FlatLED.py 19 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


import galsim
import os
import sys
import numpy as np
import time
import math
import astropy.constants as cons
from astropy.io import fits
from scipy.interpolate import griddata
from astropy.table import Table
from observation_sim.mock_objects.SpecDisperser import SpecDisperser
from scipy import interpolate
import gc

from observation_sim.mock_objects.MockObject import MockObject

try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources


# flatDir = '/Volumes/EAGET/LED_FLAT/'
LED_name = ['LED1', 'LED2', 'LED3', 'LED4', 'LED5', 'LED6', 'LED7', 'LED8', 'LED9', 'LED10', 'LED11', 'LED12', 'LED13',
            'LED14']
cwaves_name = {'LED1': '275', 'LED2': '310', 'LED3': '430', 'LED4': '505', 'LED5': '545', 'LED6': '590', 'LED7': '670',
               'LED8': '760', 'LED9': '940', 'LED10': '940', 'LED11': '1050', 'LED12': '1050',
               'LED13': '340', 'LED14': '365'}

cwaves = {'LED1': 2750, 'LED2': 3100, 'LED3': 4300, 'LED4': 5050, 'LED5': 5250, 'LED6': 5900, 'LED7': 6700,
          'LED8': 7600, 'LED9': 8800, 'LED10': 9400, 'LED11': 10500, 'LED12': 15500, 'LED13': 3400, 'LED14': 3650}
cwaves_fwhm = {'LED1': 110, 'LED2': 120, 'LED3': 200, 'LED4': 300, 'LED5': 300, 'LED6': 130, 'LED7': 210,
               'LED8': 260, 'LED9': 400, 'LED10': 370, 'LED11': 500, 'LED12': 1400, 'LED13': 90, 'LED14': 100}
# LED_QE = {'LED1': 0.3, 'LED2': 0.4, 'LED13': 0.5, 'LED14': 0.5, 'LED10': 0.4}
# e-/ms
# fluxLED = {'LED1': 0.16478729, 'LED2': 0.084220931, 'LED3': 2.263360617, 'LED4': 2.190623489, 'LED5': 0.703504768,
#            'LED6': 0.446117963, 'LED7': 0.647122098, 'LED8': 0.922313442,
#            'LED9': 0.987278143, 'LED10': 2.043989167, 'LED11': 0.612571429, 'LED12': 1.228915663, 'LED13': 0.17029384,
#            'LED14': 0.27842925}

# e-/ms
fluxLED = {'LED1': 15, 'LED2': 15, 'LED3': 12.5, 'LED4': 9, 'LED5': 9,
           'LED6': 9, 'LED7': 9, 'LED8': 9, 'LED9': 9, 'LED10': 12.5, 'LED11': 15, 'LED12': 15, 'LED13': 12.5,
           'LED14': 12.5}
# fluxLEDL = {'LED1': 10, 'LED2': 10, 'LED3': 10, 'LED4': 10, 'LED5': 10,
#            'LED6': 10, 'LED7': 10, 'LED8': 10, 'LED9': 10, 'LED10': 10, 'LED11': 10, 'LED12':10, 'LED13': 10,
#            'LED14': 10}

mirro_eff = {'GU': 0.61, 'GV': 0.8, 'GI': 0.8}
53

Wei Chengliang's avatar
Wei Chengliang committed
54
bandtoLed = {'NUV': ['LED1', 'LED2'], 'u': ['LED13', 'LED14'], 'g': ['LED3', 'LED4', 'LED5'], 'r': ['LED6', 'LED7'], 'i': ['LED8'], 'z': ['LED9', 'LED10'], 'y': ['LED10'], 'GU': ['LED1', 'LED2', 'LED13', 'LED14'], 'GV': ['LED3', 'LED4', 'LED5', 'LED6'], 'GI': ['LED7', 'LED8', 'LED9', 'LED10']}
Fang Yuedong's avatar
Fang Yuedong committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# mirro_eff = {'GU':1, 'GV':1, 'GI':1}


class FlatLED(MockObject):
    def __init__(self, chip, filt, flatDir=None, logger=None):
        # self.led_type_list = led_type_list
        self.filt = filt
        self.chip = chip
        self.logger = logger
        if flatDir is not None:
            self.flatDir = flatDir
        else:
            try:
                with pkg_resources.files('observation_sim.mock_objects.data.led').joinpath("") as ledDir:
                    self.flatDir = ledDir.as_posix()
            except AttributeError:
                with pkg_resources.path('observation_sim.mock_objects.data.led', "") as ledDir:
                    self.flatDir = ledDir.as_posix()

