add_objects.py 13.5 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
import os
import gc
import psutil
import traceback
import numpy as np
import galsim
from observation_sim._util import get_shear_field
Fang Yuedong's avatar
Fang Yuedong committed
8
from observation_sim.psf import PSFGauss, FieldDistortion, PSFInterp, PSFInterpSLS
Fang Yuedong's avatar
Fang Yuedong committed
9
10
11
12

from astropy.time import Time
from datetime import datetime, timezone

13

14
15
16
17
18
def _is_obj_valid(self, obj):
    if obj.param['star'] == 4:
        # Currently there's no parameter checks for 'calib' type
        return True
    pos_keys = ['ra', 'dec']
19
20
    shape_keys = ['hlr_bulge', 'hlr_disk',
                  'e1_disk', 'e2_disk', 'e1_bulge', 'e2_bulge']
21
22
23
24
25
26
27
28
29
30
    if any(obj.param[key] == -999. for key in pos_keys):
        msg = 'One or more positional information (ra, dec) is missing'
        self.chip_output.Log_error(msg)
        return False
    if obj.param['star'] == 0 and any(obj.param[key] == -999. for key in shape_keys):
        msg = 'One or more shape information (hlr_bulge, hlr_disk, e1_disk, e2_disk, e1_bulge, e2_bulge) is missing'
        self.chip_output.Log_error(msg)
        return False
    return True

Fang Yuedong's avatar
Fang Yuedong committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

def add_objects(self, chip, filt, tel, pointing, catalog, obs_param):

    # Get exposure time
    if (obs_param) and ("exptime" in obs_param) and (obs_param["exptime"] is not None):
        exptime = obs_param["exptime"]
    else:
        exptime = pointing.exp_time

    # Load catalogues
    if catalog is None:
        self.chip_output.Log_error(
            "Catalog interface class must be specified for SCIE-OBS")
        raise ValueError(
            "Catalog interface class must be specified for SCIE-OBS")
    cat = catalog(config=self.overall_config, chip=chip,
                  pointing=pointing, chip_output=self.chip_output, filt=filt)

    # Prepare output file(s) for this chip
    # [NOTE] Headers of output .cat file may be updated by Catalog instance
    # this should be called after the creation of Catalog instance
    self.chip_output.create_output_file()

    # Prepare the PSF model
    if self.overall_config["psf_setting"]["psf_model"] == "Gauss":
        psf_model = PSFGauss(
            chip=chip, psfRa=self.overall_config["psf_setting"]["psf_rcont"])
    elif self.overall_config["psf_setting"]["psf_model"] == "Interp":
        if chip.survey_type == "spectroscopic":
            psf_model = PSFInterpSLS(
                chip, filt, PSF_data_prefix=self.overall_config["psf_setting"]["psf_sls_dir"])
        else:
            psf_model = PSFInterp(chip=chip, npsf=chip.n_psf_samples,
                                  PSF_data_file=self.overall_config["psf_setting"]["psf_pho_dir"])
    else:
        self.chip_output.Log_error("unrecognized PSF model type!!", flush=True)

    # Apply field distortion model
Wei Chengliang's avatar
Wei Chengliang committed
69
    if obs_param["field_dist"] is True:
Fang Yuedong's avatar
Fang Yuedong committed
70
71
72
73
74
75
76
77
78
        fd_model = FieldDistortion(chip=chip, img_rot=pointing.img_pa.deg)
    else:
        fd_model = None

    # Update limiting magnitudes for all filters based on the exposure time
    # Get the filter which will be used for magnitude cut
    for ifilt in range(len(self.all_filters)):
        temp_filter = self.all_filters[ifilt]
        temp_filter.update_limit_saturation_mags(
Wei Chengliang's avatar
Wei Chengliang committed
79
            exptime=pointing.exp_time,
80
81
            full_depth_exptime=pointing.get_full_depth_exptime(
                temp_filter.filter_type),
Fang Yuedong's avatar
Fang Yuedong committed
82
            chip=chip)
Fang Yuedong's avatar
Fang Yuedong committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        if temp_filter.filter_type.lower() == self.overall_config["obs_setting"]["cut_in_band"].lower():
            cut_filter = temp_filter

