SpecDisperser.py 25.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from astropy.table import Table

import astropy.constants as cons

import collections
from collections import OrderedDict
from scipy import interpolate

from astropy import units as u

# from numpy import *

import numpy as np

from pylab import *

import galsim

import sys
import os


def rotate90(array_orig=None, xc=0, yc=0, isClockwise=0):
    if array_orig is None:
        return

    l1 = array_orig.shape[0]
    l2 = array_orig.shape[1]

    if xc < 0 or xc > l2 - 1 or yc < 0 or yc > l1 - 1:
        return

    n_xc = xc
    n_yc = yc

    array_final = np.zeros_like(array_orig.T)

    if isClockwise == 1:
        for i in np.arange(l2):
            array_final[i] = array_orig[:, l2 - i - 1]
        n_xc = yc
        n_yc = l2 - 1 - xc
    else:
        for i in np.arange(l2):
            array_final[i] = array_orig[::-1, i]

        n_xc = l1 - 1 - yc
        n_yc = xc
    return array_final, n_xc, n_yc


class SpecDisperser(object):
Zhang Xin's avatar
Zhang Xin committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    def __init__(
        self,
        orig_img=None,
        xcenter=0,
        ycenter=0,
        origin=[100, 100],
        tar_spec=None,
        band_start=6200,
        band_end=10000,
        isAlongY=0,
        conf="../param/CONF/csst.conf",
        gid=0,
        flat_cube=None,
        ignoreBeam=[],
    ):
Fang Yuedong's avatar
Fang Yuedong committed
68
69
70
71
72
73
74
75
76
77
78
79
80
        """
        orig_img: normal image,galsim image
        xcenter, ycenter: the center of galaxy in orig_img
        origin : [int, int]
            `origin` defines the lower left pixel index (y,x) of the `direct`
            cutout from a larger detector-frame image
        tar_spec: galsim.SED

        """

        # self.img_x = orig_img.shape[1]
        # self.img_y = orig_img.shape[0]

81
        # 5 orders, A, B ,
Zhang Xin's avatar
Zhang Xin committed
82
        orderName = ["A", "B", "C", "D", "E"]
83
84
85
86
87
        self.orig_img_orders = OrderedDict()
        if isinstance(orig_img, list):
            orig_img_list = orig_img
            list_len = len(orig_img_list)
            if list_len < 5:
Zhang Xin's avatar
Zhang Xin committed
88
89
                for i in np.arange(5 - list_len):
                    orig_img_list.append(orig_img_list[list_len - 1])
90
91
92
93
94
95
96
97
98
99
100
101
102
            for i, k in enumerate(orig_img_list):
                self.orig_img_orders[orderName[i]] = k

        if isinstance(orig_img, galsim.Image):
            for i in np.arange(5):
                self.orig_img_orders[orderName[i]] = orig_img

        orig_img_one = self.orig_img_orders["A"]

        self.thumb_img = np.abs(orig_img_one.array)
        self.thumb_x = orig_img_one.center.x
        self.thumb_y = orig_img_one.center.y
        self.img_sh = orig_img_one.array.shape
Fang Yuedong's avatar
Fang Yuedong committed
103
104
105
106
107
108
109
110
111

        self.id = gid

        self.xcenter = xcenter
        self.ycenter = ycenter

        self.isAlongY = isAlongY
        self.flat_cube = flat_cube
        if self.isAlongY == 1:
112
            for order in orderName:
Zhang Xin's avatar
Zhang Xin committed
113
114
115
116
117
118
                self.orig_img_orders[order], self.thumb_x, self.thumb_y = rotate90(
                    array_orig=self.orig_img_orders[order],
                    xc=orig_img_one.center.x,
                    yc=orig_img_one.center.y,
                    isClockwise=1,
                )
119
120
            # self.thumb_img, self.thumb_x, self.thumb_y = rotate90(array_orig=self.thumb_img, xc=orig_img_one.center.x,
            #                                                       yc=orig_img_one.center.y, isClockwise=1)
Fang Yuedong's avatar
Fang Yuedong committed
121

