MockObject.py 24.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import os
import galsim
import numpy as np
import astropy.constants as cons
from astropy import wcs
from astropy.table import Table
import astropy.io.fits as fitsio

from observation_sim.mock_objects._util import magToFlux, VC_A, convolveGaussXorders, convolveImg
from observation_sim.mock_objects._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, \
    getABMAG
from observation_sim.mock_objects.SpecDisperser import SpecDisperser


class MockObject(object):
    def __init__(self, param, logger=None):
        self.param = param
        for key in self.param:
            setattr(self, key, self.param[key])

        if self.param["star"] == 0:
            self.type = "galaxy"
        elif self.param["star"] == 1:
            self.type = "star"
        elif self.param["star"] == 2:
            self.type = "quasar"
        # mock_stamp_START
        elif self.param["star"] == 3:
            self.type = "stamp"
        # mock_stamp_END
        # for calibration
        elif self.param["star"] == 4:
            self.type = "calib"
        # END

        self.sed = None
        self.fd_shear = None
        # Place holder for outputs
        self.additional_output_str = ""
        self.logger = logger

    def getMagFilter(self, filt):
        if filt.filter_type in ["GI", "GV", "GU"]:
            return self.param["mag_use_normal"]
        return self.param["mag_%s" % filt.filter_type.lower()]

    def getFluxFilter(self, filt):
        return self.param["flux_%s" % filt.filter_type.lower()]

    def getNumPhotons(self, flux, tel, exptime=150.):
        pupil_area = tel.pupil_area * (100.) ** 2  # m^2 to cm^2
        return flux * pupil_area * exptime

    def getElectronFluxFilt(self, filt, tel, exptime=150.):
        # photonEnergy = filt.getPhotonE()
        # flux = magToFlux(self.getMagFilter(filt))
        # factor = 1.0e4 * flux/photonEnergy * VC_A * (1.0/filt.blue_limit - 1.0/filt.red_limit)
        # return factor * filt.efficiency * tel.pupil_area * exptime
        flux = self.getFluxFilter(filt)
        return flux * tel.pupil_area * exptime

    def getPosWorld(self):
        ra = self.param["ra"]
        dec = self.param["dec"]
        return galsim.CelestialCoord(ra=ra * galsim.degrees, dec=dec * galsim.degrees)

    def getPosImg_Offset_WCS(self, img, fdmodel=None, chip=None, verbose=True, chip_wcs=None, img_header=None):
        self.posImg = img.wcs.toImage(self.getPosWorld())
        self.localWCS = img.wcs.local(self.posImg)
        # Apply field distortion model
        if (fdmodel is not None) and (chip is not None):
            if verbose:
                print("\n")
                print("Before field distortion:\n")
                print("x = %.2f, y = %.2f\n" %
                      (self.posImg.x, self.posImg.y), flush=True)
            self.posImg, self.fd_shear = fdmodel.get_distorted(
                chip=chip, pos_img=self.posImg)
            if verbose:
                print("After field distortion:\n")
                print("x = %.2f, y = %.2f\n" %
                      (self.posImg.x, self.posImg.y), flush=True)

        x, y = self.posImg.x + 0.5, self.posImg.y + 0.5
        self.x_nominal = int(np.floor(x + 0.5))
        self.y_nominal = int(np.floor(y + 0.5))
        dx = x - self.x_nominal
        dy = y - self.y_nominal
        self.offset = galsim.PositionD(dx, dy)

        # Deal with chip rotation
        if chip_wcs is not None:
            self.chip_wcs = chip_wcs
        elif img_header is not None:
            self.chip_wcs = galsim.FitsWCS(header=img_header)
        else:
            self.chip_wcs = None

        return self.posImg, self.offset, self.localWCS, self.chip_wcs, self.fd_shear

    def getRealPos(self, img, global_x=0., global_y=0., img_real_wcs=None):
        img_global_pos = galsim.PositionD(global_x, global_y)
        cel_pos = img.wcs.toWorld(img_global_pos)
        realPos = img_real_wcs.toImage(cel_pos)
        return realPos

    def drawObj_multiband(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                          exptime=150., fd_shear=None):
        if nphotons_tot == None:
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
        # print("nphotons_tot = ", nphotons_tot)

        try:
            full = integrate_sed_bandpass(
                sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            if self.logger:
                self.logger.error(e)
            return 2, None

        # Set Galsim Parameters
        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        # Get real image position of object (deal with chip rotation w.r.t its center)
        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)
        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)
        # Get real local wcs of object (deal with chip rotation w.r.t its center)
        chip_wcs_local = self.chip_wcs.local(self.real_pos)
        is_updated = 0

