_util.py 21.1 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import os
from scipy.interpolate import InterpolatedUnivariateSpline, interp1d
from scipy import interpolate, integrate
from astropy.table import Table
import galsim

VC_A = 2.99792458e+18  # speed of light: A/s
VC_M = 2.99792458e+8   # speed of light: m/s
H_PLANK = 6.626196e-27  # Plank constant: erg s


def comoving_dist(z, om_m=0.3111, om_L=0.6889, h=0.6766):
    # Return comving distance in pc
    H0 = h*100.  # km / (s Mpc)

    def dist_int(z):
        return 1./np.sqrt(om_m*(1.+z)**3 + om_L)
    res, err = integrate.quad(dist_int, 0., z)
    return [res * (VC_M/1e3/H0) * 1e6, err * (VC_M/1e3/H0) * 1e6]


def magToFlux(mag):
    """
    flux of a given AB magnitude

    Parameters:
    mag: magnitude in unit of AB

    Return:
    flux: flux in unit of erg/s/cm^2/Hz
    """
    flux = 10**(-0.4*(mag+48.6))
    return flux


def extAv(nav, seed=1212123):
    """
    Generate random intrinsic extinction Av
    following the distribution from Holwerda et al, 2015
    """
    np.random.seed(seed)
    tau = 0.4
    peak, a = 0.1, 0.5
    b = a*(tau-peak)
    def pav(av): return (a*av+b)*np.exp(-av/tau)
    avmin, avmax = 0., 3.
    avs = np.linspace(avmin, avmax, int((avmax-avmin)/0.001)+1)
    norm = np.trapz(pav(avs), avs)
    pav_base = pav(avs)/np.sum(pav(avs))
    rav = np.random.choice(avs, nav, p=pav_base)
    return rav


###########################################
def seds(sedlistn, seddir="./", unit="A"):
    """
    read SEDs and save into Python dictionary

    Parameters:
Wei Chengliang's avatar
Wei Chengliang committed
61
    sedlistn: filename of the sed template list and corresponding intrinsic
Fang Yuedong's avatar
Fang Yuedong committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
              extinction model, see tmag_dz.py for detailes
    listdir:  directory of the list
    unit: wavelength unit of the input templates

    Return:
    SED dictionary, the output wavelength unit is 'A'
    """
    seds = {}
    reds = {}
    sedlist = seddir + sedlistn
    sedn = open(sedlist).read().splitlines()
    sedtype = range(1, len(sedn)+1)
    for i in range(len(sedn)):
        xxx = sedn[i].split()
        isedn = seddir+xxx[0]
        itype = sedtype[i]
        ised = np.loadtxt(isedn)
        if unit == "nm":
            ised[:, 0] *= 10.0
        seds[itype] = ised
        reds[itype] = int(xxx[1])

    return seds, reds


def sed_assign(phz, btt, rng):
    """
    assign SED template to a galaxy.
    """
    sedid = list(range(1, 34))
    lzid = sedid[0:13] + sedid[23:28]
    hzid = sedid[13:23]
    if btt == 1.0:
        sedtype = rng.sample(sedid[0:5] + sedid[28:33], 1)[0]
        if phz > 2.0 and sedtype in sedid[0:5]:
            sedtype = rng.sample(sedid[28:33], 1)[0]
    elif btt > 0.3 and btt < 1.0:
        sedtype = rng.sample(sedid, 1)[0]
        if phz > 2.0 and sedtype in lzid:
            sedtype = rng.sample(hzid, 1)[0]
    elif btt >= 0.1 and btt < 0.3:
        sedtype = rng.sample(sedid[5:28], 1)[0]
        if phz > 1.5 and sedtype in lzid:
            sedtype = rng.sample(hzid, 1)[0]
    elif btt >= 0.0 and btt < 0.1:
        sedtype = rng.sample(sedid[5:23], 1)[0]
        if phz > 1.5 and sedtype in lzid:
            sedtype = rng.sample(hzid, 1)[0]
    else:
        sedtype = 0
    return sedtype

###########################################


def tflux(filt, sed, redshift=0.0, av=0.0, redden=0):
    """
    calculate the theoretical SED for given filter set and template
    Only AB magnitude is support!!!

