Chip.py 39.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
import galsim
import os
import numpy as np
from astropy.table import Table
from numpy.random import Generator, PCG64
Fang Yuedong's avatar
Fang Yuedong committed
6
7
from astropy.io import fits
from datetime import datetime
Fang Yuedong's avatar
Fang Yuedong committed
8

9
10
11
12
from ObservationSim.Instrument.Chip import Effects as effects
from ObservationSim.Instrument.FocalPlane import FocalPlane
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader

Fang Yuedong's avatar
Fang Yuedong committed
13
14
15
16
17
18
try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources

Fang Yuedong's avatar
Fang Yuedong committed
19
class Chip(FocalPlane):
20
    def __init__(self, chipID, ccdEffCurve_dir=None, CRdata_dir=None, sls_dir=None, config=None, treering_func=None, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
21
22
23
24
25
26
27
28
        # Get focal plane (instance of paraent class) info
        # TODO: use chipID to config individual chip?
        super().__init__()
        self.npix_x = 9216
        self.npix_y = 9232
        self.read_noise = 5.0   # e/pix
        self.dark_noise = 0.02  # e/pix/s
        self.pix_scale  = 0.074 # pixel scale
Fang Yuedong's avatar
Fang Yuedong committed
29
30
        self.gain = float(config["ins_effects"]["gain"])
        self.bias_level = float(config["ins_effects"]["bias_level"])
Fang Yuedong's avatar
Fang Yuedong committed
31
        self.overscan   = 1000
Fang Yuedong's avatar
Fang Yuedong committed
32
33
34
35
        self.exptime    = float(config["obs_setting"]["exp_time"])   # second
        self.dark_exptime = float(config["ins_effects"]['dark_exptime'])
        self.flat_exptime = float(config["ins_effects"]['flat_exptime'])
        self.readout_time = float(config["ins_effects"]['readout_time'])
36
        self.full_well = int(config["ins_effects"]["full_well"])
Fang Yuedong's avatar
Fang Yuedong committed
37

38
39
        self.logger = logger

Fang Yuedong's avatar
Fang Yuedong committed
40
41
42
43
44
45
46
47
48
49
50
51
        # A chip ID must be assigned
        self.chipID = int(chipID)
        self._getChipRowCol()

        # Get corresponding filter info
        self.filter_id, self.filter_type = self.getChipFilter()
        self.survey_type = self._getSurveyType()

        # Get boundary (in pix)
        self.bound = self.getChipLim()
        self.ccdEffCurve_dir = ccdEffCurve_dir
        self.CRdata_dir = CRdata_dir
Fang Yuedong's avatar
Fang Yuedong committed
52
        # self.sls_dir=sls_dir
Fang Yuedong's avatar
Fang Yuedong committed
53
54
55
        # self.sls_conf = os.path.join(self.sls_dir, self.getChipSLSConf())
        slsconfs = self.getChipSLSConf()
        if np.size(slsconfs) == 1:
Fang Yuedong's avatar
Fang Yuedong committed
56
57
58
            # self.sls_conf = [os.path.join(self.sls_dir, slsconfs)]
            with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs) as conf_path:
                self.sls_conf = str(conf_path)
Fang Yuedong's avatar
Fang Yuedong committed
59
        else:
Fang Yuedong's avatar
Fang Yuedong committed
60
61
62
63
64
65
            # self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
            self.sls_conf = []
            with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[0]) as conf_path:
                self.sls_conf.append(str(conf_path))
            with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[1]) as conf_path:
                self.sls_conf.append(str(conf_path))
Fang Yuedong's avatar
Fang Yuedong committed
66
67
68
69
70
        
        self.effCurve = self._getChipEffCurve(self.filter_type)
        self._getCRdata()

        # Define the sensor
Fang Yuedong's avatar
Fang Yuedong committed
71
        if config["ins_effects"]["bright_fatter"] == True and self.survey_type == "photometric":
Fang Yuedong's avatar
Fang Yuedong committed
72
            self.sensor = galsim.SiliconSensor(strength=config["ins_effects"]["df_strength"], treering_func=treering_func)
Fang Yuedong's avatar
Fang Yuedong committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        else:
            self.sensor = galsim.Sensor()

    # def _getChipRowCol(self):
    #     self.rowID = (self.chipID - 1) // 5 + 1
    #     self.colID = (self.chipID - 1) % 5 + 1
    def _getChipRowCol(self):
        self.rowID, self.colID = self.getChipRowCol(self.chipID)

