Stamp.py 13.1 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import os
import sys
import numpy as np
import galsim
import astropy.constants as cons
from astropy.table import Table
from scipy import interpolate

from observation_sim.mock_objects.MockObject import MockObject
from observation_sim.mock_objects.SpecDisperser import SpecDisperser
from observation_sim.mock_objects._util import eObs, integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, getABMAG, convolveGaussXorders


class Stamp(MockObject):
    def __init__(self, param, logger=None):
        super().__init__(param, logger=logger)

    def unload_SED(self):
        """(Test) free up SED memory
        """
        del self.sed

    def drawObj_multiband(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0, exptime=150., fd_shear=None):
        if nphotons_tot == None:
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)

        try:
            full = integrate_sed_bandpass(
                sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            self.logger.error(e)
            return False

        # nphotons_sum = 0
        # photons_list = []
        # xmax, ymax = 0, 0

        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)

        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)

        chip_wcs_local = self.chip_wcs.local(self.real_pos)
        is_updated = 0

        if fd_shear:
            g1 += fd_shear.g1
            g2 += fd_shear.g2
        gal_shear = galsim.Shear(g1=g1, g2=g2)

        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                if self.logger:
                    self.logger.error(e)
                continue
            ratio = sub/full
            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                continue
            # nphotons_sum += nphotons

            psf, pos_shear = psf_model.get_PSF(
                chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold)

            _gal = self.param['image']
            galImg = galsim.ImageF(_gal, scale=self.param['pixScale'])
            gal_temp = galsim.InterpolatedImage(galImg)
            gal_temp = gal_temp.shear(gal_shear)
            gal_temp = gal_temp.withFlux(nphotons)

            gal_temp = galsim.Convolve(psf, gal_temp)

            if i == 0:
                gal = gal_temp
            else:
                gal = gal + gal_temp

        stamp = gal.drawImage(wcs=chip_wcs_local, offset=offset)
        if np.sum(np.isnan(stamp.array)) > 0:
            # ERROR happens
            return 2, pos_shear

        stamp.setCenter(x_nominal, y_nominal)
        bounds = stamp.bounds & galsim.BoundsI(
            0, chip.npix_x - 1, 0, chip.npix_y - 1)

        if bounds.area() > 0:
            chip.img.setOrigin(0, 0)
            chip.img[bounds] += stamp[bounds]
            is_updated = 1
            chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
            del stamp

        if is_updated == 0:
            print("fits obj %s missed" % (self.id))
            if self.logger:
                self.logger.info("fits obj %s missed" % (self.id))
            return 0, pos_shear

        return 1, pos_shear

    def drawObj_slitless(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                         exptime=150., normFilter=None, grating_split_pos=3685, fd_shear=None):
        if normFilter is not None:
            norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
            sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'], spectrum=self.sed,
                                                          norm_thr=normFilter,
                                                          sWave=np.floor(
                                                              normFilter[norm_thr_rang_ids][0][0]),
                                                          eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
            if sedNormFactor == 0:
                return 2, None
        else:
            sedNormFactor = 1.
        normalSED = Table(np.array([self.sed['WAVELENGTH'], self.sed['FLUX'] * sedNormFactor]).T,
                          names=('WAVELENGTH', 'FLUX'))

        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)

        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)

        chip_wcs_local = self.chip_wcs.local(self.real_pos)

        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)
        # nphotons_sum = 0

        flat_cube = chip.flat_cube

        xOrderSigPlus = {'A': 1.3909419820029296, 'B': 1.4760376591236062,
                         'C': 4.035447379743442, 'D': 5.5684364343742825, 'E': 16.260021029735388}
        grating_split_pos_chip = 0 + grating_split_pos

        branges = np.zeros([len(bandpass_list), 2])

        # print(hasattr(psf_model, 'bandranges'))

        if hasattr(psf_model, 'bandranges'):
            if psf_model.bandranges is None:
                return 2, None
            if len(psf_model.bandranges) != len(bandpass_list):
                return 2, None
            branges = psf_model.bandranges
        else:
            for i in range(len(bandpass_list)):
                branges[i, 0] = bandpass_list[i].blue_limit * 10
                branges[i, 1] = bandpass_list[i].red_limit * 10

        for i in range(len(bandpass_list)):
            # bandpass = bandpass_list[i]
            brange = branges[i]

            # psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold)

            _gal = self.param['image']
            galImg = galsim.ImageF(_gal, scale=self.param['pixScale'])
            gal = galsim.InterpolatedImage(galImg)