    Parameters:
    filt: 2d array
        fliter transmissions: lambda(A), T
    sed: 2d array
        sed templateL lambda (A), flux (erg s-1 cm-2 A-1)
    redshift: float
        redshift of the corresponding source, default is zero
    av: float
        extinction value for intrincal extinction
    redden: int
        reddening model, see Function 'reddening' for details

    return:
    tflux: float
        theoretical flux
    sedObs: array
        SED in observed frame
    """
    z = redshift + 1.0
    sw, sf = sed[:, 0], sed[:, 1]
    # reddening
    sf = reddening(sw, sf, av=av, model=redden)
    sw, sf = sw*z, sf*(z**3)
    # lyman forest correction
    sf = lyman_forest(sw, sf, redshift)

    sedxx = (sw.copy(), sf.copy())

    sw = VC_A/sw
    sf = sf*(VC_A/sw**2)  # convert flux unit to erg/s/cm^s/Hz
    sw, sf = sw[::-1], sf[::-1]
    sfun = interp1d(sw, sf, kind='linear')

    fwave, fresp = filt[:, 0], filt[:, 1]
    fwave = VC_A/fwave
    fwave, fresp = fwave[::-1], fresp[::-1]
    tflux = sfun(fwave)

    zpflux = 3.631*1.0e-20

    tflux = np.trapz(tflux*fresp/fwave, fwave) / \
        np.trapz(zpflux*fresp/fwave, fwave)
    # tflux = np.trapz(tflux*fresp,fwave)/np.trapz(zpflux*fresp,fwave)

    return tflux, sedxx

###########################################


def lyman_forest(wavelen, flux, z):
    """
    Compute the Lyman forest mean absorption of an input spectrum,
    according to D_A and D_B evolution from Madau (1995).
    The waveeln and flux are in observed frame
    """
    if z <= 0:
        flux0 = flux
    else:
        nw = 200
        istep = np.linspace(0, nw-1, nw)
        w1a, w2a = 1050.0*(1.0+z), 1170.0*(1.0+z)
        w1b, w2b = 920.0*(1.0+z), 1015.0*(1.0+z)
        wstepa = (w2a-w1a)/float(nw)
        wstepb = (w2b-w1b)/float(nw)

        wtempa = w1a + istep*wstepa
        ptaua = np.exp(-3.6e-03*(wtempa/1216.0)**3.46)

        wtempb = w1b + istep*wstepb
        ptaub = np.exp(-1.7e-3*(wtempb/1026.0)**3.46
                       - 1.2e-3*(wtempb/972.50)**3.46
                       - 9.3e-4*(wtempb/950.00)**3.46)

        da = (1.0/(120.0*(1.0+z)))*np.trapz(ptaua, wtempa)
        db = (1.0/(95.0*(1.0+z)))*np.trapz(ptaub, wtempb)

        if da > 1.0:
            da = 1.0
        if db > 1.0:
            db = 1.0
        if da < 0.0:
            da = 0.0
        if db < 0.0:
            db = 0.0
        flux0 = flux.copy()
        id0 = wavelen <= 1026.0*(1.0+z)
        id1 = np.logical_and(wavelen < 1216.0*(1.0+z),
                             wavelen >= 1026.0*(1.0+z))
        flux0[id0] = db*flux[id0]
        flux0[id1] = da*flux[id1]

    return flux0


###########################################
def reddening(sw, sf, av=0.0, model=0):
    """
    calculate the intrinsic extinction of a given template

    Parameters:
    sw: array
        wavelength
    sf: array
        flux
    av: float or array
    model: int
        Five models will be used:
        1: Allen (1976) for the Milky Way
        2: Seaton (1979) fit by Fitzpatrick (1986) for the Milky Way
        3: Fitzpatrick (1986) for the Large Magellanic Cloud (LMC)
        4: Prevot et al (1984) and Bouchet (1985) for the Small Magellanic Cloud (SMC)
        5: Calzetti et al (2000) for starburst galaxies
        6: Reddy et al (2015) for star forming galaxies