    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID

    def _getSurveyType(self):
        if self.filter_type in ["GI", "GV", "GU"]:
            return "spectroscopic"
        else:
            return "photometric"

    def _getChipEffCurve(self, filter_type):
        # CCD efficiency curves
        if filter_type in ['nuv', 'u', 'GU']: filename = 'UV0.txt'
        if filter_type in ['g', 'r', 'GV']: filename = 'Astro_MB.txt'
        if filter_type in ['i', 'z', 'y', 'GI']: filename = 'Basic_NIR.txt'
        # Mirror efficiency:
99
100
101
102
        # if filter_type == 'nuv': mirror_eff = 0.54
        # if filter_type == 'u': mirror_eff = 0.68
        # if filter_type in ['g', 'r', 'i', 'z', 'y']: mirror_eff = 0.8
        # if filter_type in ['GU', 'GV', 'GI']: mirror_eff = 1. # Not sure if this is right
Fang Yuedong's avatar
Fang Yuedong committed
103
        
Fang Yuedong's avatar
Fang Yuedong committed
104
105
106
107
        # path = os.path.join(self.ccdEffCurve_dir, filename)
        # table = Table.read(path, format='ascii')
        with pkg_resources.path('ObservationSim.Instrument.data.ccd', filename) as ccd_path:
            table = Table.read(ccd_path, format='ascii')
108
109
        # throughput = galsim.LookupTable(x=table['col1'], f=table['col2']*mirror_eff, interpolant='linear')
        throughput = galsim.LookupTable(x=table['col1'], f=table['col2'], interpolant='linear')
Fang Yuedong's avatar
Fang Yuedong committed
110
111
112
113
        bandpass = galsim.Bandpass(throughput, wave_type='nm')
        return bandpass

    def _getCRdata(self):
Fang Yuedong's avatar
Fang Yuedong committed
114
115
116
117
        # path = os.path.join(self.CRdata_dir, 'wfc-cr-attachpixel.dat')
        # self.attachedSizes = np.loadtxt(path)
        with pkg_resources.path('ObservationSim.Instrument.data', "wfc-cr-attachpixel.dat") as cr_path:
            self.attachedSizes = np.loadtxt(cr_path)
Fang Yuedong's avatar
Fang Yuedong committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

    def getChipFilter(self, chipID=None, filter_layout=None):
        """Return the filter index and type for a given chip #(chipID)
        """
        filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI"]
        # TODO: maybe a more elegent way other than hard coded?
        # e.g. use something like a nested dict:
        if filter_layout is not None:
            return filter_layout[chipID][0], filter_layout[chipID][1]
        if chipID == None:
            chipID = self.chipID

        # updated configurations
        # if chipID>30 or chipID<1: raise ValueError("!!! Chip ID: [1,30]")
        # if chipID in [10, 15, 16, 21]: filter_type = 'y'
        # if chipID in [11, 20]:         filter_type = "z"
        # if chipID in [9, 22]:           filter_type = "i"
        # if chipID in [12, 19]:         filter_type = "u"
        # if chipID in [7, 24]:         filter_type = "r"
        # if chipID in [14, 13, 18, 17]:    filter_type = "nuv"
        # if chipID in [8, 23]:         filter_type = "g"
        # if chipID in [6, 5, 25, 26]:    filter_type = "GI"
        # if chipID in [27, 30, 1, 4]:    filter_type = "GV"
        # if chipID in [28, 29, 2, 3]:    filter_type = "GU"
        if chipID in [6, 15, 16, 25]: filter_type = "y"
        if chipID in [11, 20]:         filter_type = "z"
        if chipID in [7, 24]:           filter_type = "i"
        if chipID in [14, 17]:         filter_type = "u"
        if chipID in [9, 22]:         filter_type = "r"
        if chipID in [12, 13, 18, 19]:    filter_type = "nuv"
        if chipID in [8, 23]:         filter_type = "g"
        if chipID in [1, 10, 21, 30]:    filter_type = "GI"
        if chipID in [2, 5, 26, 29]:    filter_type = "GV"
        if chipID in [3, 4, 27, 28]:    filter_type = "GU"
        filter_id = filter_type_list.index(filter_type)

        return filter_id, filter_type

    def getChipLim(self, chipID=None):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
        NOTE: There are 5*4 CCD chips in the focus plane for photometric observation.
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """
        # if chipID == None:
        #     chipID = self.chipID
        
        # gx = self.npix_gap_x
        # gy1, gy2 = self.npix_gap_y

        # # xlim of a given ccd chip
        # xrem = (chipID-1)%self.nchip_x - self.nchip_x // 2
        # xcen = (self.npix_x + gx) * xrem
        # nx0 = xcen - self.npix_x//2 + 1
        # nx1 = xcen + self.npix_x//2