            # (TEST) Random knots
            # knots = galsim.RandomKnots(npoints=100, profile=disk)
            # kfrac = np.random.random()*(1.0 - self.bfrac)
            # gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots

            gal = gal.withFlux(tel.pupil_area * exptime)
            if fd_shear:
                g1 += fd_shear.g1
                g2 += fd_shear.g2
            gal_shear = galsim.Shear(g1=g1, g2=g2)
            gal = gal.shear(gal_shear)
            # gal = galsim.Convolve(psf, gal)

            # if not big_galaxy: # Not apply PSF for very big galaxy
            #     gal = galsim.Convolve(psf, gal)
            #     # if fd_shear is not None:
            #     #     gal = gal.shear(fd_shear)

            starImg = gal.drawImage(
                wcs=chip_wcs_local, offset=offset, method='real_space')

            origin_star = [y_nominal - (starImg.center.y - starImg.ymin),
                           x_nominal - (starImg.center.x - starImg.xmin)]
            starImg.setOrigin(0, 0)
            gal_origin = [origin_star[0], origin_star[1]]
            gal_end = [origin_star[0] + starImg.array.shape[0] -
                       1, origin_star[1] + starImg.array.shape[1] - 1]

            if gal_origin[1] < grating_split_pos_chip < gal_end[1]:
                subSlitPos = int(grating_split_pos_chip - gal_origin[1] + 1)
                # part img disperse

                subImg_p1 = starImg.array[:, 0:subSlitPos]
                star_p1 = galsim.Image(subImg_p1)
                star_p1.setOrigin(0, 0)
                origin_p1 = origin_star
                xcenter_p1 = min(x_nominal, grating_split_pos_chip-1) - 0
                ycenter_p1 = y_nominal-0

                sdp_p1 = SpecDisperser(orig_img=star_p1, xcenter=xcenter_p1,
                                       ycenter=ycenter_p1, origin=origin_p1,
                                       tar_spec=normalSED,
                                       band_start=brange[0], band_end=brange[1],
                                       conf=chip.sls_conf[0],
                                       isAlongY=0,
                                       flat_cube=flat_cube)

                # self.addSLStoChipImage(sdp=sdp_p1, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p1, chip=chip, pos_img_local=[xcenter_p1, ycenter_p1],
                                                          psf_model=psf_model, bandNo=i + 1,
                                                          grating_split_pos=grating_split_pos,
                                                          local_wcs=chip_wcs_local, pos_img=pos_img)

                subImg_p2 = starImg.array[:,
                                          subSlitPos+1:starImg.array.shape[1]]
                star_p2 = galsim.Image(subImg_p2)
                star_p2.setOrigin(0, 0)
                origin_p2 = [origin_star[0], grating_split_pos_chip]
                xcenter_p2 = max(x_nominal, grating_split_pos_chip - 1) - 0
                ycenter_p2 = y_nominal - 0

                sdp_p2 = SpecDisperser(orig_img=star_p2, xcenter=xcenter_p2,
                                       ycenter=ycenter_p2, origin=origin_p2,
                                       tar_spec=normalSED,
                                       band_start=brange[0], band_end=brange[1],
                                       conf=chip.sls_conf[1],
                                       isAlongY=0,
                                       flat_cube=flat_cube)

                # self.addSLStoChipImage(sdp=sdp_p2, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p2, chip=chip, pos_img_local=[xcenter_p2, ycenter_p2],
                                                          psf_model=psf_model, bandNo=i + 1,
                                                          grating_split_pos=grating_split_pos,
                                                          local_wcs=chip_wcs_local, pos_img=pos_img)

                del sdp_p1
                del sdp_p2
            elif grating_split_pos_chip <= gal_origin[1]:
                sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0,
                                    ycenter=y_nominal - 0, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=brange[0], band_end=brange[1],
                                    conf=chip.sls_conf[1],
                                    isAlongY=0,
                                    flat_cube=flat_cube)
                # self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                                                          psf_model=psf_model, bandNo=i + 1,
                                                          grating_split_pos=grating_split_pos,
                                                          local_wcs=chip_wcs_local, pos_img=pos_img)
                del sdp
            elif grating_split_pos_chip >= gal_end[1]:
                sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0,
                                    ycenter=y_nominal - 0, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=brange[0], band_end=brange[1],
                                    conf=chip.sls_conf[0],
                                    isAlongY=0,
                                    flat_cube=flat_cube)
                # self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                                                          psf_model=psf_model, bandNo=i + 1,
                                                          grating_split_pos=grating_split_pos,
                                                          local_wcs=chip_wcs_local, pos_img=pos_img)
                del sdp

            # print(self.y_nominal, starImg.center.y, starImg.ymin)
            # del psf
        return 1, pos_shear