    # Read in shear values from configuration file if the constant shear type is used
    if self.overall_config["shear_setting"]["shear_type"] == "constant":
        g1_field, g2_field, _ = get_shear_field(config=self.overall_config)
        self.chip_output.Log_info(
            "Use constant shear: g1=%.5f, g2=%.5f" % (g1_field, g2_field))

    # Get chip WCS
    if not hasattr(self, 'h_ext'):
        _, _ = self.prepare_headers(chip=chip, pointing=pointing)

    chip_wcs = galsim.FitsWCS(header=self.h_ext)

    # Loop over objects
    nobj = len(cat.objs)
    missed_obj = 0
    bright_obj = 0
    dim_obj = 0
    for j in range(nobj):
        # # [DEBUG] [TODO]
        # if j >= 10:
        #     break
Wei Chengliang's avatar
Wei Chengliang committed
107

Fang Yuedong's avatar
Fang Yuedong committed
108
109
        obj = cat.objs[j]

110
111
112
        if not self._is_obj_valid(obj):
            continue

Fang Yuedong's avatar
Fang Yuedong committed
113
114
115
116
        # load and convert SED; also caculate object's magnitude in all CSST bands
        try:
            sed_data = cat.load_sed(obj)
            norm_filt = cat.load_norm_filt(obj)
Wei Chengliang's avatar
Wei Chengliang committed
117

Fang Yuedong's avatar
Fang Yuedong committed
118
119
120
121
122
123
124
            obj.sed, obj.param["mag_%s" % filt.filter_type.lower()], obj.param["flux_%s" % filt.filter_type.lower()] = cat.convert_sed(
                mag=obj.param["mag_use_normal"],
                sed=sed_data,
                target_filt=filt,
                norm_filt=norm_filt,
                mu=obj.mu
            )
Fang Yuedong's avatar
Fang Yuedong committed
125

Fang Yuedong's avatar
Fang Yuedong committed
126
127
128
129
            _, obj.param["mag_%s" % cut_filter.filter_type.lower()], obj.param["flux_%s" % cut_filter.filter_type.lower()] = cat.convert_sed(
                mag=obj.param["mag_use_normal"],
                sed=sed_data,
                target_filt=cut_filter,
Fang Yuedong's avatar
Fang Yuedong committed
130
                norm_filt=(norm_filt if norm_filt else filt),
Fang Yuedong's avatar
Fang Yuedong committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
                mu=obj.mu
            )
        except Exception as e:
            traceback.print_exc()
            self.chip_output.Log_error(e)
            continue

        # [TODO] Testing
        # self.chip_output.Log_info("mag_%s = %.3f"%(filt.filter_type.lower(), obj.param["mag_%s"%filt.filter_type.lower()]))

        # Exclude very bright/dim objects (for now)
        if cut_filter.is_too_bright(
                mag=obj.param["mag_%s" %
                              self.overall_config["obs_setting"]["cut_in_band"].lower()],
                margin=self.overall_config["obs_setting"]["mag_sat_margin"]):
Fang Yuedong's avatar
Fang Yuedong committed
146
            self.chip_output.Log_info("obj %s too bright!! mag_%s = %.3f" % (
Fang Yuedong's avatar
Fang Yuedong committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
                obj.id, cut_filter.filter_type, obj.param["mag_%s" % self.overall_config["obs_setting"]["cut_in_band"].lower()]))
            bright_obj += 1
            obj.unload_SED()
            continue
        if filt.is_too_dim(
                mag=obj.getMagFilter(filt),
                margin=self.overall_config["obs_setting"]["mag_lim_margin"]):
            self.chip_output.Log_info("obj %s too dim!! mag_%s = %.3f" % (
                obj.id, filt.filter_type, obj.getMagFilter(filt)))
            dim_obj += 1
            obj.unload_SED()
            continue

        # Get corresponding shear values
        if self.overall_config["shear_setting"]["shear_type"] == "constant":
            if obj.type == 'star':
                obj.g1, obj.g2 = 0., 0.
            else:
                # Figure out shear fields from overall configuration shear setting
                obj.g1, obj.g2 = g1_field, g2_field
        elif self.overall_config["shear_setting"]["shear_type"] == "catalog":
            pass
        else:
            self.chip_output.Log_error("Unknown shear input")
            raise ValueError("Unknown shear input")

