fang Yuedong committed
553
                        break
Wei Chengliang's avatar
Wei Chengliang committed
554
                    n_img[i, x_pos] = n_img[i, x_pos] + all_trail[m]
Fang Yuedong's avatar
Fang Yuedong committed
555
556
557
558

    return n_img


Wei Chengliang's avatar
Wei Chengliang committed
559
560
# ---------- For Cosmic-Ray Simulation ------------
# ---------- Zhang Xin ----------------------------
Fang Yuedong's avatar
Fang Yuedong committed
561
562
563
def getYValue(collection, x):
    index = 0;
    if (collection.shape[1] == 2):
Wei Chengliang's avatar
Wei Chengliang committed
564
        while(x>collection[index, 0] and index < collection.shape[0]):
Fang Yuedong's avatar
Fang Yuedong committed
565
566
567
568
569
570
571
572
573
574
575
            index= index + 1;
        if (index == collection.shape[0] or index == 0):
            return 0;

        deltX = collection[index, 0] - collection[index-1, 0];
        deltY = collection[index, 1] - collection[index-1, 1];

        if deltX == 0:
            return (collection[index, 1] + collection[index-1, 1])/2.0
        else:
            a = deltY/deltX;
Wei Chengliang's avatar
Wei Chengliang committed
576
            return a * (x - collection[index-1, 0]) + collection[index-1, 1];
Fang Yuedong's avatar
Fang Yuedong committed
577
578
579
    return 0;


Wei Chengliang's avatar
Wei Chengliang committed
580
def selectCosmicRayCollection(attachedSizes, xLen, yLen, cr_pixelRatio, CR_max_size):
Fang Yuedong's avatar
Fang Yuedong committed
581
582
583
584
585
586
587
588

    normalRay = 0.90
    nnormalRay = 1-normalRay
    max_nrayLen = 100
    pixelNum = int(xLen *  yLen * cr_pixelRatio * normalRay );
    pixelNum_n = int(xLen *  yLen * cr_pixelRatio * nnormalRay )
    CRPixelNum = 0;
    
Wei Chengliang's avatar
Wei Chengliang committed
589
    maxValue = max(attachedSizes[:, 1])
Fang Yuedong's avatar
Fang Yuedong committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    maxValue += 0.1;

    cr_event_num = 0;
    CRs = np.zeros(pixelNum);
    while (CRPixelNum < pixelNum):
        x = CR_max_size * np.random.random();
        y = maxValue * np.random.random();
        if (y <= getYValue(attachedSizes, x)):
            CRs[cr_event_num] = np.ceil(x);
            cr_event_num = cr_event_num + 1;
            CRPixelNum = CRPixelNum + round(x);

    while (CRPixelNum < pixelNum + pixelNum_n):
        nx = np.random.random()*(max_nrayLen-CR_max_size)+CR_max_size
        CRs[cr_event_num] = np.ceil(nx);
        cr_event_num = cr_event_num + 1;
        CRPixelNum = CRPixelNum + np.ceil(nx);

    return   CRs[0:cr_event_num];


Wei Chengliang's avatar
Wei Chengliang committed
611
def defineEnergyForCR(cr_event_size, seed = 12345):
Fang Yuedong's avatar
Fang Yuedong committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    import random
    sigma = 0.6 / 2.355;
    mean = 3.3;
    random.seed(seed)
    energys = np.zeros(cr_event_size);
    for i in np.arange(cr_event_size):
        energy_index = random.normalvariate(mean,sigma);
        energys[i] = pow(10, energy_index);

    return energys;

def convCR(CRmap=None, addPSF=None, sp_n = 4):
    sh = CRmap.shape

    # sp_n = 4
    subCRmap = np.zeros(np.array(sh)*sp_n)
    pix_v0 = 1/(sp_n*sp_n)
    for i in np.arange(sh[0]):
        i_st = sp_n*i
        for j in np.arange(sh[1]):
            if CRmap[i,j] ==0:
                continue
            j_st = sp_n*j
Wei Chengliang's avatar
Wei Chengliang committed
635
            pix_v1 = CRmap[i, j]*pix_v0
Fang Yuedong's avatar
Fang Yuedong committed
636
637
638
639
640
641
642
643
644
645
            for m in np.arange(sp_n):
                for n in np.arange(sp_n):
                    subCRmap[i_st+m, j_st + n] = pix_v1

