PSFGauss.py 3.99 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import galsim
import sep
import numpy as np
from scipy.interpolate import interp1d

from observation_sim.PSF.PSFModel import PSFModel


class PSFGauss(PSFModel):
    def __init__(self, chip, fwhm=0.187, sigSpin=0., psfRa=None):
        self.pix_size = chip.pix_scale
        self.chip = chip
        if psfRa is None:
            self.fwhm = fwhm
            self.sigGauss = 0.15
        else:
            self.fwhm = self.fwhmGauss(r=psfRa)
            self.sigGauss = psfRa  # 80% light radius
        self.sigSpin = sigSpin
        self.psf = galsim.Gaussian(flux=1.0, fwhm=fwhm)

    def perfGauss(self, r, sig):
        """
        pseudo-error function, i.e. Cumulative distribution function of Gaussian distribution

        Parameter:
        r: radius
        sig: sigma of the Gaussian distribution

        Return:
        the value of the pseudo CDF
        """
        def gaussFun(sigma, r): return 1.0/(np.sqrt(2.0*np.pi)
                                            * sigma) * np.exp(-r**2/(2.0*sigma**2))
        nxx = 1000
        rArr = np.linspace(0.0, r, nxx)
        gauss = gaussFun(sig, rArr)
        erf = 2.0*np.trapz(gauss, rArr)
        return erf

    def fracGauss(self, sig, r=0.15, pscale=None):
        """
        For a given Gaussian PSF with sigma=sig,
        derive the flux ratio ar the given radius r

        Parameters:
        sig: sigma of the Gauss PSF Function in arcsec
        r:   radius in arcsec
        pscale: pixel scale

        Return: the flux ratio
        """
        if pscale == None:
            pscale = self.pix_size
        gaussx = galsim.Gaussian(flux=1.0, sigma=sig)
        gaussImg = gaussx.drawImage(scale=pscale, method='no_pixel')
        gaussImg = gaussImg.array
        size = np.size(gaussImg, axis=0)
        cxy = 0.5*(size-1)
        flux, ferr, flag = sep.sum_circle(
            gaussImg, [cxy], [cxy], [r/pscale], subpix=0)
        return flux

    def fwhmGauss(self, r=0.15, fr=0.8, pscale=None):
        """
        Given a total flux ratio 'fr' within a fixed radius 'r',
        estimate the fwhm of the Gaussian function

        return the fwhm in arcsec
        """
        if pscale == None:
            pscale = self.pix_size
        err = 1.0e-3
        nxx = 100
        sig = np.linspace(0.5*pscale, 1.0, nxx)
        frA = np.zeros(nxx)
        for i in range(nxx):
            frA[i] = self.fracGauss(sig[i], r=r, pscale=pscale)
        index = [i for i in range(nxx-1) if (fr-frA[i])
                 * (fr-frA[i+1]) <= 0.0][0]

        while abs(frA[index]-fr) > 1.0e-3:
            sig = np.linspace(sig[index], sig[index+1], nxx)
            for i in range(nxx):
                frA[i] = self.fracGauss(sig[i], r=r, pscale=pscale)
            index = [i for i in range(
                nxx-1) if (fr-frA[i])*(fr-frA[i+1]) <= 0.0][0]

        fwhm = 2.35482*sig[index]
        return fwhm

    def get_PSF(self, pos_img, chip=None, bandpass=None, folding_threshold=5.e-3):
        dx = pos_img.x - self.chip.cen_pix_x
        dy = pos_img.y - self.chip.cen_pix_y
        return self.PSFspin(dx, dy)

    def PSFspin(self, x, y):
        """
        The PSF profile at a given image position relative to the axis center

        Parameters:
        theta : spin angles in a given exposure in unit of [arcsecond]
        dx, dy: relative position to the axis center in unit of [pixels]

        Return:
        Spinned PSF: g1, g2 and axis ratio 'a/b'
        """
        a2Rad = np.pi/(60.0*60.0*180.0)

        ff = self.sigGauss * 0.107 * (1000.0/10.0)  # in unit of [pixels]
        rc = np.sqrt(x*x + y*y)
        cpix = rc*(self.sigSpin*a2Rad)

        beta = (np.arctan2(y, x) + np.pi/2)
        ell = cpix**2/(2.0*ff**2+cpix**2)
        # ell *= 10.0
        qr = np.sqrt((1.0+ell)/(1.0-ell))

        # psfShape = galsim.Shear(e=ell, beta=beta)
        # g1, g2 = psfShape.g1, psfShape.g2
        # qr = np.sqrt((1.0+ell)/(1.0-ell))

        # return ell, beta, qr
        PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
        return self.psf.shear(PSFshear), PSFshear