        # # ylim of a given ccd chip
        # yrem = 2*((chipID-1)//self.nchip_x) - (self.nchip_y-1)
        # ycen = (self.npix_y//2 + gy1//2) * yrem
        # if chipID <= 6: ycen = (self.npix_y//2 + gy1//2) * yrem - (gy2-gy1)
        # if chipID >= 25: ycen = (self.npix_y//2 + gy1//2) * yrem + (gy2-gy1)
        # ny0 = ycen - self.npix_y//2 + 1
        # ny1 = ycen + self.npix_y//2

        if chipID == None:
            chipID = self.chipID
            rowID, colID = self.rowID, self.colID
        else:
            rowID, colID = self.getChipRowCol(chipID)
        gx1, gx2 = self.npix_gap_x
        gy = self.npix_gap_y

        # xlim of a given CCD chip
        xrem = 2*(colID - 1) - (self.nchip_x - 1)
        xcen = (self.npix_x//2 + gx1//2) * xrem
        if chipID >= 26 or chipID == 21:
            xcen = (self.npix_x//2 + gx1//2) * xrem - (gx2-gx1)
        if chipID <= 5 or chipID == 10:
            xcen = (self.npix_x//2 + gx1//2) * xrem + (gx2-gx1)
        nx0 = xcen - self.npix_x//2 + 1
        nx1 = xcen + self.npix_x//2

        # ylim of a given CCD chip
        yrem = (rowID - 1) - self.nchip_y // 2
        ycen = (self.npix_y + gy) * yrem
        ny0 = ycen - self.npix_y//2 + 1
        ny1 = ycen + self.npix_y//2

        return galsim.BoundsD(nx0-1, nx1-1, ny0-1, ny1-1)


    def getSkyCoverage(self, wcs):
        return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)


    def getSkyCoverageEnlarged(self, wcs, margin=0.5):
        """The enlarged sky coverage of the chip
        """
        margin /= 60.0
        bound = self.getSkyCoverage(wcs)
        return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)

    def isContainObj(self, ra_obj, dec_obj, wcs=None, margin=1):
        # magin in number of pix
        if wcs is None:
            wcs = self.img.wcs
        pos_obj = wcs.toImage(galsim.CelestialCoord(ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
        xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
        ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
        if (pos_obj.x - xmin) * (pos_obj.x - xmax) > 0.0 or (pos_obj.y - ymin) * (pos_obj.y - ymax) > 0.0:
            return False
        return True

    def getChipNoise(self, exptime=150.0):
        noise = self.dark_noise * exptime + self.read_noise**2
        return noise

    def getChipSLSConf(self):
        confFile = ''
        if self.chipID == 1: confFile = ['CSST_GI2.conf', 'CSST_GI1.conf']
        if self.chipID == 2: confFile = ['CSST_GV4.conf', 'CSST_GV3.conf']
        if self.chipID == 3: confFile = ['CSST_GU2.conf', 'CSST_GU1.conf']
        if self.chipID == 4: confFile = ['CSST_GU4.conf', 'CSST_GU3.conf']
        if self.chipID == 5: confFile = ['CSST_GV2.conf', 'CSST_GV1.conf']
        if self.chipID == 10: confFile = ['CSST_GI4.conf', 'CSST_GI3.conf']
        if self.chipID == 21: confFile = ['CSST_GI6.conf', 'CSST_GI5.conf']
        if self.chipID == 26: confFile = ['CSST_GV8.conf', 'CSST_GV7.conf']
        if self.chipID == 27: confFile = ['CSST_GU6.conf', 'CSST_GU5.conf']
        if self.chipID == 28: confFile = ['CSST_GU8.conf', 'CSST_GU7.conf']
        if self.chipID == 29: confFile = ['CSST_GV6.conf', 'CSST_GV5.conf']
        if self.chipID == 30: confFile = ['CSST_GI8.conf', 'CSST_GI7.conf']
        return confFile

Fang Yuedong's avatar
Fang Yuedong committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def generateHeader(self, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, exptime=150.):
        h_prim = generatePrimaryHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            pointNum = str(pointing_ID),
            ra=ra_cen, 
            dec=dec_cen, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            date=date_obs,
            time_obs=time_obs,
            im_type = im_type,
            exptime=exptime
            )
        h_ext = generateExtensionHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            ra=ra_cen, 
            dec=dec_cen, 
            pa=img_rot.deg, 
            gain=self.gain, 
            readout=self.read_noise, 
            dark=self.dark_noise, 
            saturation=90000, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            extName='raw')
        return h_prim, h_ext

    def outputCal(self, img, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, output_dir, exptime=150.):
        h_prim, h_ext = self.generateHeader(
            ra_cen=ra_cen,
            dec_cen=dec_cen,
            img_rot=img_rot,
            im_type=im_type,
            pointing_ID=pointing_ID,
            date_obs=date_obs,
            time_obs=time_obs,
            exptime=exptime)
        hdu1 = fits.PrimaryHDU(header=h_prim)
        hdu2 = fits.ImageHDU(img.array, header=h_ext)
        hdu1 = fits.HDUList([hdu1, hdu2])
        fname = os.path.join(output_dir, h_prim['FILENAME']+'.fits')
        hdu1.writeto(fname, output_verify='ignore', overwrite=True)