    Return:
    reddening-corrected flux or observed flux
    """
    if model == 0 or av == 0.0:
        flux = sf
    elif model == 1:  # Allen (1976) for the Milky Way
        lambda0 = np.array([1000, 1110, 1250, 1430, 1670,
                            2000, 2220, 2500, 2850, 3330,
                            3650, 4000, 4400, 5000, 5530,
                            6700, 9000, 10000, 20000, 100000], dtype=float)
        kR = np.array([4.20, 3.70, 3.30, 3.00, 2.70,
                       2.80, 2.90, 2.30, 1.97, 1.69,
                       1.58, 1.45, 1.32, 1.13, 1.00,
                       0.74, 0.46, 0.38, 0.11, 0.00], dtype=float)
        ext0 = InterpolatedUnivariateSpline(lambda0, kR, k=1)
        A_lambda = av*ext0(sw)
        A_lambda[A_lambda < 0.0] = 0.0
        flux = sf*10**(-0.4*A_lambda)
    elif model == 2:  # Seaton (1979) fit by Fitzpatrick (1986) for the Milky Way
        Rv = 3.1
        al0, ga, c1, c2, c3, c4 = 4.595, 1.051, -0.38, 0.74, 3.96, 0.26
        ff11 = __red(1100.0, al0, ga, c1, c2, c3, c4)
        ff12 = __red(1200.0, al0, ga, c1, c2, c3, c4)
        slope = (ff12-ff11)/100.0
        lambda0 = np.array([3650, 4000, 4400, 5000, 5530,
                            6700, 9000, 10000, 20000, 100000], dtype=float)
        kR = np.array([1.58, 1.45, 1.32, 1.13, 1.00,
                       0.74, 0.46, 0.38, 0.11, 0.00], dtype=float)
        fun = interp1d(lambda0, kR, kind='linear')

        sw0 = sw[sw < 1200.0]
        A_lambda0 = (ff11+(sw0-1100.0)*slope)/Rv+1.0
        sw1 = sw[np.logical_and(sw >= 1200.0, sw <= 3650.0)]
        ff = __red(sw1, al0, ga, c1, c2, c3, c4)
        A_lambda1 = ff/Rv+1.0
        sw2 = sw[np.logical_and(sw > 3650.0, sw <= 100000.0)]
        A_lambda2 = fun(sw2)
        A_lambda3 = sw[sw > 100000.0]*0.0
        A_lambda = av*np.hstack([A_lambda0, A_lambda1, A_lambda2, A_lambda3])
        A_lambda[A_lambda < 0.0] = 0.0
        flux = sf*10**(-0.4*A_lambda)
    elif model == 3:  # Fitzpatrick (1986) for the Large Magellanic Cloud (LMC)
        Rv = 3.1
        al0, ga, c1, c2, c3, c4 = 4.608, 0.994, -0.69, 0.89, 2.55, 0.50
        ff11 = __red(1100.0, al0, ga, c1, c2, c3, c4)
        ff12 = __red(1200.0, al0, ga, c1, c2, c3, c4)
        slope = (ff12-ff11)/100.0
        lambda0 = np.array([3330, 3650, 4000, 4400, 5000, 5530,
                            6700, 9000, 10000, 20000, 100000], dtype=float)
        kR = np.array([1.682, 1.58, 1.45, 1.32, 1.13, 1.00,
                       0.74, 0.46, 0.38, 0.11, 0.00], dtype=float)
        fun = interp1d(lambda0, kR, kind='linear')

        sw0 = sw[sw < 1200.0]
        A_lambda0 = (ff11+(sw0-1100.0)*slope)/Rv+1.0
        sw1 = sw[np.logical_and(sw >= 1200.0, sw <= 3330.0)]
        ff = __red(sw1, al0, ga, c1, c2, c3, c4)
        A_lambda1 = ff/Rv+1.0
        sw2 = sw[np.logical_and(sw > 3330.0, sw <= 100000.0)]
        A_lambda2 = fun(sw2)
        A_lambda3 = sw[sw > 100000.0]*0.0
        A_lambda = av*np.hstack([A_lambda0, A_lambda1, A_lambda2, A_lambda3])
        A_lambda[A_lambda < 0.0] = 0.0
        flux = sf*10**(-0.4*A_lambda)
    # Prevot et al (1984) and Bouchet (1985) for the Small Magellanic Cloud (SMC)
    elif model == 4:
        Rv = 2.72
        lambda0 = np.array([1275, 1330, 1385, 1435, 1490, 1545,
                            1595, 1647, 1700, 1755, 1810, 1860,
                            1910, 2000, 2115, 2220, 2335, 2445,
                            2550, 2665, 2778, 2890, 2995, 3105,
                            3704, 4255, 5291, 12500, 16500, 22000], dtype=float)
        kR = np.array([13.54, 12.52, 11.51, 10.80, 9.84, 9.28,
                       9.06, 8.49, 8.01, 7.71, 7.17, 6.90, 6.76,
                       6.38, 5.85, 5.30, 4.53, 4.24, 3.91, 3.49,
                       3.15, 3.00, 2.65, 2.29, 1.81, 1.00, 0.00,
                       -2.02, -2.36, -2.47], dtype=float)
        kR = kR/Rv+1.0
        ext0 = InterpolatedUnivariateSpline(lambda0, kR, k=1)
        A_lambda = av*ext0(sw)
        A_lambda[A_lambda < 0.0] = 0.0
        flux = sf*10**(-0.4*A_lambda)
    elif model == 5:  # Calzetti et al (2000) for starburst galaxies
        Rv = 4.05
        sw = sw*1.0e-04  # wavelength in microns

