chip_utils.py 14 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import galsim
import ctypes
import numpy as np
from astropy.io import fits
from datetime import datetime

from observation_sim.instruments.chip import effects
from observation_sim.config.header import generatePrimaryHeader, generateExtensionHeader

try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources


def log_info(msg, logger=None):
    if logger:
        logger.info(msg)
    else:
        print(msg, flush=True)


def getChipSLSGratingID(chipID):
    gratingID = ['', '']
    if chipID == 1:
        gratingID = ['GI2', 'GI1']
    if chipID == 2:
        gratingID = ['GV4', 'GV3']
    if chipID == 3:
        gratingID = ['GU2', 'GU1']
    if chipID == 4:
        gratingID = ['GU4', 'GU3']
    if chipID == 5:
        gratingID = ['GV2', 'GV1']
    if chipID == 10:
        gratingID = ['GI4', 'GI3']
    if chipID == 21:
        gratingID = ['GI6', 'GI5']
    if chipID == 26:
        gratingID = ['GV8', 'GV7']
    if chipID == 27:
        gratingID = ['GU6', 'GU5']
    if chipID == 28:
        gratingID = ['GU8', 'GU7']
    if chipID == 29:
        gratingID = ['GV6', 'GV5']
    if chipID == 30:
        gratingID = ['GI8', 'GI7']
    return gratingID


def getChipSLSConf(chipID):
    confFile = ''
    if chipID == 1:
        confFile = ['CSST_GI2.conf', 'CSST_GI1.conf']
    if chipID == 2:
        confFile = ['CSST_GV4.conf', 'CSST_GV3.conf']
    if chipID == 3:
        confFile = ['CSST_GU2.conf', 'CSST_GU1.conf']
    if chipID == 4:
        confFile = ['CSST_GU4.conf', 'CSST_GU3.conf']
    if chipID == 5:
        confFile = ['CSST_GV2.conf', 'CSST_GV1.conf']
    if chipID == 10:
        confFile = ['CSST_GI4.conf', 'CSST_GI3.conf']
    if chipID == 21:
        confFile = ['CSST_GI6.conf', 'CSST_GI5.conf']
    if chipID == 26:
        confFile = ['CSST_GV8.conf', 'CSST_GV7.conf']
    if chipID == 27:
        confFile = ['CSST_GU6.conf', 'CSST_GU5.conf']
    if chipID == 28:
        confFile = ['CSST_GU8.conf', 'CSST_GU7.conf']
    if chipID == 29:
        confFile = ['CSST_GV6.conf', 'CSST_GV5.conf']
    if chipID == 30:
        confFile = ['CSST_GI8.conf', 'CSST_GI7.conf']
    return confFile


def generateHeader(chip, pointing, img_type=None, img_type_code=None, project_cycle='9', run_counter='1'):
    if (img_type is None) or (img_type_code is None):
        img_type = pointing.pointing_type
        img_type_code = pointing.pointing_type_code

    h_prim = generatePrimaryHeader(
        xlen=chip.npix_x,
        ylen=chip.npix_y,
        pointing_id=pointing.obs_id,
        pointing_type_code=img_type_code,
        ra=pointing.ra,
        dec=pointing.dec,
        pixel_scale=chip.pix_scale,
        time_pt=pointing.timestamp,
        exptime=pointing.exp_time,
        im_type=img_type,
        sat_pos=[pointing.sat_x, pointing.sat_y, pointing.sat_z],
        sat_vel=[pointing.sat_vx, pointing.sat_vy, pointing.sat_vz],
        project_cycle=project_cycle,
        run_counter=run_counter,
        chip_name=str(chip.chipID).rjust(2, '0'))
    h_ext = generateExtensionHeader(
        chip=chip,
        xlen=chip.npix_x,
        ylen=chip.npix_y,
        ra=pointing.ra,
        dec=pointing.dec,
        pa=pointing.img_pa.deg,
        gain=chip.gain,
        readout=chip.read_noise,
        dark=chip.dark_noise,
        saturation=90000,
        pixel_scale=chip.pix_scale,
        pixel_size=chip.pix_size,
        xcen=chip.x_cen,
        ycen=chip.y_cen,
        extName=img_type,
        timestamp=pointing.timestamp,
        exptime=pointing.exp_time,
        readoutTime=chip.readout_time,
        t_shutter_open=pointing.t_shutter_open,
        t_shutter_close=pointing.t_shutter_close)
    return h_prim, h_ext