    m_size = addPSF.shape[0]

    subCRmap_n = np.zeros(np.array(subCRmap.shape) + m_size -1)

    for i in np.arange(subCRmap.shape[0]):
        for j in np.arange(subCRmap.shape[1]):
Wei Chengliang's avatar
Wei Chengliang committed
646
647
648
            if subCRmap[i, j]>0:
                convPix = addPSF*subCRmap[i, j]
                subCRmap_n[i:i+m_size, j:j+m_size] += convPix
Fang Yuedong's avatar
Fang Yuedong committed
649
650
651
652
653
654
655
656
657
658
659
660
661

    CRmap_n = np.zeros((np.array(subCRmap_n.shape)/sp_n).astype(np.int32))
    sh_n = CRmap_n.shape

    for i in np.arange(sh_n[0]):
        i_st = sp_n*i
        for j in np.arange(sh_n[1]):
            p_v = 0
            j_st=sp_n*j
            for m in np.arange(sp_n):
                for n in np.arange(sp_n):
                    p_v += subCRmap_n[i_st+m, j_st + n]

Wei Chengliang's avatar
Wei Chengliang committed
662
            CRmap_n[i, j] = p_v
Fang Yuedong's avatar
Fang Yuedong committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

    return CRmap_n


def produceCR_Map(xLen, yLen, exTime, cr_pixelRatio, gain, attachedSizes, seed=20210317):
    # Return: an 2-D numpy array
    # attachedSizes = np.loadtxt('./wfc-cr-attachpixel.dat');
    np.random.seed(seed)
    CR_max_size = 20.0;
    cr_size = selectCosmicRayCollection(attachedSizes, xLen, yLen, cr_pixelRatio, CR_max_size);

    cr_event_size = cr_size.shape[0];
    cr_energys = defineEnergyForCR(cr_event_size,seed = seed);

    CRmap = np.zeros([yLen, xLen]);

Wei Chengliang's avatar
Wei Chengliang committed
679
    # produce conv kernel
Fang Yuedong's avatar
Fang Yuedong committed
680
681
682
683
684
685
686
687
688
689
690
691
    from astropy.modeling.models import Gaussian2D
    o_size = 4
    sp_n = 8

    m_size = o_size*sp_n+1
    m_cen = o_size*sp_n/2
    sigma_psf = 0.2*sp_n
    addPSF_ = Gaussian2D(1, m_cen, m_cen, sigma_psf, sigma_psf)
    yp, xp = np.mgrid[0:m_size, 0:m_size]
    addPSF = addPSF_(xp, yp)
    convKernel = addPSF/addPSF.sum()

Wei Chengliang's avatar
Wei Chengliang committed
692
    #---------------------------------
Fang Yuedong's avatar
Fang Yuedong committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710


    for i in np.arange(cr_event_size):
        xPos = round((xLen - 1)* np.random.random());
        yPos = round((yLen - 1)* np.random.random());
        cr_lens = int(cr_size[i]);
        if cr_lens ==0:
            continue;
        pix_energy = cr_energys[i]/gain/cr_lens;
        pos_angle = 1/2*math.pi*np.random.random();

        crMatrix = np.zeros([cr_lens+1, cr_lens + 1])

        for j in np.arange(cr_lens):
            x_n = int(np.cos(pos_angle)*j - np.sin(pos_angle)*0);
            if x_n < 0:
                x_n = x_n + cr_lens+1
            y_n = int(np.sin(pos_angle)*j + np.cos(pos_angle)*0);
Wei Chengliang's avatar
Wei Chengliang committed
711
            if x_n < 0 or x_n > cr_lens or y_n < 0 or y_n > cr_lens:
Fang Yuedong's avatar
Fang Yuedong committed
712
                continue;
Wei Chengliang's avatar
Wei Chengliang committed
713
            crMatrix[y_n, x_n] = pix_energy;
Fang Yuedong's avatar
Fang Yuedong committed
714
715
716
717
718
719
720
721
722
723
724
725
726

        crMatrix_n = convCR(crMatrix, convKernel, sp_n)
        # crMatrix_n = crMatrix

        xpix = np.arange(crMatrix_n.shape[0]) + int(xPos)
        ypix = np.arange(crMatrix_n.shape[1]) + int(yPos)