        def fun1(x): return 2.659*(-2.156+1.509/x-0.198/x**2+0.011/x**3)+Rv
        def fun2(x): return 2.659*(-1.857+1.040/x)+Rv

        ff11, ff12 = fun1(0.11), fun1(0.12)
        slope1 = (ff12-ff11)/0.01
        ff99, ff100 = fun2(2.19), fun2(2.2)
        slope2 = (ff100-ff99)/0.01

        sw0 = sw[sw < 0.12]
        sw1 = sw[np.logical_and(sw >= 0.12, sw <= 0.63)]
        sw2 = sw[np.logical_and(sw > 0.63, sw <= 2.2)]
        sw3 = sw[sw > 2.2]
        k_lambda0 = ff11+(sw0-0.11)*slope1
        k_lambda1, k_lambda2 = fun1(sw1), fun2(sw2)
        k_lambda3 = ff99+(sw3-2.19)*slope2
        A_lambda = av*np.hstack([k_lambda0, k_lambda1,
                                k_lambda2, k_lambda3])/Rv
        A_lambda[A_lambda < 0.0] = 0.0
        flux = sf*10**(-0.4*A_lambda)
    elif model == 6:  # Reddy et al (2015) for satr forming galaxies
        Rv = 2.505
        sw = sw*1.0e-04

        def fun1(x): return -5.726+4.004/x-0.525/x**2+0.029/x**3+Rv
        def fun2(x): return -2.672-0.010/x+1.532/x**2-0.412/x**3+Rv

        ff11, ff12 = fun1(0.14), fun1(0.15)
        slope1 = (ff12-ff11)/0.01
        ff99, ff100 = fun2(2.84), fun2(2.85)
        slope2 = (ff100-ff99)/0.01

        sw0 = sw[sw < 0.15]
        sw1 = sw[np.logical_and(sw >= 0.15, sw < 0.60)]
        sw2 = sw[np.logical_and(sw >= 0.60, sw < 2.85)]
        sw3 = sw[sw >= 2.85]
        k_lambda0 = ff11+(sw0-0.14)*slope1
        k_lambda1, k_lambda2 = fun1(sw1), fun2(sw2)
        k_lambda3 = ff99+(sw3-2.84)*slope2
        A_lambda = av*np.hstack([k_lambda0, k_lambda1,
                                k_lambda2, k_lambda3])/Rv
        A_lambda[A_lambda < 0.0] = 0.0
        flux = sf*10**(-0.4*A_lambda)

    else:
        raise ValueError("!!! Please select a proper reddening model")

    return flux

###########################################


def __red(alan, al0, ga, c1, c2, c3, c4):

    def fun1(x): return c3/(((x-(al0**2/x))**2)+ga*ga)
    def fun2(x, cc): return cc*(0.539*((x-5.9)**2)+0.0564*((x-5.9)**3))
    def fun(x, cc): return c1+c2*x+fun1(x)+fun2(x, cc)

    ala = alan*1.0e-04  # wavelength in microns
    p = 1.0/ala
    if np.size(p) > 1:
        p1, p2 = p[p >= 5.9], p[p < 5.9]
        ff = np.append(fun(p1, c4), fun(p2, 0.0))
    elif np.size(p) == 1:
        if p < 5.9:
            c4 = 0.0
        ff = fun(p, c4)
    else:
        return
    return ff

###########################################


def sed2mag(mag_i, sedCat, filter_list, redshift=0.0, av=0.0, redden=0):

    # load the filters
    nfilt = len(filter_list)
    aflux = np.zeros(nfilt)
    nid = -1
    for k in range(nfilt):
        if filter_list[k].filter_type == 'i':
            nid = k
        bandpass = filter_list[k].bandpass_full
        ktrans = np.transpose(
            np.array([bandpass.wave_list*10.0, bandpass.func(bandpass.wave_list)]))
        aflux[k], isedObs = tflux(
            ktrans, sedCat, redshift=redshift, av=av, redden=redden)

    # normalize to i-band
    aflux = aflux / aflux[nid]

    # magnitudes in all filters
    amag = -2.5*np.log10(aflux) + mag_i
    spec = galsim.LookupTable(x=np.array(isedObs[0]), f=np.array(
        isedObs[1]), interpolant='nearest')
    isedObs = galsim.SED(spec, wave_type='A', flux_type='1', fast=False)
    return amag, isedObs


def eObs(e1, e2, g1, g2):
    """
Wei Chengliang's avatar
Wei Chengliang committed
423
    Calculate the sheared (observed) ellipticity using the
Fang Yuedong's avatar
Fang Yuedong committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    intrinsic ellipticity and cosmic shear components.