74
75
76
77
    def getInnerFlat(self):
        ledflats = bandtoLed[self.chip.filter_type]
        iFlat = np.zeros([self.chip.npix_y, self.chip.npix_x])
        for nled in ledflats:
78
            iFlat = iFlat + self.getLEDImage1(led_type=nled, LED_Img_flag=False)
Wei Chengliang's avatar
Wei Chengliang committed
79
        iFlat = iFlat/len(ledflats)
80
81
        return iFlat

Fang Yuedong's avatar
Fang Yuedong committed
82
83
84
    ###
    # return LED flat, e/s
    ###
Wei Chengliang's avatar
Wei Chengliang committed
85
    def getLEDImage(self, led_type='LED1', LED_Img_flag=True):
Fang Yuedong's avatar
Fang Yuedong committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        # cwave = cwaves[led_type]
        flat = fits.open(os.path.join(self.flatDir, 'model_' +
                         cwaves_name[led_type] + 'nm.fits'))
        xlen = flat[0].header['NAXIS1']
        ylen = 601
        x = np.linspace(0, self.chip.npix_x * 6, xlen)
        y = np.linspace(0, self.chip.npix_y * 5, ylen)
        xx, yy = np.meshgrid(x, y)

        a1 = flat[0].data[0:ylen, 0:xlen]
        # z = np.sin((xx+yy+xx**2+yy**2))
        # fInterp = interp2d(xx, yy, z, kind='linear')

        X_ = np.hstack((xx.flatten()[:, None], yy.flatten()[:, None]))
        Z_ = a1.flatten()

        n_x = np.arange(0, self.chip.npix_x * 6, 1)
        n_y = np.arange(0, self.chip.npix_y * 5, 1)

        M, N = np.meshgrid(n_x, n_y)

        i = self.chip.rowID - 1
        j = self.chip.colID - 1
        U = griddata(X_, Z_, (
            M[self.chip.npix_y * i:self.chip.npix_y *
                (i + 1), self.chip.npix_x * j:self.chip.npix_x * (j + 1)],
            N[self.chip.npix_y * i:self.chip.npix_y * (i + 1), self.chip.npix_x * j:self.chip.npix_x * (j + 1)]),
            method='linear')
        U = U/np.mean(U)
115
116
117
118

        flatImage = U
        if LED_Img_flag:
            flatImage = flatImage*fluxLED[led_type]*1000
Fang Yuedong's avatar
Fang Yuedong committed
119
120
121
122
123
124
125
        gc.collect()
        return flatImage

        ###
    # return LED flat, e/s
    ###

Zhang Xin's avatar
pep8    
Zhang Xin committed
126
    def getLEDImage1(self, led_type='LED1', LED_Img_flag=True):
Fang Yuedong's avatar
Fang Yuedong committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        # cwave = cwaves[led_type]
        flat = fits.open(os.path.join(self.flatDir, 'model_' +
                         cwaves_name[led_type] + 'nm.fits'))
        xlen = flat[0].header['NAXIS1']
        ylen = 601

        i = self.chip.rowID - 1
        j = self.chip.colID - 1

        x = np.linspace(0, self.chip.npix_x, int(xlen/6.))
        y = np.linspace(0, self.chip.npix_y, int(ylen/5.))
        xx, yy = np.meshgrid(x, y)

        a1 = flat[0].data[int(ylen*i/5.):int(ylen*i/5.)+int(ylen/5.),
                          int(xlen*j/6.):int(xlen*j/6.)+int(xlen/6.)]
        # z = np.sin((xx+yy+xx**2+yy**2))
        # fInterp = interp2d(xx, yy, z, kind='linear')

        X_ = np.hstack((xx.flatten()[:, None], yy.flatten()[:, None]))
        Z_ = a1.flatten()

        n_x = np.arange(0, self.chip.npix_x, 1)
        n_y = np.arange(0, self.chip.npix_y, 1)

        M, N = np.meshgrid(n_x, n_y)