def output_fits_image(chip, pointing, img, output_dir, img_type=None, img_type_code=None, project_cycle='9', run_counter='1'):
    h_prim, h_ext = generateHeader(
        chip=chip,
        pointing=pointing,
        img_type=img_type,
        img_type_code=img_type_code,
        project_cycle=project_cycle,
        run_counter=run_counter)
    hdu1 = fits.PrimaryHDU(header=h_prim)
    hdu1.add_checksum()
    hdu1.header.comments['CHECKSUM'] = 'HDU checksum'
    hdu1.header.comments['DATASUM'] = 'data unit checksum'
    hdu2 = fits.ImageHDU(img.array, header=h_ext)
    hdu2.add_checksum()
    hdu2.header.comments['XTENSION'] = 'extension type'
    hdu2.header.comments['CHECKSUM'] = 'HDU checksum'
    hdu2.header.comments['DATASUM'] = 'data unit checksum'
    hdu1 = fits.HDUList([hdu1, hdu2])
    fname = os.path.join(output_dir, h_prim['FILENAME']+'.fits')
    hdu1.writeto(fname, output_verify='ignore', overwrite=True)


def add_sky_background(img, filt, exptime, sky_map=None, tel=None):
    # Add sky background
    if sky_map is None:
        sky_map = filt.getSkyNoise(exptime=exptime)
        sky_map = sky_map * np.ones_like(img.array)
        sky_map = galsim.Image(array=sky_map)
        # Apply Poisson noise to the sky map
        # # (NOTE): only for photometric chips if it utilizes the photon shooting to draw stamps
        # if self.survey_type == "photometric":
        #     sky_map.addNoise(poisson_noise)
    elif img.array.shape != sky_map.shape:
        raise ValueError("The shape img and sky_map must be equal.")
    elif tel is not None:  # If sky_map is given in flux
        sky_map = sky_map * tel.pupil_area * exptime
    img += sky_map
    return img, sky_map


def get_flat(img, seed):
    flat_img = effects.MakeFlatSmooth(
        GSBounds=img.bounds,
        seed=seed)
    flat_normal = flat_img / np.mean(flat_img.array)
    return flat_img, flat_normal

175
176
177
178
179
180
def get_innerflat(chip = None, filt = None):
    from observation_sim.mock_objects import FlatLED
    led_obj = FlatLED(chip, filt)
    flat_img = led_obj.getInnerFlat()
    return flat_img

Fang Yuedong's avatar
Fang Yuedong committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

def add_cosmic_rays(img, chip, exptime=150, seed=0):
    cr_map, cr_event_num = effects.produceCR_Map(
        xLen=chip.npix_x, yLen=chip.npix_y,
        exTime=exptime+0.5*chip.readout_time,
        cr_pixelRatio=0.003*(exptime+0.5*chip.readout_time)/600.,
        gain=chip.gain,
        attachedSizes=chip.attachedSizes,
        seed=seed)   # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
    img += cr_map
    cr_map[cr_map > 65535] = 65535
    cr_map[cr_map < 0] = 0
    crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
    del cr_map
    return img, crmap_gsimg, cr_event_num


def add_PRNU(img, chip, seed=0):
    prnu_img = effects.PRNU_Img(
        xsize=chip.npix_x,
        ysize=chip.npix_y,
        sigma=0.01,
        seed=seed)
    img *= prnu_img
    return img, prnu_img


def get_poisson(seed=0, sky_level=0.):
    rng_poisson = galsim.BaseDeviate(seed)
    poisson_noise = galsim.PoissonNoise(rng_poisson, sky_level=sky_level)
    return rng_poisson, poisson_noise


def get_base_img(img, chip, read_noise, readout_time, dark_noise, exptime=150., InputDark=None):
Wei Chengliang's avatar
Wei Chengliang committed
215
    if InputDark is None:
Fang Yuedong's avatar
Fang Yuedong committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        # base_level = read_noise**2 + dark_noise*(exptime+0.5*readout_time)
        # base_level = dark_noise*(exptime+0.5*readout_time)
        base_level = dark_noise*(exptime)
        base_img1 = base_level * np.ones_like(img.array)
    else:
        base_img1 = np.zeros_like(img.array)