301
    def addEffects(self, config, img, chip_output, filt, ra_cen, dec_cen, img_rot, exptime=150., pointing_ID=0, timestamp_obs=1621915200, pointing_type='MS', sky_map=None, tel=None, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
302
303
304
305
306
307
308
309
        SeedGainNonuni=int(config["random_seeds"]["seed_gainNonUniform"])
        SeedBiasNonuni=int(config["random_seeds"]["seed_biasNonUniform"])
        SeedRnNonuni = int(config["random_seeds"]["seed_rnNonUniform"])
        SeedBadColumns = int(config["random_seeds"]["seed_badcolumns"])
        SeedDefective = int(config["random_seeds"]["seed_defective"])
        SeedCosmicRay = int(config["random_seeds"]["seed_CR"])
        fullwell = int(config["ins_effects"]["full_well"])
        if config["ins_effects"]["add_hotpixels"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
310
311
312
            BoolHotPix = True
        else:
            BoolHotPix = False
Fang Yuedong's avatar
Fang Yuedong committed
313
        if config["ins_effects"]["add_deadpixels"]== True:
Fang Yuedong's avatar
Fang Yuedong committed
314
315
316
            BoolDeadPix = True
        else:
            BoolDeadPix = False
317
        self.logger = logger
Fang Yuedong's avatar
Fang Yuedong committed
318

319
        # Add sky background
Zhang Xin's avatar
Zhang Xin committed
320
        if sky_map is None:
321
322
323
324
325
            sky_map = filt.getSkyNoise(exptime=self.exptime)
        elif img.array.shape != sky_map.shape:
            raise ValueError("The shape img and sky_map must be equal.")
        elif tel is not None: # If sky_map is given in flux
            sky_map = sky_map * tel.pupil_area * self.exptime
Fang Yuedong's avatar
Fang Yuedong committed
326
        if config["ins_effects"]["add_back"] == True:
327
328
329
            img += sky_map
        del sky_map

Fang Yuedong's avatar
Fang Yuedong committed
330
        # Apply flat-field large scale structure for one chip
Fang Yuedong's avatar
Fang Yuedong committed
331
        if config["ins_effects"]["flat_fielding"] == True:
332
333
334
335
336
337
338
            if self.logger is not None:
                self.logger.info("  Creating and applying Flat-Fielding")
                msg = str(img.bounds)
                self.logger.info(msg)
            else:
                print("  Creating and applying Flat-Fielding", flush=True)
                print(img.bounds, flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
339
340
            flat_img = effects.MakeFlatSmooth(
                img.bounds, 
Fang Yuedong's avatar
Fang Yuedong committed
341
                int(config["random_seeds"]["seed_flat"]))
Fang Yuedong's avatar
Fang Yuedong committed
342
            flat_normal = flat_img / np.mean(flat_img.array)
343
344
            if self.survey_type == "photometric":
                img *= flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
345
            del flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
346
            if config["output_setting"]["flat_output"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
347
348
349
                del flat_img

        # Apply Shutter-effect for one chip
Fang Yuedong's avatar
Fang Yuedong committed
350
        if config["ins_effects"]["shutter_effect"] == True:
351
352
353
354
            if self.logger is not None:
                self.logger.info("  Apply shutter effect")
            else:
                print("  Apply shutter effect", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
355
            shuttimg = effects.ShutterEffectArr(img, t_shutter=1.3, dist_bearing=735, dt=1E-3)    # shutter effect normalized image for this chip
356
357
            if self.survey_type == "photometric":
                img *= shuttimg
Fang Yuedong's avatar
Fang Yuedong committed
358
            if config["output_setting"]["shutter_output"] == True:    # output 16-bit shutter effect image with pixel value <=65535
Fang Yuedong's avatar
Fang Yuedong committed
359
360
361
362
363
                shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
                shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" % (chip_output.subdir, self.chipID))
                del shutt_gsimg
            del shuttimg