122
            self.img_sh = self.orig_img_orders[order].array.T.shape
Fang Yuedong's avatar
Fang Yuedong committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            self.xcenter = ycenter
            self.ycenter = xcenter

        self.origin = origin
        self.band_start = band_start
        self.band_end = band_end
        self.spec = tar_spec

        self.beam_flux = OrderedDict()

        self.grating_conf = aXeConf(conf)
        self.grating_conf.get_beams()
        self.grating_conf_file = conf
        self.ignoreBeam = ignoreBeam

    def compute_spec_orders(self):

        all_orders = OrderedDict()
        beam_names = self.grating_conf.beams

        for beam in beam_names:
            if beam in self.ignoreBeam:
                continue
            all_orders[beam] = self.compute_spec(beam)

        return all_orders

    def compute_spec(self, beam):

152
153
154
        # if beam == "B":
        #     return self.thumb_img, self.origin[1], self.origin[0], None, None, None

Fang Yuedong's avatar
Fang Yuedong committed
155
156
        from .disperse_c import interp
        from .disperse_c import disperse
Zhang Xin's avatar
Zhang Xin committed
157

Fang Yuedong's avatar
Fang Yuedong committed
158
        # from MockObject.disperse_c import disperse
159
160
161
162
        self.thumb_img = np.abs(self.orig_img_orders[beam].array)
        self.thumb_x = self.orig_img_orders[beam].center.x
        self.thumb_y = self.orig_img_orders[beam].center.y
        self.img_sh = self.orig_img_orders[beam].array.shape
Fang Yuedong's avatar
Fang Yuedong committed
163
164
        dx = self.grating_conf.dxlam[beam]
        xoff = 0
Zhang Xin's avatar
Zhang Xin committed
165
166
167
        ytrace_beam, lam_beam = self.grating_conf.get_beam_trace(
            x=self.xcenter, y=self.ycenter, dx=(dx + xoff), beam=beam
        )
Fang Yuedong's avatar
Fang Yuedong committed
168
169

        # Account for pixel centering of the trace
Zhang Xin's avatar
Zhang Xin committed
170
        yfrac_beam = ytrace_beam - floor(ytrace_beam + 0.5)
Fang Yuedong's avatar
Fang Yuedong committed
171
172
173
174
175

        ysens = lam_beam * 0
        lam_index = argsort(lam_beam)
        conf_sens = self.grating_conf.sens[beam]

Zhang Xin's avatar
Zhang Xin committed
176
177
        lam_intep = np.linspace(self.band_start, self.band_end, int(
            (self.band_end - self.band_start) / 0.1))
Fang Yuedong's avatar
Fang Yuedong committed
178

Zhang Xin's avatar
Zhang Xin committed
179
180
        thri = interpolate.interp1d(
            conf_sens["WAVELENGTH"], conf_sens["SENSITIVITY"])
Zhang Xin's avatar
Zhang Xin committed
181
        spci = interpolate.interp1d(self.spec["WAVELENGTH"], self.spec["FLUX"])
Fang Yuedong's avatar
Fang Yuedong committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

        beam_thr = thri(lam_intep)
        spec_sample = spci(lam_intep)

        bean_thr_spec = beam_thr * spec_sample

        # generate sensitivity file for aXe
        # ysensitivity = lam_beam * 0
        #
        # ysensitivity[lam_index] = interp.interp_conserve_c(lam_beam[lam_index], lam_intep,
        #                                                    beam_thr * math.pi * 100 * 100 * 1e-7 / (
        #                                                                cons.h.value * cons.c.value / (
        #                                                                    lam_intep * 1e-10)), integrate=0, left=0,
        #                                                    right=0)
        #
        # self.writerSensitivityFile(conffile = self.grating_conf_file,  beam = beam, w = lam_beam[lam_index], sens = ysensitivity[lam_index])