    ny = int(chip.npix_y/2)
    nx = chip.npix_x
    arr = np.arange(ny).reshape(ny, 1)
    arr = np.broadcast_to(arr, (ny, nx))
    base_img2 = np.zeros_like(img.array)
    base_img2[:ny, :] = arr
    base_img2[ny:, :] = arr[::-1, :]
    base_img2[:, :] = base_img2[:, :]*(readout_time/ny)*dark_noise
    return base_img1+base_img2


def add_poisson(img, chip, exptime=150., seed=0, sky_level=0., poisson_noise=None, dark_noise=None, InputDark=None):
    if poisson_noise is None:
        _, poisson_noise = get_poisson(seed=seed, sky_level=sky_level)
    read_noise = chip.read_noise
    if dark_noise is None:
        dark_noise = chip.dark_noise
    base_img = get_base_img(img=img, chip=chip, read_noise=read_noise, readout_time=chip.readout_time,
                            dark_noise=dark_noise, exptime=exptime, InputDark=InputDark)
    img += base_img
    img.addNoise(poisson_noise)
    # img -= read_noise**2

Wei Chengliang's avatar
Wei Chengliang committed
246
    if InputDark is not None:
Fang Yuedong's avatar
Fang Yuedong committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        # "Instrument/data/dark/dark_1000s_example_0.fits"
        hdu = fits.open(InputDark)
        img += hdu[0].data/hdu[0].header['exptime']*exptime
        hdu.close()
    return img, base_img


def add_brighter_fatter(img):
    # Inital dynamic lib
    try:
        with pkg_resources.files('observation_sim.instruments.chip.libBF').joinpath("libmoduleBF.so") as lib_path:
            lib_bf = ctypes.CDLL(lib_path)
    except AttributeError:
        with pkg_resources.path('observation_sim.instruments.chip.libBF', "libmoduleBF.so") as lib_path:
            lib_bf = ctypes.CDLL(lib_path)
    lib_bf.addEffects.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(
        ctypes.c_float), ctypes.POINTER(ctypes.c_float), ctypes.c_int]

    # Set bit flag
    bit_flag = 1
    bit_flag = bit_flag | (1 << 2)

    nx, ny = img.array.shape
    nn = nx * ny
    arr_ima = (ctypes.c_float*nn)()
    arr_imc = (ctypes.c_float*nn)()

    arr_ima[:] = img.array.reshape(nn)
    arr_imc[:] = np.zeros(nn)

    lib_bf.addEffects(nx, ny, arr_ima, arr_imc, bit_flag)
    img.array[:, :] = np.reshape(arr_imc, [nx, ny])
    del arr_ima, arr_imc
    return img


"""
def add_inputdark(img, chip, exptime):
    fname = "/share/home/weichengliang/CSST_git/test_new_sim/csst-simulation/ObservationSim/Instrument/data/dark/dark_1000s_example_0.fits"
    hdu = fits.open(fname)
    #ny, nx = img.array.shape
    #inputdark = np.zeros([ny, nx])
    img.array[:, :] += hdu[0].data/hdu[0].header['exptime']*exptime
    hdu.close()
    del inputdark
    return img
"""


def AddPreScan(GSImage, pre1=27, pre2=4, over1=71, over2=80, nsecy=2, nsecx=8):
    img = GSImage.array
    ny, nx = img.shape
    dx = int(nx/nsecx)
    dy = int(ny/nsecy)

    imgt = np.zeros(
        [int(nsecy*nsecx), int(ny/nsecy+pre2+over2), int(nx/nsecx+pre1+over1)])
    for iy in range(nsecy):
        for ix in range(nsecx):
            if iy % 2 == 0:
                tx = ix
            else:
                tx = (nsecx-1)-ix
            ty = iy
            # chunk1-[1,2,3,4], chunk2-[5,6,7,8], chunk3-[9,10,11,12], chunk4-[13,14,15,16]
            chunkidx = int(tx+ty*nsecx)

            imgtemp = np.zeros(
                [int(ny/nsecy+pre2+over2), int(nx/nsecx+pre1+over1)])
            if int(chunkidx/4) == 0:
                imgtemp[pre2:pre2+dy, pre1:pre1 +
                        dx] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
                imgt[chunkidx, :, :] = imgtemp
            if int(chunkidx/4) == 1:
                imgtemp[pre2:pre2+dy, over1:over1 +
                        dx] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
                imgt[chunkidx, :, :] = imgtemp  # [:, ::-1]
            if int(chunkidx/4) == 2:
                imgtemp[over2:over2+dy, over1:over1 +
                        dx] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
                imgt[chunkidx, :, :] = imgtemp  # [::-1, ::-1]
            if int(chunkidx/4) == 3:
                imgtemp[over2:over2+dy, pre1:pre1 +
                        dx] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
                imgt[chunkidx, :, :] = imgtemp  # [::-1, :]