364
        # Add Poisson noise
Fang Yuedong's avatar
Fang Yuedong committed
365
        seed = int(config["random_seeds"]["seed_poisson"]) + pointing_ID*30 + self.chipID
366
367
368
        rng_poisson = galsim.BaseDeviate(seed)
        poisson_noise = galsim.PoissonNoise(rng_poisson, sky_level=0.)
        img.addNoise(poisson_noise)
Fang Yuedong's avatar
Fang Yuedong committed
369
370

        # Add cosmic-rays
Fang Yuedong's avatar
Fang Yuedong committed
371
        if config["ins_effects"]["cosmic_ray"] == True and pointing_type=='MS':
372
373
374
375
            if self.logger is not None:
                self.logger.info(("  Adding Cosmic-Ray"))
            else:
                print("  Adding Cosmic-Ray", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
376
            cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
377
                xLen=self.npix_x, yLen=self.npix_y, 
378
                exTime=self.exptime+0.5*self.readout_time, 
Xin Zhang's avatar
Xin Zhang committed
379
                cr_pixelRatio=0.003*(self.exptime+0.5*self.readout_time)/600.,
Fang Yuedong's avatar
Fang Yuedong committed
380
381
                gain=self.gain, 
                attachedSizes=self.attachedSizes,
Fang Yuedong's avatar
Fang Yuedong committed
382
                seed=SeedCosmicRay+pointing_ID*30+self.chipID)   # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
383
384
385
386
            img += cr_map
            cr_map[cr_map > 65535] = 65535
            cr_map[cr_map < 0] = 0
            crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
Fang Yuedong's avatar
Fang Yuedong committed
387
            del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
388
            # crmap_gsimg.write("%s/CosmicRay_%s_1.fits" % (chip_output.subdir, self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
            # crmap_gsimg.write("%s/CosmicRay_%s.fits" % (chip_output.subdir, self.chipID))
            datetime_obs = datetime.fromtimestamp(timestamp_obs)
            date_obs = datetime_obs.strftime("%y%m%d")
            time_obs = datetime_obs.strftime("%H%M%S")
            self.outputCal(
                img=crmap_gsimg,
                ra_cen=ra_cen,
                dec_cen=dec_cen,
                img_rot=img_rot,
                im_type='CRS',
                pointing_ID=pointing_ID,
                date_obs=date_obs,
                time_obs=time_obs,
                output_dir=chip_output.subdir,
Fang Yuedong's avatar
Fang Yuedong committed
403
                exptime=self.exptime)
Fang Yuedong's avatar
Fang Yuedong committed
404
405
            del crmap_gsimg

406
        # Apply PRNU effect and output PRNU flat file:
Fang Yuedong's avatar
Fang Yuedong committed
407
        if config["ins_effects"]["prnu_effect"] == True:
408
409
410
411
            if self.logger is not None:
                self.logger.info("  Applying PRNU effect")
            else:
                print("  Applying PRNU effect", flush=True)
412
413
414
415
            prnu_img = effects.PRNU_Img(
                xsize=self.npix_x, 
                ysize=self.npix_y, 
                sigma=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
416
                seed=int(config["random_seeds"]["seed_prnu"]+self.chipID))
417
            img *= prnu_img
Fang Yuedong's avatar
Fang Yuedong committed
418
            if config["output_setting"]["prnu_output"] == True:
419
                prnu_img.write("%s/FlatImg_PRNU_%s.fits" % (chip_output.subdir,self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
420
            if config["output_setting"]["flat_output"] == False:
421
422
423
                del prnu_img

        # Add dark current
Fang Yuedong's avatar
Fang Yuedong committed
424
        if config["ins_effects"]["add_dark"] == True:
425
426
427
428
429
430
431
432
433
            dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng_poisson, self.dark_noise*(self.exptime+0.5*self.readout_time)))
            img.addNoise(dark_noise)

        # Add Hot Pixels or/and Dead Pixels
        rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
        badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
        img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

        # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
434
        if config["ins_effects"]["add_badcolumns"] == True:
435
            img = effects.BadColumns(img, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
436

Fang Yuedong's avatar
Fang Yuedong committed
437
        # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
438
        if config["ins_effects"]["add_bias"] == True:
439
440
441
442
            if self.logger is not None:
                self.logger.info("  Adding Bias level and 16-channel non-uniformity")
            else:
                print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
443
            img = effects.AddBiasNonUniform16(img, 
Fang Yuedong's avatar
Fang Yuedong committed
444
                bias_level=float(config["ins_effects"]["bias_level"]), 
Fang Yuedong's avatar
Fang Yuedong committed
445
                nsecy = 2, nsecx=8, 
446
447
                seed=SeedBiasNonuni+self.chipID,
                logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
448