        U = griddata(X_, Z_, (
            M[0:self.chip.npix_y, 0:self.chip.npix_x],
            N[0:self.chip.npix_y, 0:self.chip.npix_x]),
            method='linear')
        U = U/np.mean(U)
158
159
160
        flatImage = U
        if LED_Img_flag:
            flatImage = U*fluxLED[led_type]*1000
Fang Yuedong's avatar
Fang Yuedong committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        gc.collect()
        return flatImage

    def drawObj_LEDFlat_img(self, led_type_list=['LED1'], exp_t_list=[0.1]):
        if len(led_type_list) > len(exp_t_list):
            return np.ones([self.chip.npix_y, self.chip.npix_x])

        ledFlat = np.zeros([self.chip.npix_y, self.chip.npix_x])

        ledStat = '00000000000000'
        ledTimes = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                    0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

        nledStat = '2'
        for i in np.arange(len(led_type_list)):
            led_type = led_type_list[i]
            exp_t = exp_t_list[i]
            # unitFlatImg = self.getLEDImage(led_type=led_type)
            unitFlatImg = self.getLEDImage1(led_type=led_type)
            # print("---------------TEST mem:",np.mean(unitFlatImg))
            led_wave = cwaves[led_type]
            led_fwhm = cwaves_fwhm[led_type]
            led_spec = self.gaussian1d_profile_led(led_wave, led_fwhm)
            speci = interpolate.interp1d(
                led_spec['WAVELENGTH'], led_spec['FLUX'])
            w_list = np.arange(self.filt.blue_limit,
                               self.filt.red_limit, 0.5)  # A

            f_spec = speci(w_list)
            ccd_bp = self.chip._getChipEffCurve(self.chip.filter_type)
            ccd_eff = ccd_bp.__call__(w_list / 10.)
            filt_bp = self.filt.filter_bandpass
            fil_eff = filt_bp.__call__(w_list / 10.)
            t_spec = np.trapz(f_spec*ccd_eff*fil_eff, w_list)
            # print(i, np.mean(unitFlatImg), t_spec, exp_t)
            unitFlatImg = unitFlatImg * t_spec
            # print("DEBUG1:---------------",np.mean(unitFlatImg))
            ledFlat = ledFlat+unitFlatImg*exp_t

            ledStat = ledStat[0:int(led_type[3:])-1] + \
                nledStat+ledStat[int(led_type[3:]):]
            ledTimes[int(led_type[3:])-1] = exp_t * 1000
            gc.collect()
        return ledFlat, ledStat, ledTimes

    def drawObj_LEDFlat_slitless(self, led_type_list=['LED1'], exp_t_list=[0.1]):
        if len(led_type_list) != len(exp_t_list):
            return np.ones([self.chip.npix_y, self.chip.npix_x])

        ledFlat = np.zeros([self.chip.npix_y, self.chip.npix_x])

        ledStat = '00000000000000'
        ledTimes = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                    0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

        nledStat = '2'

        for i in np.arange(len(led_type_list)):
            led_type = led_type_list[i]
            exp_t = exp_t_list[i]
            # unitFlatImg = self.getLEDImage(led_type=led_type)
            unitFlatImg = self.getLEDImage1(led_type=led_type)
            # print("---------------TEST mem:",np.mean(unitFlatImg))
            ledFlat_ = unitFlatImg*exp_t
            ledFlat_ = ledFlat_ / mirro_eff[self.filt.filter_type]
            ledFlat_.astype(np.float32)
            led_wave = cwaves[led_type]
            led_fwhm = cwaves_fwhm[led_type]
            led_spec = self.gaussian1d_profile_led(led_wave, led_fwhm)
            # print("DEBUG1:---------------",np.mean(ledFlat_))
            ledspec_map = self.calculateLEDSpec(
                skyMap=ledFlat_,
                blueLimit=self.filt.blue_limit,
                redLimit=self.filt.red_limit,
                conf=self.chip.sls_conf,
                pixelSize=self.chip.pix_scale,
                isAlongY=0,
                flat_cube=self.chip.flat_cube, led_spec=led_spec)

            ledFlat = ledFlat + ledspec_map
            ledStat = ledStat[0:int(led_type[3:])-1] + \
                nledStat+ledStat[int(led_type[3:]):]
            ledTimes[int(led_type[3:])-1] = exp_t * 1000
        return ledFlat, ledStat, ledTimes

    def drawObj_LEDFlat(self, led_type_list=['LED1'], exp_t_list=[0.1]):
        if self.chip.survey_type == "photometric":
            return self.drawObj_LEDFlat_img(led_type_list=led_type_list, exp_t_list=exp_t_list)
        elif self.chip.survey_type == "spectroscopic":
            return self.drawObj_LEDFlat_slitless(led_type_list=led_type_list, exp_t_list=exp_t_list)