        # Get position of object on the focal plane
        pos_img, _, _, _, fd_shear = obj.getPosImg_Offset_WCS(
175
            img=chip.img, fdmodel=fd_model, chip=chip, verbose=False, chip_wcs=chip_wcs, img_header=self.h_ext, ra_offset=self.ra_offset, dec_offset=self.dec_offset)
Fang Yuedong's avatar
Fang Yuedong committed
176
177
178
179

        # [TODO] For now, only consider objects which their centers (after field distortion) are projected within the focal plane
        # Otherwise they will be considered missed objects
        # if pos_img.x == -1 or pos_img.y == -1 or (not chip.isContainObj(x_image=pos_img.x, y_image=pos_img.y, margin=0.)):
180
181
        # if pos_img.x == -1 or pos_img.y == -1:
        if pos_img is None:
Fang Yuedong's avatar
Fang Yuedong committed
182
183
            self.chip_output.Log_info('obj_ra = %.6f, obj_dec = %.6f, obj_ra_orig = %.6f, obj_dec_orig = %.6f' % (
                obj.ra, obj.dec, obj.ra_orig, obj.dec_orig))
184
            self.chip_output.Log_error("Object missed: %s" % (obj.id))
Fang Yuedong's avatar
Fang Yuedong committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
            missed_obj += 1
            obj.unload_SED()
            continue

        # Draw object & update output catalog
        try:
            if self.overall_config["run_option"]["out_cat_only"]:
                isUpdated = True
                obj.real_pos = obj.getRealPos(
                    chip.img, global_x=obj.posImg.x, global_y=obj.posImg.y, img_real_wcs=obj.chip_wcs)
                pos_shear = 0.
            elif chip.survey_type == "photometric" and not self.overall_config["run_option"]["out_cat_only"]:
                isUpdated, pos_shear = obj.drawObj_multiband(
                    tel=tel,
                    pos_img=pos_img,
                    psf_model=psf_model,
                    bandpass_list=filt.bandpass_sub_list,
                    filt=filt,
                    chip=chip,
                    g1=obj.g1,
                    g2=obj.g2,
                    exptime=exptime,
                    fd_shear=fd_shear)

            elif chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"]:
                isUpdated, pos_shear = obj.drawObj_slitless(
                    tel=tel,
                    pos_img=pos_img,
                    psf_model=psf_model,
                    bandpass_list=filt.bandpass_sub_list,
                    filt=filt,
                    chip=chip,
                    g1=obj.g1,
                    g2=obj.g2,
                    exptime=exptime,
                    normFilter=norm_filt,
                    fd_shear=fd_shear)

            if isUpdated == 1:
                # TODO: add up stats
225
226
                self.chip_output.cat_add_obj(
                    obj, pos_img, pos_shear, ra_offset=self.ra_offset, dec_offset=self.dec_offset)
Fang Yuedong's avatar
Fang Yuedong committed
227
228
229
                pass
            elif isUpdated == 0:
                missed_obj += 1
230
                self.chip_output.Log_error("Object missed: %s" % (obj.id))
Fang Yuedong's avatar
Fang Yuedong committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
            else:
                self.chip_output.Log_error(
                    "Draw error, object omitted: %s" % (obj.id))
                continue
        except Exception as e:
            traceback.print_exc()
            self.chip_output.Log_error(e)
            self.chip_output.Log_error(
                "pointing: #%d, chipID: %d" % (pointing.id, chip.chipID))
            if obj.type == "galaxy":
                self.chip_output.Log_error("obj id: %s" % (obj.param['id']))
                self.chip_output.Log_error("    e1: %.5f\n    e2: %.5f\n    size: %f\n    bfrac: %f\n    detA: %f\n    g1: %.5f\n    g2: %.5f\n" % (
                    obj.param['e1'], obj.param['e2'], obj.param['size'], obj.param['bfrac'], obj.param['detA'], obj.param['g1'], obj.param['g2']))
        # Unload SED:
        obj.unload_SED()
        del obj
Wei Chengliang's avatar
Wei Chengliang committed
247
        # gc.collect()
Wei Chengliang's avatar
Wei Chengliang committed
248
    cat.free_mem()
249
    del cat
Zhang Xin's avatar
Zhang Xin committed
250