449
        # Apply Nonlinearity on the chip image
Fang Yuedong's avatar
Fang Yuedong committed
450
        if config["ins_effects"]["non_linear"] == True:
451
452
453
454
            if self.logger is not None:
                self.logger.info("  Applying Non-Linearity on the chip image")
            else:
                print("  Applying Non-Linearity on the chip image", flush=True)
455
456
457
            img = effects.NonLinearity(GSImage=img, beta1=5.e-7, beta2=0)

        # Apply CCD Saturation & Blooming
Fang Yuedong's avatar
Fang Yuedong committed
458
        if config["ins_effects"]["saturbloom"] == True:
459
460
461
462
            if self.logger is not None:
                self.logger.info("  Applying CCD Saturation & Blooming")
            else:
                print("  Applying CCD Saturation & Blooming")
463
464
465
            img = effects.SaturBloom(GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)

        # Apply CTE Effect
Fang Yuedong's avatar
Fang Yuedong committed
466
        if config["ins_effects"]["cte_trail"] == True:
467
468
469
470
            if self.logger is not None:
                self.logger.info("  Apply CTE Effect")
            else:
                print("  Apply CTE Effect")
471
472
473
            img = effects.CTE_Effect(GSImage=img, threshold=27)

        # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
474
475
        if config["ins_effects"]["add_readout"] == True:
            seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
476
477
478
479
480
481
            rng_readout = galsim.BaseDeviate(seed)
            readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
            img.addNoise(readout_noise)


        # Apply Gain & Quantization
482
483
484
485
        if self.logger is not None:
            self.logger.info("  Applying Gain (and 16 channel non-uniformity) & Quantization")
        else:
            print("  Applying Gain (and 16 channel non-uniformity) & Quantization", flush=True)
486
487
488
        img = effects.ApplyGainNonUniform16(
            img, gain=self.gain, 
            nsecy = 2, nsecx=8, 
489
490
            seed=SeedGainNonuni+self.chipID,
            logger=self.logger)
491
492
493
494
495
496
497
        img.array[img.array > 65535] = 65535
        img.replaceNegative(replace_value=0)
        img.quantize()

        ######################################################################################
        # Output images for calibration pointing
        ######################################################################################
Fang Yuedong's avatar
Fang Yuedong committed
498
        # Bias output
499
        if config["ins_effects"]["add_bias"] == True and config["output_setting"]["bias_output"] == True and pointing_type=='CAL':
500
501
502
503
            if self.logger is not None:
                self.logger.info("  Output N frame Bias files")
            else:
                print("  Output N frame Bias files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
504
            NBias = int(config["ins_effects"]["NBias"])
Fang Yuedong's avatar
Fang Yuedong committed
505
506
507
            for i in range(NBias):
                BiasCombImg, BiasTag = effects.MakeBiasNcomb(
                    self.npix_x, self.npix_y, 
Fang Yuedong's avatar
Fang Yuedong committed
508
                    bias_level=float(config["ins_effects"]["bias_level"]), 
Fang Yuedong's avatar
Fang Yuedong committed
509
                    ncombine=1, read_noise=self.read_noise, gain=1,
510
511
                    seed=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
512
513
514
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
515
516
                            xLen=self.npix_x, yLen=self.npix_y, 
                            exTime=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
517
                            cr_pixelRatio=0.003*(0.01+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
518
519
520
521
522
523
524
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+1)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
                    BiasCombImg += cr_map
                    del cr_map

Fang Yuedong's avatar
Fang Yuedong committed
525
                # Non-Linearity for Bias
Fang Yuedong's avatar
Fang Yuedong committed
526
                if config["ins_effects"]["non_linear"] == True:
527
528
529
530
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Bias image")
                    else:
                        print("  Applying Non-Linearity on the Bias image", flush=True)
531
532
533
                    BiasCombImg = effects.NonLinearity(GSImage=BiasCombImg, beta1=5.e-7, beta2=0)

                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
534
                if config["ins_effects"]["add_badcolumns"] == True:
535
                    BiasCombImg = effects.BadColumns(BiasCombImg-float(config["ins_effects"]["bias_level"])+5, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger) + float(config["ins_effects"]["bias_level"])-5
Fang Yuedong's avatar
Fang Yuedong committed
536
537
538