Zhang Xin's avatar
Zhang Xin committed
199
200
201
        ysens[lam_index] = interp.interp_conserve_c(
            lam_beam[lam_index], lam_intep, bean_thr_spec, integrate=1, left=0, right=0
        )
Fang Yuedong's avatar
Fang Yuedong committed
202
203
204
205

        sensitivity_beam = ysens

        len_spec_x = len(dx)
Zhang Xin's avatar
Zhang Xin committed
206
207
        len_spec_y = int(
            abs(ceil(ytrace_beam[-1]) - floor(ytrace_beam[0])) + 1)
Fang Yuedong's avatar
Fang Yuedong committed
208
209
210
211
212
213
214
215
216

        beam_sh = (self.img_sh[0] + len_spec_y, self.img_sh[1] + len_spec_x)
        modelf = zeros(product(beam_sh), dtype=float)
        model = modelf.reshape(beam_sh)
        idx = np.arange(modelf.size, dtype=int64).reshape(beam_sh)
        x0 = array((self.thumb_y, self.thumb_x), dtype=int64)

        dxpix = dx - dx[0] + x0[1]

Zhang Xin's avatar
Zhang Xin committed
217
        dyc = cast[int](np.floor(ytrace_beam + 0.5))
Fang Yuedong's avatar
Fang Yuedong committed
218

219
220
        # dypix = cast[int](np.floor(ytrace_beam - dyc[0] + x0[0] + 0.5))
        dypix = dyc - dyc[0] + x0[0]
Fang Yuedong's avatar
Fang Yuedong committed
221
222
223
224

        frac_ids = yfrac_beam < 0

        dypix[frac_ids] = dypix[frac_ids] - 1
Zhang Xin's avatar
Zhang Xin committed
225
        yfrac_beam[frac_ids] = 1 + yfrac_beam[frac_ids]
Fang Yuedong's avatar
Fang Yuedong committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

        flat_index = idx[dypix, dxpix]

        nonz = sensitivity_beam != 0

        origin_in = zeros_like(self.origin)
        dx0_in = dx[0]
        dy0_in = dyc[0]
        if self.isAlongY == 1:
            origin_in[0] = self.origin[0]
            origin_in[1] = self.origin[1] - len_spec_y
            dx0_in = -dyc[0]
            dy0_in = dx[0]
        else:
            origin_in[0] = self.origin[0]
            origin_in[1] = self.origin[1]
            dx0_in = dx[0]
            dy0_in = dyc[0]
            originOut_x = origin_in[1] + dx0_in
        originOut_y = origin_in[0] + dy0_in

        if self.flat_cube is None:
            beam_flat = None
        else:
            beam_flat = zeros([len(modelf), len(self.flat_cube)])

Zhang Xin's avatar
Zhang Xin committed
252
253
            sub_flat_cube = zeros(
                [len(self.flat_cube), beam_sh[0], beam_sh[1]])
Zhang Xin's avatar
Zhang Xin committed
254
            sub_flat_cube[0] = sub_flat_cube[0] + 1.0
Fang Yuedong's avatar
Fang Yuedong committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

            overlap_flag = 1

            sub_y_s = originOut_y
            sub_y_e = originOut_y + beam_sh[0] - 1
            sub_x_s = originOut_x
            sub_x_e = originOut_x + beam_sh[1] - 1

            beam_x_s = max(sub_x_s, 0)
            if beam_x_s > self.flat_cube[0].shape[1] - 1:
                overlap_flag = 0
            if overlap_flag == 1:
                beam_x_e = min(sub_x_e, self.flat_cube[0].shape[1] - 1)
                if beam_x_e < 0:
                    overlap_flag = 0