    def gaussian1d_profile_led(self, xc=5050, fwhm=300):
        sigma = fwhm/2.355
        x_radii = int(5*sigma + 1)
        xlist = np.arange(xc-x_radii, xc+x_radii, 0.5)
        xlist_ = np.zeros(len(xlist) + 2)
        xlist_[1:-1] = xlist
        xlist_[0] = 2000
        xlist_[-1] = 18000
        ids1 = xlist > xc-fwhm
        ids2 = xlist[ids1] < xc+fwhm
        data = np.exp((-(xlist-xc)*(xlist-xc))/(2*sigma*sigma)) / \
            (np.sqrt(2*math.pi)*sigma)
        scale = 1/np.trapz(data[ids1][ids2], xlist[ids1][ids2])
        data_ = np.zeros(len(xlist) + 2)
        data_[1:-1] = data*scale
        # print("DEBUG:-------------------------------",np.sum(data_), scale)
        return Table(np.array([xlist_.astype(np.float32), data_.astype(np.float32)]).T, names=('WAVELENGTH', 'FLUX'))

    def calculateLEDSpec(self, skyMap=None, blueLimit=4200, redLimit=6500,
                         conf=[''], pixelSize=0.074, isAlongY=0,
                         split_pos=3685, flat_cube=None, led_spec=None):

        conf1 = conf[0]
        conf2 = conf[0]
        if np.size(conf) == 2:
            conf2 = conf[1]

        skyImg = galsim.Image(skyMap, xmin=0, ymin=0)

        tbstart = blueLimit
        tbend = redLimit

        fimg = np.zeros_like(skyMap)

        fImg = galsim.Image(fimg)

        spec = led_spec
        if isAlongY == 0:
            directParm = 0
        if isAlongY == 1:
            directParm = 1

        if split_pos >= skyImg.array.shape[directParm]:
            skyImg1 = galsim.Image(skyImg.array)
            origin1 = [0, 0]
            # sdp = specDisperser.specDisperser(orig_img=skyImg1, xcenter=skyImg1.center.x, ycenter=skyImg1.center.y,
            #                                   full_img=fimg, tar_spec=spec, band_start=tbstart, band_end=tbend,
            #                                   origin=origin1,
            #                                   conf=conf1)
            # sdp.compute_spec_orders()

            y_len = skyMap.shape[0]
            x_len = skyMap.shape[1]
            delt_x = 100
            delt_y = 100

            sub_y_start_arr = np.arange(0, y_len, delt_y)
            sub_y_end_arr = sub_y_start_arr + delt_y
            sub_y_end_arr[-1] = min(sub_y_end_arr[-1], y_len)

            sub_x_start_arr = np.arange(0, x_len, delt_x)
            sub_x_end_arr = sub_x_start_arr + delt_x
            sub_x_end_arr[-1] = min(sub_x_end_arr[-1], x_len)

            for i, k1 in enumerate(sub_y_start_arr):
                sub_y_s = k1
                sub_y_e = sub_y_end_arr[i]

                sub_y_center = (sub_y_s + sub_y_e) / 2.

                for j, k2 in enumerate(sub_x_start_arr):
                    sub_x_s = k2
                    sub_x_e = sub_x_end_arr[j]

                    skyImg_sub = galsim.Image(
                        skyImg.array[sub_y_s:sub_y_e, sub_x_s:sub_x_e])
                    origin_sub = [sub_y_s, sub_x_s]
                    sub_x_center = (sub_x_s + sub_x_e) / 2.

                    sdp = SpecDisperser(orig_img=skyImg_sub, xcenter=sub_x_center, ycenter=sub_y_center,
                                        origin=origin_sub,
                                        tar_spec=spec,
                                        band_start=tbstart, band_end=tbend,
                                        conf=conf2,
                                        flat_cube=flat_cube)

                    spec_orders = sdp.compute_spec_orders()

                    for k, v in spec_orders.items():
                        img_s = v[0]
                        origin_order_x = v[1]
                        origin_order_y = v[2]
                        ssImg = galsim.ImageF(img_s)
                        ssImg.setOrigin(origin_order_x, origin_order_y)
                        bounds = ssImg.bounds & fImg.bounds
                        if bounds.area() == 0:
                            continue
                        fImg[bounds] = fImg[bounds] + ssImg[bounds]

        else:

            # sdp.compute_spec_orders()
            y_len = skyMap.shape[0]
            x_len = skyMap.shape[1]
            delt_x = 500
            delt_y = y_len

            sub_y_start_arr = np.arange(0, y_len, delt_y)
            sub_y_end_arr = sub_y_start_arr + delt_y
            sub_y_end_arr[-1] = min(sub_y_end_arr[-1], y_len)

            delt_x = split_pos - 0
            sub_x_start_arr = np.arange(0, split_pos, delt_x)
            sub_x_end_arr = sub_x_start_arr + delt_x
            sub_x_end_arr[-1] = min(sub_x_end_arr[-1], split_pos)

            for i, k1 in enumerate(sub_y_start_arr):
                sub_y_s = k1
                sub_y_e = sub_y_end_arr[i]

                sub_y_center = (sub_y_s + sub_y_e) / 2.

                for j, k2 in enumerate(sub_x_start_arr):
                    sub_x_s = k2
                    sub_x_e = sub_x_end_arr[j]
                    # print(i,j,sub_y_s, sub_y_e,sub_x_s,sub_x_e)
                    T1 = time.time()
                    skyImg_sub = galsim.Image(
                        skyImg.array[sub_y_s:sub_y_e, sub_x_s:sub_x_e])
                    origin_sub = [sub_y_s, sub_x_s]
                    sub_x_center = (sub_x_s + sub_x_e) / 2.

                    sdp = SpecDisperser(orig_img=skyImg_sub, xcenter=sub_x_center, ycenter=sub_y_center,
                                        origin=origin_sub,
                                        tar_spec=spec,
                                        band_start=tbstart, band_end=tbend,
                                        conf=conf1,
                                        flat_cube=flat_cube)

                    spec_orders = sdp.compute_spec_orders()

                    for k, v in spec_orders.items():
                        img_s = v[0]
                        origin_order_x = v[1]
                        origin_order_y = v[2]
                        ssImg = galsim.ImageF(img_s)
                        ssImg.setOrigin(origin_order_x, origin_order_y)
                        bounds = ssImg.bounds & fImg.bounds
                        if bounds.area() == 0:
                            continue
                        fImg[bounds] = fImg[bounds] + ssImg[bounds]

                    T2 = time.time()

                    print('time: %s ms' % ((T2 - T1) * 1000))

            delt_x = x_len - split_pos
            sub_x_start_arr = np.arange(split_pos, x_len, delt_x)
            sub_x_end_arr = sub_x_start_arr + delt_x
            sub_x_end_arr[-1] = min(sub_x_end_arr[-1], x_len)

            for i, k1 in enumerate(sub_y_start_arr):
                sub_y_s = k1
                sub_y_e = sub_y_end_arr[i]

                sub_y_center = (sub_y_s + sub_y_e) / 2.

                for j, k2 in enumerate(sub_x_start_arr):
                    sub_x_s = k2
                    sub_x_e = sub_x_end_arr[j]
                    # print(i,j,sub_y_s, sub_y_e,sub_x_s,sub_x_e)

                    T1 = time.time()

                    skyImg_sub = galsim.Image(
                        skyImg.array[sub_y_s:sub_y_e, sub_x_s:sub_x_e])
                    origin_sub = [sub_y_s, sub_x_s]
                    sub_x_center = (sub_x_s + sub_x_e) / 2.

                    sdp = SpecDisperser(orig_img=skyImg_sub, xcenter=sub_x_center, ycenter=sub_y_center,
                                        origin=origin_sub,
                                        tar_spec=spec,
                                        band_start=tbstart, band_end=tbend,
                                        conf=conf2,
                                        flat_cube=flat_cube)

                    spec_orders = sdp.compute_spec_orders()

                    for k, v in spec_orders.items():
                        img_s = v[0]
                        origin_order_x = v[1]
                        origin_order_y = v[2]
                        ssImg = galsim.ImageF(img_s)
                        ssImg.setOrigin(origin_order_x, origin_order_y)
                        bounds = ssImg.bounds & fImg.bounds
                        if bounds.area() == 0:
                            continue
                        fImg[bounds] = fImg[bounds] + ssImg[bounds]
                    T2 = time.time()

                    print('time: %s ms' % ((T2 - T1) * 1000))

        if isAlongY == 1:
            fimg, tmx, tmy = SpecDisperser.rotate90(
                array_orig=fImg.array, xc=0, yc=0, isClockwise=0)
        else:
            fimg = fImg.array

        # fimg = fimg * pixelSize * pixelSize

        return fimg