Zhang Xin's avatar
Zhang Xin committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    if chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"] and chip.slsPSFOptim:
        # from observation_sim.instruments.chip import chip_utils as chip_utils
        # gn = chip_utils.getChipSLSGratingID(chip.chipID)[0]
        # img1 = np.zeros([2,chip.img.array.shape[0],chip.img.array.shape[1]])

        # for id1 in np.arange(2):
        #     gn = chip_utils.getChipSLSGratingID(chip.chipID)[id1]
        #     img_i = 0
        #     for id2 in ['0','1']:
        #         o_n = "order"+id2
        #         for id3 in ['1','2','3','4']:
        #             w_n = "w"+id3
        #             img1[img_i] = img1[img_i] + chip.img_stack[gn][o_n][w_n].array
        #         img_i = img_i + 1
        # from astropy.io import fits
        # fits.writeto('order0.fits',img1[0],overwrite=True)
        # fits.writeto('order1.fits',img1[1],overwrite=True)

269
        psf_model.convolveFullImgWithPCAPSF(chip)
Fang Yuedong's avatar
Fang Yuedong committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    del psf_model
    gc.collect()

    self.chip_output.Log_info("Running checkpoint #1 (Object rendering finished): pointing-%d chip-%d pid-%d memory-%6.2fGB" %
                              (pointing.id, chip.chipID, os.getpid(), (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024)))

    self.chip_output.Log_info(
        "# objects that are too bright %d out of %d" % (bright_obj, nobj))
    self.chip_output.Log_info(
        "# objects that are too dim %d out of %d" % (dim_obj, nobj))
    self.chip_output.Log_info(
        "# objects that are missed %d out of %d" % (missed_obj, nobj))

    # Apply flat fielding (with shutter effects)
    flat_normal = np.ones_like(chip.img.array)
Wei Chengliang's avatar
Wei Chengliang committed
285
    if obs_param["flat_fielding"] is True:
Fang Yuedong's avatar
Fang Yuedong committed
286
287
        flat_normal = flat_normal * chip.flat_img.array / \
            np.mean(chip.flat_img.array)
Wei Chengliang's avatar
Wei Chengliang committed
288
    if obs_param["shutter_effect"] is True:
Fang Yuedong's avatar
Fang Yuedong committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        flat_normal = flat_normal * chip.shutter_img
        flat_normal = np.array(flat_normal, dtype='float32')
        self.updateHeaderInfo(header_flag='ext', keys=[
                              'SHTSTAT'], values=[True])
    else:
        self.updateHeaderInfo(header_flag='ext', keys=['SHTSTAT', 'SHTOPEN1', 'SHTCLOS0'], values=[
                              True, self.h_ext['SHTCLOS1'], self.h_ext['SHTOPEN0']])
    chip.img *= flat_normal
    del flat_normal

    # renew header info
    datetime_obs = datetime.utcfromtimestamp(pointing.timestamp)
    datetime_obs = datetime_obs.replace(tzinfo=timezone.utc)
    t_obs = Time(datetime_obs)

    # ccd刷新2s,等待0.s,开始曝光
    t_obs_renew = Time(t_obs.mjd - (2.+0.) / 86400., format="mjd")

    t_obs_utc = datetime.utcfromtimestamp(np.round(datetime.utcfromtimestamp(
        t_obs_renew.unix).replace(tzinfo=timezone.utc).timestamp(), 1))
    self.updateHeaderInfo(header_flag='prim', keys=[
                          'DATE-OBS'], values=[t_obs_utc.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-5]])

    # dark time : 曝光时间+刷新后等带时间0.s+关快门后读出前等待0.s
    self.updateHeaderInfo(header_flag='ext', keys=[
                          'DARKTIME'], values=[0.+0.+pointing.exp_time])

    return chip, filt, tel, pointing