        sh = CRmap.shape
        okx = (xpix >= 0) & (xpix < sh[1])
        oky = (ypix >= 0) & (ypix < sh[0])

        sly = slice(ypix[oky].min(), ypix[oky].max()+1)
        slx = slice(xpix[okx].min(), xpix[okx].max()+1)
Wei Chengliang's avatar
Wei Chengliang committed
727
        CRmap[sly, slx] += crMatrix_n[oky, :][:, okx]
Fang Yuedong's avatar
Fang Yuedong committed
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
    return CRmap.astype(np.int32), cr_event_size


def ShutterEffectArr(GSImage, t_exp=150, t_shutter=1.3, dist_bearing=735, dt=1E-3):
    # Generate Shutter-Effect normalized image
    # t_shutter: time of shutter movement
    # dist_bearing: distance between two bearings of shutter leaves
    # dt: delta_t of sampling

    from scipy import interpolate

    SampleNumb = int(t_shutter/dt+1)
    DistHalf = dist_bearing/2

    t = np.arange(SampleNumb)*dt
    a_arr = 5.84*np.sin(2*math.pi/t_shutter*t)
    v = np.zeros(SampleNumb)
    theta = np.zeros(SampleNumb)
    x = np.arange(SampleNumb)/(SampleNumb-1)*dist_bearing
    s = np.zeros(SampleNumb)
    s1 = np.zeros(SampleNumb)
    s2 = np.zeros(SampleNumb)
    brt  = np.zeros(SampleNumb)
    idx = np.arange(SampleNumb)
    sidx = np.zeros(SampleNumb)
    s1idx = np.zeros(SampleNumb)
    s2idx = np.zeros(SampleNumb)

    v[0] = 0
    theta[0] = 0

    for i in range(SampleNumb-1):
        v[i+1] = v[i]+a_arr[i]*dt
        theta[i+1] = theta[i]+v[i]*dt
        s1[i] = DistHalf*np.cos(theta[i])
        s2[i] = dist_bearing-DistHalf*np.cos(theta[i])
        s1idx[i] = int(s1[i]/dist_bearing*(SampleNumb))
        s2idx[i] = int(s2[i]/dist_bearing*(SampleNumb))
Wei Chengliang's avatar
Wei Chengliang committed
766
        brt[(idx > s1idx[i]) & (idx < s2idx[i])] += dt
Fang Yuedong's avatar
Fang Yuedong committed
767

Wei Chengliang's avatar
Wei Chengliang committed
768
    if t_exp > t_shutter*2:
Fang Yuedong's avatar
Fang Yuedong committed
769
770
771
772
773
774
775
776
777
778
779
780
        brt = brt*2+(t_exp-t_shutter*2)
    else:
        brt = brt*2

    x = (x-dist_bearing/2)*100

    intp = interpolate.splrep(x, brt, s=0)

    xmin = GSImage.bounds.getXMin()
    xmax = GSImage.bounds.getXMax()
    ymin = GSImage.bounds.getYMin()
    ymax = GSImage.bounds.getYMax()
Wei Chengliang's avatar
Wei Chengliang committed
781
    if xmin < np.min(x) or xmax > np.max(x):
Fang Yuedong's avatar
Fang Yuedong committed
782
        raise LookupError("Out of focal-plane bounds in X-direction.")
Wei Chengliang's avatar
Wei Chengliang committed
783
    if ymin < -25331 or ymax > 25331:
Fang Yuedong's avatar
Fang Yuedong committed
784
785
786
787
788
        raise LookupError("Out of focal-plane bounds in Y-direction.")
    sizex = xmax-xmin+1
    sizey = ymax-ymin+1
    xnewgrid = np.mgrid[xmin:(xmin+sizex)]
    expeffect = interpolate.splev(xnewgrid, intp, der=0)
Zhang Xin's avatar
Zhang Xin committed
789
    expeffect /= t_exp
Wei Chengliang's avatar
Wei Chengliang committed
790
    exparrnormal = np.tile(expeffect, (sizey, 1))
Fang Yuedong's avatar
Fang Yuedong committed
791
792
793
    # GSImage *= exparrnormal

    return exparrnormal