    Parameters:
    e1, e2: scalar or numpy array
    g1, g2: scalar or numpy array

    Return:
    Sheared (observed) ellipticity components, absolute value, and orientation
    in format of scalar or numpy array

    ** NOTE: e1, e2, g1, and g2 should have the same dimensions.
    """
    if np.isscalar(e1):
        e1 = np.array([e1])
        e2 = np.array([e2])
        g1 = np.array([g1])
        g2 = np.array([g2])
    else:
        e1 = e1.flatten()
        e2 = e2.flatten()
        g1 = g1.flatten()
        g2 = g2.flatten()

    # calculate the sheared (observed) ellipticity using complex rule
    nobj = len(e1)
    e1obs, e2obs = [], []
    eeobs, theta = [], []
    for i in range(nobj):
        e = complex(e1[i], e2[i])
        g = complex(g1[i], g2[i])
        e, gg = abs(e), abs(g)
        if gg <= 1.0:
            tt = e + g
            bb = 1.0 + e*g.conjugate()
            eobs = tt/bb
        else:
            tt = 1.0 + g*e.conjugate()
            bb = e.conjugate() + g.conjugate()
            eobs = tt/bb

    # derive the orientation
        dd = 0.5*np.arctan(abs(eobs.imag/eobs.real))*180.0/np.pi
        if eobs.imag > 0 and eobs.real > 0:
            dd = dd
        if eobs.imag > 0 and eobs.real < 0:
            dd = 90.0 - dd
        if eobs.imag < 0 and eobs.real > 0:
            dd = 0.0 - dd
        if eobs.imag < 0 and eobs.real < 0:
            dd = dd - 90.0

        e1obs += [eobs.real]
        e2obs += [eobs.imag]
        eeobs += [abs(eobs)]
        theta += [dd]

    e1obs, e2obs, eeobs, theta = np.array(e1obs), np.array(
        e2obs), np.array(eeobs), np.array(theta)
    if nobj == 1:
        e1obs, e2obs, eeobs, theta = e1obs[0], e2obs[0], eeobs[0], theta[0]

    return e1obs, e2obs, eeobs, theta


def getObservedSED(sedCat, redshift=0.0, av=0.0, redden=0):
    z = redshift + 1.0
    sw, sf = sedCat[:, 0], sedCat[:, 1]
    # reddening
    sf = reddening(sw, sf, av=av, model=redden)
    # sw, sf = sw*z, sf*(z**3)
    sw, sf = sw*z, sf/z
    # sw, sf = sw*z, sf

    # lyman forest correction
    sf = lyman_forest(sw, sf, redshift)
    isedObs = (sw.copy(), sf.copy())
    return isedObs


def integrate_sed_bandpass(sed, bandpass):
    wave = np.linspace(bandpass.blue_limit, bandpass.red_limit, 1000)  # in nm
    flux_normalized = sed(wave)*bandpass(wave)
    # print('in integrate_sed_bandpass', bandpass.blue_limit, bandpass.red_limit)
    int_flux = np.trapz(y=flux_normalized, x=wave) * \
        10.  # convert to photons s-1 m-2 A-1
    return int_flux


def getABMAG(interFlux, bandpass):
    throughtput = Table(np.array(np.array([bandpass.wave_list*10.0, bandpass.func(
        bandpass.wave_list)])).T, names=(['WAVELENGTH', 'SENSITIVITY']))
    sWave = bandpass.blue_limit*10.0
    eWave = bandpass.red_limit*10.0
    # print('in getABMAG', sWave, eWave)
    ABMAG_zero = getABMagAverageVal(
        ABmag=0,
        norm_thr=throughtput,
        sWave=sWave,
        eWave=eWave)
    flux_ave = interFlux / (eWave-sWave)
    ABMAG_spec = -2.5 * np.log10(flux_ave/ABMAG_zero)
    return ABMAG_spec


def getABMagAverageVal(ABmag=20., norm_thr=None, sWave=6840, eWave=8250):
    """
    norm_thr: astropy.table, 2 colum, 'WAVELENGTH', 'SENSITIVITY'