            if overlap_flag == 1:
                beam_y_s = max(sub_y_s, 0)
                if beam_y_s > self.flat_cube[0].shape[0] - 1:
                    overlap_flag = 0
            if overlap_flag == 1:
                beam_y_e = min(sub_y_e, self.flat_cube[0].shape[0] - 1)
                if beam_y_e < 0:
                    overlap_flag = 0

            if overlap_flag == 1:
Zhang Xin's avatar
Zhang Xin committed
281
282
                sub_flat_cube[
                    :,
Zhang Xin's avatar
Zhang Xin committed
283
284
285
                    beam_y_s - originOut_y: beam_y_e - originOut_y + 1,
                    beam_x_s - originOut_x: beam_x_e - originOut_x + 1,
                ] = self.flat_cube[:, beam_y_s: beam_y_e + 1, beam_x_s: beam_x_e + 1]
Fang Yuedong's avatar
Fang Yuedong committed
286
287
288

            for i in arange(0, len(self.flat_cube), 1):
                beam_flat[:, i] = sub_flat_cube[i].flatten()
Zhang Xin's avatar
Zhang Xin committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        #            beam_flat = zeros([len(modelf), len(self.flat_cube)])
        #            flat_sh = self.flat_cube[0].shape
        #            for i in arange(0, beam_sh[0], 1):
        #                for j in arange(0, beam_sh[1], 1):
        #                    k = i * beam_sh[1] + j
        #                    if originOut_y + i >= flat_sh[0] or originOut_y + i < 0 or originOut_x + j>= flat_sh[1] or originOut_x+j < 0:
        #                        temp_bf = np.zeros_like(self.flat_cube[:, 0, 0])
        #                        temp_bf[0] = 1.0
        #                        beam_flat[k] = temp_bf
        #                    else:
        #                        beam_flat[k] = self.flat_cube[:, originOut_y + i, originOut_x + j]

        status = disperse.disperse_grism_object(
            self.thumb_img.astype(np.float32),
            flat_index[nonz],
            yfrac_beam[nonz],
            sensitivity_beam[nonz],
            modelf,
            x0,
            array(self.img_sh, dtype=int64),
            array(beam_sh, dtype=int64),
            beam_flat,
            lam_beam[lam_index][nonz],
        )
Fang Yuedong's avatar
Fang Yuedong committed
313
314

        model = modelf.reshape(beam_sh)
315
316
317
318
319
320
321
        # n1 = np.sum(np.isinf(model))
        # n2 = np.sum(np.isnan(model))
        # n3 = np.sum(np.isinf(modelf))
        # n4 = np.sum(np.isnan(modelf))
        # if n1>0 or n2 > 0:
        #     print("DEBUG: SpecDisperser, inf:%d, nan:%d--------%d,%d"%(n1, n2, n3, n4))
        #     print(dypix)
Zhang Xin's avatar
Zhang Xin committed
322
323
324
325
326
327
328
        # n1 = np.sum(np.isinf(self.thumb_img.astype(np.float32)))
        # n2 = np.sum(np.isnan(self.thumb_img.astype(np.float32)))
        # n3 = np.sum(np.isinf(yfrac_beam))
        # n4 = np.sum(np.isnan(yfrac_beam))
        # n5 = np.sum(np.isinf(sensitivity_beam))
        # n6 = np.sum(np.isnan(sensitivity_beam))
        # print("DEBUG: SpecDisperser, innput ---inf:%d, nan:%d, yfrac_beam:%d/%d, sensitivity_beam:%d/%d"%(n1, n2, n3, n4, n5, n6))
Fang Yuedong's avatar
Fang Yuedong committed
329
330
331
332
333
334
        self.beam_flux[beam] = sum(modelf)

        if self.isAlongY == 1:
            model, _, _ = rotate90(array_orig=model, isClockwise=0)
        return model, originOut_x, originOut_y, dxpix, dypix, lam_beam, ysens