        # Loop over all sub-bandpasses
        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                if self.logger:
                    self.logger.error(e)
                continue
            ratio = sub / full
            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                continue

            # nphotons_sum += nphotons
            # print("nphotons_sub-band_%d = %.2f"%(i, nphotons))

            # Get PSF model
            psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
                                               folding_threshold=folding_threshold)
            # star = galsim.DeltaFunction(gsparams=gsp)
            # star = star.withFlux(nphotons)
            # star = galsim.Convolve(psf, star)
            star = psf.withFlux(nphotons)

            stamp = star.drawImage(wcs=chip_wcs_local, offset=offset)
            if np.sum(np.isnan(stamp.array)) > 0:
                continue
            stamp.setCenter(x_nominal, y_nominal)
            bounds = stamp.bounds & galsim.BoundsI(
                0, chip.npix_x - 1, 0, chip.npix_y - 1)
            if bounds.area() > 0:
                chip.img.setOrigin(0, 0)
                chip.img[bounds] += stamp[bounds]
                is_updated = 1
                chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
                del stamp

        if is_updated == 0:
            # Return code 0: object has missed this detector
            print("obj %s missed" % (self.id))
            if self.logger:
                self.logger.info("obj %s missed" % (self.id))
            return 0, pos_shear
        return 1, pos_shear  # Return code 1: draw sucesss

    def addSLStoChipImage(self, sdp=None, chip=None, xOrderSigPlus=None, local_wcs=None):
        spec_orders = sdp.compute_spec_orders()
        for k, v in spec_orders.items():
            img_s = v[0]
            #########################################################
            # DEBUG
            #########################################################
            # print("before convolveGaussXorders, img_s:", img_s)
            nan_ids = np.isnan(img_s)
            if img_s[nan_ids].shape[0] > 0:
                # img_s[nan_ids] = 0
                print("DEBUG: before convolveGaussXorders specImg nan num is",
                      img_s[nan_ids].shape[0])
            #########################################################
            img_s, orig_off = convolveGaussXorders(img_s, xOrderSigPlus[k])
            origin_order_x = v[1] - orig_off
            origin_order_y = v[2] - orig_off

            #########################################################
            # DEBUG
            #########################################################
            # print("DEBUG: orig_off is", orig_off)
            nan_ids = np.isnan(img_s)
            if img_s[nan_ids].shape[0] > 0:
                img_s[nan_ids] = 0
                print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
            #########################################################
            specImg = galsim.ImageF(img_s)
            photons = galsim.PhotonArray.makeFromImage(specImg)
            photons.x += origin_order_x
            photons.y += origin_order_y

            xlen_imf = int(specImg.xmax - specImg.xmin + 1)
            ylen_imf = int(specImg.ymax - specImg.ymin + 1)
            stamp = galsim.ImageF(xlen_imf, ylen_imf)
            stamp.wcs = local_wcs
            stamp.setOrigin(origin_order_x, origin_order_y)

            bounds = stamp.bounds & galsim.BoundsI(
                0, chip.npix_x - 1, 0, chip.npix_y - 1)
            if bounds.area() == 0:
                continue
            chip.img.setOrigin(0, 0)
            stamp[bounds] = chip.img[bounds]
            chip.sensor.accumulate(photons, stamp)
            chip.img[bounds] = stamp[bounds]
            chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
            del stamp
        del spec_orders

    def addSLStoChipImageWithPSF(self, sdp=None, chip=None, pos_img_local=[1, 1], psf_model=None, bandNo=1, grating_split_pos=3685, local_wcs=None, pos_img=None):
        spec_orders = sdp.compute_spec_orders()
        for k, v in spec_orders.items():
            img_s = v[0]
            # print(bandNo,k)
            try:
                psf, pos_shear = psf_model.get_PSF(
                    chip, pos_img_local=pos_img_local, bandNo=bandNo, galsimGSObject=True, g_order=k, grating_split_pos=grating_split_pos)
            except:
                psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img)

            psf_img = psf.drawImage(nx=100, ny=100, wcs=local_wcs)

            psf_img_m = psf_img.array

            #########################################################
            # DEBUG
            #########################################################
            # ids_p = psf_img_m < 0
            # psf_img_m[ids_p] = 0