    Return:
        the integerate flux of AB magnitude in the norm_thr(the throughtput of band), photos s-1 m-2 A-1
    """

    inverseLambda = norm_thr['SENSITIVITY']/norm_thr['WAVELENGTH']
    norm_thr_i = interpolate.interp1d(norm_thr['WAVELENGTH'], inverseLambda)

    x = np.linspace(sWave, eWave, int(eWave)-int(sWave)+1)
    y = norm_thr_i(x)
    AverageLamdaInverse = np.trapz(y, x)/(eWave-sWave)
    norm = 54798696332.52474 * pow(10.0, -0.4 * ABmag) * AverageLamdaInverse
    # print('AverageLamdaInverse = ', AverageLamdaInverse)
    # print('norm = ', norm)

    return norm


def getNormFactorForSpecWithABMAG(ABMag=20., spectrum=None, norm_thr=None, sWave=6840, eWave=8250):
    """
    Use AB magnitude system (zero point, fv = 3631 janskys) in the normal band(norm_thr) normalize the spectrum by inpute ABMag

    Parameters
    ----------
        spectrum: astropy.table, 2 colum, 'WAVELENGTH', 'FLUX'
        norm_thr: astropy.table, 2 colum, 'WAVELENGTH', 'SENSITIVITY'
        sWave: the start of norm_thr
        eWave: the end of norm_thr

    Return:
Wei Chengliang's avatar
Wei Chengliang committed
561
        the normalization factor   flux of AB system(fix a band  and magnitude ) /the flux of inpute spectrum(fix a band)
Fang Yuedong's avatar
Fang Yuedong committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    """
    spectrumi = interpolate.interp1d(spectrum['WAVELENGTH'], spectrum['FLUX'])
    norm_thri = interpolate.interp1d(
        norm_thr['WAVELENGTH'], norm_thr['SENSITIVITY'])

    x = np.linspace(sWave, eWave, int(eWave)-int(sWave)+1)

    y_spec = spectrumi(x)
    y_thr = norm_thri(x)

    y = y_spec*y_thr

    specAve = np.trapz(y, x)/(eWave-sWave)
    norm = getABMagAverageVal(
        ABmag=ABMag, norm_thr=norm_thr, sWave=sWave, eWave=eWave)

    if specAve == 0:
        return 0

    # print('specAve = ', specAve)

    return norm / specAve


def tag_sed(h5file, model_tag, teff=5000, logg=2, feh=0):
    model_tag_str = model_tag.decode("utf-8").strip()
    teff_grid = np.unique(h5file["teff"][model_tag_str])
    logg_grid = np.unique(h5file["logg"][model_tag_str])
    feh_grid = np.unique(h5file["feh"][model_tag_str])
    close_teff = teff_grid[np.argmin(np.abs(teff_grid - teff))]
    close_logg = logg_grid[np.argmin(np.abs(logg_grid - logg))]
    if model_tag_str == "koester" or model_tag_str == "MC":
        close_feh = 99
    else:
        close_feh = feh_grid[np.argmin(np.abs(feh_grid - feh))]
    path = model_tag_str + \
        f"_teff_{close_teff:.1f}_logg_{close_logg:.2f}_feh_{close_feh:.1f}"
    wave = np.array(h5file["wave"][model_tag_str][()]).ravel()
    flux = np.array(h5file["sed"][path][()]).ravel()
    return path, wave, flux


def convolveGaussXorders(img=None, sigma=1):
    from astropy.modeling.models import Gaussian2D
    from scipy import signal
    offset = int(np.ceil(sigma*10))
    g_size = 2*offset+1

    m_cen = int(g_size/2)

    g_PSF_ = Gaussian2D(1, m_cen, m_cen, sigma, sigma)
    yp, xp = np.mgrid[0:g_size, 0:g_size]
    g_PSF = g_PSF_(xp, yp)
    psf = g_PSF/g_PSF.sum()
    convImg = signal.fftconvolve(img, psf, mode='full', axes=None)
    return convImg, offset


def convolveImg(img=None, psf=None):
    from astropy.modeling.models import Gaussian2D
    from scipy import signal

    convImg = signal.fftconvolve(img, psf, mode='full', axes=None)
    offset_x = int(psf.shape[1]/2. + 0.5) - 1
    offset_y = int(psf.shape[0]/2. + 0.5) - 1
    offset = [offset_x, offset_y]
    return convImg, offset