Zhang Xin's avatar
Zhang Xin committed
335
336
    def writerSensitivityFile(self, conffile="", beam="", w=None, sens=None):
        orders = {"A": "1st", "B": "0st", "C": "2st", "D": "-1st", "E": "-2st"}
Zhang Xin's avatar
Zhang Xin committed
337
338
        sens_file_name = conffile[0:-5] + \
            "_sensitivity_" + orders[beam] + ".fits"
Zhang Xin's avatar
pep8    
Zhang Xin committed
339
        if os.path.exists(sens_file_name) if False:
Zhang Xin's avatar
Zhang Xin committed
340
341
            senstivity_out = Table(
                array([w, sens]).T, names=("WAVELENGTH", "SENSITIVITY"))
Zhang Xin's avatar
Zhang Xin committed
342
            senstivity_out.write(sens_file_name, format="fits")
Fang Yuedong's avatar
Fang Yuedong committed
343
344
345
346
347
348
349


"""
Demonstrate aXe trace polynomials.
"""


Zhang Xin's avatar
Zhang Xin committed
350
351
class aXeConf:
    def __init__(self, conf_file="WFC3.IR.G141.V2.5.conf"):
Fang Yuedong's avatar
Fang Yuedong committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        """Read an aXe-compatible configuration file

        Parameters
        ----------
        conf_file: str
            Filename of the configuration file to read

        """
        if conf_file is not None:
            self.conf = self.read_conf_file(conf_file)
            self.conf_file = conf_file
            self.count_beam_orders()

            # Global XOFF/YOFF offsets
Zhang Xin's avatar
Zhang Xin committed
366
367
            if "XOFF" in self.conf.keys():
                self.xoff = np.float(self.conf["XOFF"])
Fang Yuedong's avatar
Fang Yuedong committed
368
            else:
Zhang Xin's avatar
Zhang Xin committed
369
                self.xoff = 0.0
Fang Yuedong's avatar
Fang Yuedong committed
370

Zhang Xin's avatar
Zhang Xin committed
371
372
            if "YOFF" in self.conf.keys():
                self.yoff = np.float(self.conf["YOFF"])
Fang Yuedong's avatar
Fang Yuedong committed
373
            else:
Zhang Xin's avatar
Zhang Xin committed
374
                self.yoff = 0.0
Fang Yuedong's avatar
Fang Yuedong committed
375

Zhang Xin's avatar
Zhang Xin committed
376
    def read_conf_file(self, conf_file="WFC3.IR.G141.V2.5.conf"):
Fang Yuedong's avatar
Fang Yuedong committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        """Read an aXe config file, convert floats and arrays

        Parameters
        ----------
        conf_file: str
            Filename of the configuration file to read.

        Parameters are stored in an OrderedDict in `self.conf`.
        """
        from collections import OrderedDict

        conf = OrderedDict()
        lines = open(conf_file).readlines()
        for line in lines:
            # empty / commented lines
Zhang Xin's avatar
Zhang Xin committed
392
            if (line.startswith("#")) | (line.strip() == "") | ('"' in line):
Fang Yuedong's avatar
Fang Yuedong committed
393
394
395
                continue

            # split the line, taking out ; and # comments
Zhang Xin's avatar
Zhang Xin committed
396
            spl = line.split(";")[0].split("#")[0].split()
Fang Yuedong's avatar
Fang Yuedong committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            param = spl[0]
            if len(spl) > 2:
                value = np.cast[float](spl[1:])
            else:
                try:
                    value = float(spl[1])
                except:
                    value = spl[1]

            conf[param] = value

        return conf

    def count_beam_orders(self):
Zhang Xin's avatar
Zhang Xin committed
411
        """Get the maximum polynomial order in DYDX or DLDP for each beam"""
Fang Yuedong's avatar
Fang Yuedong committed
412
        self.orders = {}
Zhang Xin's avatar
Zhang Xin committed
413
        for beam in ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]:
Fang Yuedong's avatar
Fang Yuedong committed
414
            order = 0
Zhang Xin's avatar
Zhang Xin committed
415
            while "DYDX_{0:s}_{1:d}".format(beam, order) in self.conf.keys():
Fang Yuedong's avatar
Fang Yuedong committed
416
417
                order += 1