            # from astropy.io import fits
            # fits.writeto(str(bandNo) + '_' + str(k) + '_psf.fits', psf_img_m)

            # print("DEBUG: orig_off is", orig_off)
            nan_ids = np.isnan(img_s)
            if img_s[nan_ids].shape[0] > 0:
                img_s[nan_ids] = 0
                print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
            #########################################################
            img_s, orig_off = convolveImg(img_s, psf_img_m)
            origin_order_x = v[1] - orig_off[0]
            origin_order_y = v[2] - orig_off[1]

            specImg = galsim.ImageF(img_s)
            # photons = galsim.PhotonArray.makeFromImage(specImg)
            # photons.x += origin_order_x
            # photons.y += origin_order_y

            # xlen_imf = int(specImg.xmax - specImg.xmin + 1)
            # ylen_imf = int(specImg.ymax - specImg.ymin + 1)
            # stamp = galsim.ImageF(xlen_imf, ylen_imf)
            # stamp.wcs = local_wcs
            # stamp.setOrigin(origin_order_x, origin_order_y)

            specImg.wcs = local_wcs
            specImg.setOrigin(origin_order_x, origin_order_y)

            bounds = specImg.bounds & galsim.BoundsI(
                0, chip.npix_x - 1, 0, chip.npix_y - 1)
            if bounds.area() == 0:
                continue
            chip.img.setOrigin(0, 0)
            chip.img[bounds] = chip.img[bounds] + specImg[bounds]
            # stamp[bounds] = chip.img[bounds]
            # # chip.sensor.accumulate(photons, stamp)
            # chip.img[bounds] = stamp[bounds]
            chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
            # del stamp
        del spec_orders
        return pos_shear

    def drawObj_slitless(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                         exptime=150., normFilter=None, grating_split_pos=3685, fd_shear=None):
        if normFilter is not None:
            norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
            sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'], spectrum=self.sed,
                                                          norm_thr=normFilter,
                                                          sWave=np.floor(
                                                              normFilter[norm_thr_rang_ids][0][0]),
                                                          eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
            if sedNormFactor == 0:
                return 2, None
        else:
            sedNormFactor = 1.

        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        normalSED = Table(np.array([self.sed['WAVELENGTH'], self.sed['FLUX'] * sedNormFactor]).T,
                          names=('WAVELENGTH', 'FLUX'))

        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)

        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)

        chip_wcs_local = self.chip_wcs.local(self.real_pos)

        flat_cube = chip.flat_cube

        xOrderSigPlus = {'A': 1.3909419820029296, 'B': 1.4760376591236062, 'C': 4.035447379743442,
                         'D': 5.5684364343742825, 'E': 16.260021029735388}
        grating_split_pos_chip = 0 + grating_split_pos

        branges = np.zeros([len(bandpass_list), 2])

        if hasattr(psf_model, 'bandranges'):
            if psf_model.bandranges is None:
                return 2, None
            if len(psf_model.bandranges) != len(bandpass_list):
                return 2, None
            branges = psf_model.bandranges
        else:
            for i in range(len(bandpass_list)):
                branges[i, 0] = bandpass_list[i].blue_limit * 10
                branges[i, 1] = bandpass_list[i].red_limit * 10

        for i in range(len(bandpass_list)):
            # bandpass = bandpass_list[i]
            brange = branges[i]

            # psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
            #                                    folding_threshold=folding_threshold)
            star = galsim.DeltaFunction(gsparams=gsp)
            star = star.withFlux(tel.pupil_area * exptime)
            psf_tmp = galsim.Gaussian(sigma=0.002)
            star = galsim.Convolve(psf_tmp, star)

            starImg = star.drawImage(
                nx=60, ny=60, wcs=chip_wcs_local, offset=offset)

            origin_star = [y_nominal - (starImg.center.y - starImg.ymin),
                           x_nominal - (starImg.center.x - starImg.xmin)]
            starImg.setOrigin(0, 0)
            gal_origin = [origin_star[0], origin_star[1]]
            gal_end = [origin_star[0] + starImg.array.shape[0] -
                       1, origin_star[1] + starImg.array.shape[1] - 1]
            if gal_origin[1] < grating_split_pos_chip < gal_end[1]:
                subSlitPos = int(grating_split_pos_chip - gal_origin[1] + 1)
                # part img disperse

                subImg_p1 = starImg.array[:, 0:subSlitPos]
                star_p1 = galsim.Image(subImg_p1)
                origin_p1 = origin_star
                star_p1.setOrigin(0, 0)
                xcenter_p1 = min(x_nominal, grating_split_pos_chip - 1) - 0
                ycenter_p1 = y_nominal - 0

                sdp_p1 = SpecDisperser(orig_img=star_p1, xcenter=xcenter_p1,
                                       ycenter=ycenter_p1, origin=origin_p1,
                                       tar_spec=normalSED,
                                       band_start=brange[0], band_end=brange[1],
                                       conf=chip.sls_conf[0],
                                       isAlongY=0,
                                       flat_cube=flat_cube)