    # hstack chunk(1,2)-[1,2,3,4,5,6,7,8]
    imgtx1 = np.hstack(imgt[:nsecx:, :, :])
    # hstack chunk(4,3)-[16,15,14,13,12,11,,10,9]
    imgtx2 = np.hstack(imgt[:(nsecx-1):-1, :, :])

    newimg = galsim.Image(int(nx+(pre1+over1)*nsecx),
                          int(ny+(pre2+over2)*nsecy), init_value=0)
    newimg.array[:, :] = np.concatenate(
        [imgtx1, imgtx2])  # vstack chunk(1,2) & chunk(4,3)

    newimg.wcs = GSImage.wcs
    return newimg


def AddPreScanFO(GSImage, pre1=27, pre2=4, over1=71, over2=80, nsecy=1, nsecx=16):
    img = GSImage.array
    ny, nx = img.shape
    dx = int(nx/nsecx)
    dy = int(ny/nsecy)

    newimg = galsim.Image(int(nx+(pre1+over1)*nsecx),
                          int(ny+(pre2+over2)*nsecy), init_value=0)
    for ix in range(nsecx):
        newimg.array[pre2:pre2+dy, pre1+ix *
                     (dx+pre1+over1):pre1+dx+ix*(dx+pre1+over1)] = img[0:dy, 0+ix*dx:dx+ix*dx]

    newimg.wcs = GSImage.wcs
    return newimg


def formatOutput(GSImage, nsecy=2, nsecx=8):
    img = GSImage.array
    ny, nx = img.shape
    dx = int(nx/nsecx)
    dy = int(ny/nsecy)

    imgt = np.zeros([int(nsecx*nsecy), dy, dx])
    for iy in range(nsecy):
        for ix in range(nsecx):
            if iy % 2 == 0:
                tx = ix
            else:
                tx = (nsecx-1)-ix
            ty = iy
            chunkidx = int(tx+ty*nsecx)
            if int(chunkidx/4) == 0:
                imgt[chunkidx, :, :] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
            if int(chunkidx/4) == 1:
                imgt[chunkidx, :, :] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
            if int(chunkidx/4) == 2:
                imgt[chunkidx, :, :] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
            if int(chunkidx/4) == 3:
                imgt[chunkidx, :, :] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]

    imgttx0 = np.hstack(imgt[0:4:, :, :])
    imgttx1 = np.hstack(imgt[4:8:, :, ::-1])
    imgttx2 = np.hstack(imgt[8:12:, ::-1, ::-1])
    imgttx3 = np.hstack(imgt[12:16:, ::-1, :])

    newimg = galsim.Image(int(dx*nsecx*nsecy), dy, init_value=0)
    newimg.array[:, :] = np.hstack([imgttx0, imgttx1, imgttx2, imgttx3])
    return newimg


def formatRevert(GSImage, nsecy=1, nsecx=16):
    img = GSImage.array
    ny, nx = img.shape
    dx = int(nx/nsecx)
    dy = int(ny/nsecy)

    newimg = galsim.Image(int(dx*8), int(dy*2), init_value=0)

    for ix in range(0, 4):
        tx = ix
        newimg.array[0:dy, 0+tx*dx:dx+tx*dx] = img[:, 0+ix*dx:dx+ix*dx]
    for ix in range(4, 8):
        tx = ix
        newimg.array[0:dy, 0+tx*dx:dx+tx *
                     dx] = img[:, 0+ix*dx:dx+ix*dx][:, ::-1]
    for ix in range(8, 12):
        tx = 7-(ix-8)
        newimg.array[0+dy:dy+dy, 0+tx*dx:dx+tx *
                     dx] = img[:, 0+ix*dx:dx+ix*dx][::-1, ::-1]
    for ix in range(12, 16):
        tx = 7-(ix-8)
        newimg.array[0+dy:dy+dy, 0+tx*dx:dx+tx *
                     dx] = img[:, 0+ix*dx:dx+ix*dx][::-1, :]

    return newimg