                BiasCombImg = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
539
540
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
541
542
                # BiasCombImg = effects.AddOverscan(
                #     BiasCombImg, 
Fang Yuedong's avatar
Fang Yuedong committed
543
                #     overscan=float(config["ins_effects"]["bias_level"])-2, gain=self.gain, 
Fang Yuedong's avatar
Fang Yuedong committed
544
545
546
547
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                BiasCombImg.replaceNegative(replace_value=0)
                BiasCombImg.quantize()
                BiasCombImg = galsim.ImageUS(BiasCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
548
549
550
551
                # BiasCombImg.write("%s/BiasImg_%s_%s_%s.fits" % (chip_output.subdir, BiasTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
552
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
553
554
555
556
557
                self.outputCal(
                    img=BiasCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
558
                    im_type='BIAS',
Fang Yuedong's avatar
Fang Yuedong committed
559
560
561
562
563
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=0.0)
Fang Yuedong's avatar
Fang Yuedong committed
564
565
566
            del BiasCombImg

        # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
567
        if config["ins_effects"]["flat_fielding"] == True and config["output_setting"]["flat_output"] == True and pointing_type=='CAL':
568
569
570
571
            if self.logger is not None:
                self.logger.info("  Output N frame Flat-Field files")
            else:
                print("  Output N frame Flat-Field files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
572
573
            NFlat = int(config["ins_effects"]["NFlat"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
574
575
                biaslevel = self.bias_level
                overscan = biaslevel-2
Fang Yuedong's avatar
Fang Yuedong committed
576
            elif config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
577
578
                biaslevel = 0
                overscan = 0
579
            darklevel = self.dark_noise*(self.flat_exptime+0.5*self.readout_time)
Fang Yuedong's avatar
Fang Yuedong committed
580
581
582
583
584
585
586
587
            for i in range(NFlat):
                FlatSingle = flat_img * prnu_img + darklevel
                FlatCombImg, FlatTag = effects.MakeFlatNcomb(
                    flat_single_image=FlatSingle, 
                    ncombine=1, 
                    read_noise=self.read_noise,
                    gain=1, 
                    overscan=overscan, 
588
                    biaslevel=0,
589
590
                    seed_bias=SeedDefective+self.chipID,
                    logger=self.logger
Fang Yuedong's avatar
Fang Yuedong committed
591
                    )
Fang Yuedong's avatar
Fang Yuedong committed
592
593
594
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
595
                            xLen=self.npix_x, yLen=self.npix_y, 
596
                            exTime=self.flat_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
597
                            cr_pixelRatio=0.003*(self.flat_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
598
599
600
601
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+3)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
602
                    FlatCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
603
                    del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
604

Fang Yuedong's avatar
Fang Yuedong committed
605
                if config["ins_effects"]["non_linear"] == True:
606
607
608
609
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Flat image")
                    else:
                        print("  Applying Non-Linearity on the Flat image", flush=True)
610
                    FlatCombImg = effects.NonLinearity(GSImage=FlatCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
611

Fang Yuedong's avatar
Fang Yuedong committed
612
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
613
614
                    FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)

615
616
617
618
619
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                FlatCombImg = effects.DefectivePixels(FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
620
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
621
                if config["ins_effects"]["add_badcolumns"] == True:
622
                    FlatCombImg = effects.BadColumns(FlatCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
623

624
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
625
                if config["ins_effects"]["add_bias"] == True:
626
627
628
629
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
630
                    # img += float(config["ins_effects"]["bias_level"])
631
632
633
                    FlatCombImg = effects.AddBiasNonUniform16(FlatCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
634
635
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
636
637
                
                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
638
639
                if config["ins_effects"]["add_readout"] == True:
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
640
641
642
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    FlatCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
643
644
645

                FlatCombImg = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
646
647
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
648
649
650
651
                # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
                FlatCombImg.replaceNegative(replace_value=0)
                FlatCombImg.quantize()
                FlatCombImg = galsim.ImageUS(FlatCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
652
653
654
655
                # FlatCombImg.write("%s/FlatImg_%s_%s_%s.fits" % (chip_output.subdir, FlatTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
656
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
657
658
659
660
661
                self.outputCal(
                    img=FlatCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
662
                    im_type='FLAT',
Fang Yuedong's avatar
Fang Yuedong committed
663
664
665
666
667
668
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.flat_exptime)

Fang Yuedong's avatar
Fang Yuedong committed
669
670
671
672
673
674
675
            del FlatCombImg, FlatSingle, prnu_img
            # flat_img.replaceNegative(replace_value=0)
            # flat_img.quantize()
            # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
            del flat_img