                # self.addSLStoChipImage(sdp=sdp_p1, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p1, chip=chip, pos_img_local=[xcenter_p1, ycenter_p1],
                                                          psf_model=psf_model, bandNo=i+1, grating_split_pos=grating_split_pos,
                                                          local_wcs=chip_wcs_local, pos_img=pos_img)

                subImg_p2 = starImg.array[:,
                                          subSlitPos + 1:starImg.array.shape[1]]
                star_p2 = galsim.Image(subImg_p2)
                star_p2.setOrigin(0, 0)
                origin_p2 = [origin_star[0], grating_split_pos_chip]
                xcenter_p2 = max(x_nominal, grating_split_pos_chip - 1) - 0
                ycenter_p2 = y_nominal - 0

                sdp_p2 = SpecDisperser(orig_img=star_p2, xcenter=xcenter_p2,
                                       ycenter=ycenter_p2, origin=origin_p2,
                                       tar_spec=normalSED,
                                       band_start=brange[0], band_end=brange[1],
                                       conf=chip.sls_conf[1],
                                       isAlongY=0,
                                       flat_cube=flat_cube)

                # self.addSLStoChipImage(sdp=sdp_p2, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p2, chip=chip, pos_img_local=[xcenter_p2, ycenter_p2],
                                                          psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                                                          local_wcs=chip_wcs_local, pos_img=pos_img)

                del sdp_p1
                del sdp_p2
            elif grating_split_pos_chip <= gal_origin[1]:
                sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0,
                                    ycenter=y_nominal - 0, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=brange[0], band_end=brange[1],
                                    conf=chip.sls_conf[1],
                                    isAlongY=0,
                                    flat_cube=flat_cube)
                # self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                                                          psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                                                          local_wcs=chip_wcs_local, pos_img=pos_img)
                del sdp
            elif grating_split_pos_chip >= gal_end[1]:
                sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0,
                                    ycenter=y_nominal - 0, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=brange[0], band_end=brange[1],
                                    conf=chip.sls_conf[0],
                                    isAlongY=0,
                                    flat_cube=flat_cube)
                # self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                                                          psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                                                          local_wcs=chip_wcs_local, pos_img=pos_img)
                del sdp
            # del psf
        return 1, pos_shear

    def SNRestimate(self, img_obj, flux, noise_level=0.0, seed=31415):
        img_flux = img_obj.added_flux
        stamp = img_obj.copy() * 0.0
        rng = galsim.BaseDeviate(seed)
        gaussianNoise = galsim.GaussianNoise(rng, sigma=noise_level)
        stamp.addNoise(gaussianNoise)
        sig_obj = np.std(stamp.array)
        snr_obj = img_flux / sig_obj
        return snr_obj

    def drawObj_PSF(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                    exptime=150., fd_shear=None, chip_output=None):
        if nphotons_tot == None:
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
        # print("nphotons_tot = ", nphotons_tot)

        try:
            full = integrate_sed_bandpass(
                sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            if self.logger:
                self.logger.error(e)
            return 2, None

        # Set Galsim Parameters
        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        # Get real image position of object (deal with chip rotation w.r.t its center)
        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)
        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)
        # Get real local wcs of object (deal with chip rotation w.r.t its center)
        chip_wcs_local = self.chip_wcs.local(self.real_pos)
        is_updated = 0

        # Loop over all sub-bandpasses
        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                if self.logger:
                    self.logger.error(e)
                continue
            ratio = sub / full
            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                continue

            # Get PSF model
            psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
                                               folding_threshold=folding_threshold)
            star_temp = psf.withFlux(nphotons)

            if i == 0:
                star = star_temp
            else:
                star = star+star_temp

        pixelScale = 0.074
        stamp = star.drawImage(wcs=chip_wcs_local, offset=offset)
        # stamp = star.drawImage(nx=256, ny=256, scale=pixelScale)
        if np.sum(np.isnan(stamp.array)) > 0:
            return None

        fn = chip_output.subdir + "/psfIDW"
        os.makedirs(fn, exist_ok=True)
        fn = fn + "/ccd_{:}".format(chip.chipID) + \
            "_psf_"+str(self.param['id'])+".fits"
        if fn != None:
            if os.path.exists(fn):
                os.remove(fn)
        hdu = fitsio.PrimaryHDU()
        hdu.data = stamp.array
        hdu.header.set('name',      self.type)
        hdu.header.set('pixScale',  pixelScale)
        hdu.header.set('objID',     self.param['id'])
        hdu.writeto(fn)

        del stamp
        return None