        # Export Dark current images
676
        if config["ins_effects"]["add_dark"] == True and config["output_setting"]["dark_output"] == True and pointing_type=='CAL':
677
678
679
680
            if self.logger is not None:
                self.logger.info("  Output N frame Dark Current files")
            else:
                print("  Output N frame Dark Current files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
681
682
            NDark = int(config["ins_effects"]["NDark"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
683
684
                biaslevel = self.bias_level
                overscan = biaslevel-2
Fang Yuedong's avatar
Fang Yuedong committed
685
            elif config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
686
687
688
689
690
                biaslevel = 0
                overscan = 0
            for i in range(NDark):
                DarkCombImg, DarkTag = effects.MakeDarkNcomb(
                    self.npix_x, self.npix_y, 
691
                    overscan=overscan, bias_level=0, darkpsec=0.02, exptime=self.dark_exptime+0.5*self.readout_time,
Fang Yuedong's avatar
Fang Yuedong committed
692
                    ncombine=1, read_noise=self.read_noise, 
693
694
                    gain=1, seed_bias=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
695
696
697
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
698
                            xLen=self.npix_x, yLen=self.npix_y, 
699
                            exTime=self.dark_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
700
                            cr_pixelRatio=0.003*(self.dark_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
701
702
703
704
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+2)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
705
                    DarkCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
                    cr_map[cr_map > 65535] = 65535
                    cr_map[cr_map < 0] = 0
                    crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
                    del cr_map
                    datetime_obs = datetime.fromtimestamp(timestamp_obs)
                    date_obs = datetime_obs.strftime("%y%m%d")
                    time_obs = datetime_obs.strftime("%H%M%S")
                    self.outputCal(
                        img=crmap_gsimg,
                        ra_cen=ra_cen,
                        dec_cen=dec_cen,
                        img_rot=img_rot,
                        im_type='CRD',
                        pointing_ID=pointing_ID,
                        date_obs=date_obs,
                        time_obs=time_obs,
                        output_dir=chip_output.subdir,
                        exptime=self.dark_exptime)
                    del crmap_gsimg
Fang Yuedong's avatar
Fang Yuedong committed
725
726

                # Non-Linearity for Dark
Fang Yuedong's avatar
Fang Yuedong committed
727
                if config["ins_effects"]["non_linear"] == True:
728
729
730
731
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Dark image")
                    else:
                        print("  Applying Non-Linearity on the Dark image", flush=True)
732
                    DarkCombImg = effects.NonLinearity(GSImage=DarkCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
733

Fang Yuedong's avatar
Fang Yuedong committed
734
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
735
736
                    DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)

737
738
739
740
741
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                DarkCombImg = effects.DefectivePixels(DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
742
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
743
                if config["ins_effects"]["add_badcolumns"] == True:
744
                    DarkCombImg = effects.BadColumns(DarkCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
745

746
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
747
                if config["ins_effects"]["add_bias"] == True:
748
749
750
751
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
752
                    # img += float(config["ins_effects"]["bias_level"])
753
754
755
                    DarkCombImg = effects.AddBiasNonUniform16(DarkCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
756
757
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
758
759

                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
760
761
                if config["ins_effects"]["add_readout"] == True:
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
762
763
764
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    DarkCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
765
766
767
768

                DarkCombImg = effects.ApplyGainNonUniform16(
                    DarkCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
769
770
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
771
772
773
774
775
776
777
                # DarkCombImg = effects.AddOverscan(
                #     DarkCombImg, 
                #     overscan=overscan, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                DarkCombImg.replaceNegative(replace_value=0)
                DarkCombImg.quantize()
                DarkCombImg = galsim.ImageUS(DarkCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
778
779
780
781
                # DarkCombImg.write("%s/DarkImg_%s_%s_%s.fits" % (chip_output.subdir, DarkTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
782
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
783
784
785
786
787
                self.outputCal(
                    img=DarkCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
788
                    im_type='DARK',
Fang Yuedong's avatar
Fang Yuedong committed
789
790
791
792
793
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.dark_exptime)
Fang Yuedong's avatar
Fang Yuedong committed
794
795
796
797
            del DarkCombImg
        # img = galsim.ImageUS(img)

        # # 16 output channel, with each a single image file
Fang Yuedong's avatar
Fang Yuedong committed
798
        # if config["ins_effects"]["readout16"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
799
800
801
802
803
804
805
806
807
808
809
810
        #     print("  16 Output Channel simulation")
        #     for coli in [0, 1]:
        #         for rowi in range(8):
        #             sub_img = effects.readout16(
        #                 GSImage=img, 
        #                 rowi=rowi, 
        #                 coli=coli, 
        #                 overscan_value=self.overscan)
        #             rowcoltag = str(rowi) + str(coli)
        #             img_name_root = chip_output.img_name.split(".")[0]
        #             sub_img.write("%s/%s_%s.fits" % (chip_output.subdir, img_name_root, rowcoltag))
        #     del sub_img
Zhang Xin's avatar
Zhang Xin committed
811
        return img