Zhang Xin's avatar
Zhang Xin committed
418
            while "DLDP_{0:s}_{1:d}".format(beam, order) in self.conf.keys():
Fang Yuedong's avatar
Fang Yuedong committed
419
420
421
422
423
                order += 1

            self.orders[beam] = order - 1

    def get_beams(self):
Zhang Xin's avatar
Zhang Xin committed
424
        """Get beam parameters and read sensitivity curves"""
Fang Yuedong's avatar
Fang Yuedong committed
425
426
427
428
429
430
431
432
433
434
435
436
        import os
        from collections import OrderedDict
        from astropy.table import Table, Column

        self.dxlam = OrderedDict()
        self.nx = OrderedDict()
        self.sens = OrderedDict()
        self.beams = []

        for beam in self.orders:
            if self.orders[beam] > 0:
                self.beams.append(beam)
Zhang Xin's avatar
Zhang Xin committed
437
438
439
                self.dxlam[beam] = np.arange(
                    self.conf["BEAM{0}".format(beam)].min(), self.conf["BEAM{0}".format(beam)].max(), dtype=int
                )
Zhang Xin's avatar
Zhang Xin committed
440
441
                self.nx[beam] = int(self.dxlam[beam].max() -
                                    self.dxlam[beam].min()) + 1
Fang Yuedong's avatar
Fang Yuedong committed
442
                self.sens[beam] = Table.read(
Zhang Xin's avatar
Zhang Xin committed
443
444
                    "{0}/{1}".format(os.path.dirname(self.conf_file),
                                     self.conf["SENSITIVITY_{0}".format(beam)])
Zhang Xin's avatar
Zhang Xin committed
445
                )
Fang Yuedong's avatar
Fang Yuedong committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
                # self.sens[beam].wave = np.cast[np.double](self.sens[beam]['WAVELENGTH'])
                # self.sens[beam].sens = np.cast[np.double](self.sens[beam]['SENSITIVITY'])

                # Need doubles for interpolating functions
                for col in self.sens[beam].colnames:
                    data = np.cast[np.double](self.sens[beam][col])
                    self.sens[beam].remove_column(col)
                    self.sens[beam].add_column(Column(data=data, name=col))

        self.beams.sort()

    def field_dependent(self, xi, yi, coeffs):
        """aXe field-dependent coefficients

        See the `aXe manual <http://axe.stsci.edu/axe/manual/html/node7.html#SECTION00721200000000000000>`_ for a description of how the field-dependent coefficients are specified.

        Parameters
        ----------
        xi, yi : float or array-like
            Coordinate to evaluate the field dependent coefficients, where
            `xi = x-REFX` and `yi = y-REFY`.

        coeffs : array-like
            Field-dependency coefficients

        Returns
        -------
        a : float or array-like
            Evaluated field-dependent coefficients

        """
        # number of coefficients for a given polynomial order
        # 1:1, 2:3, 3:6, 4:10, order:order*(order+1)/2
        if isinstance(coeffs, float):
            order = 1
        else:
            order = int(-1 + np.sqrt(1 + 8 * len(coeffs))) // 2

        # Build polynomial terms array
        # $a = a_0+a_1x_i+a_2y_i+a_3x_i^2+a_4x_iy_i+a_5yi^2+$ ...
        xy = []
        for p in range(order):
            for px in range(p + 1):
                # print 'x**%d y**%d' %(p-px, px)
                xy.append(xi ** (p - px) * yi ** (px))

        # Evaluate the polynomial, allowing for N-dimensional inputs
        a = np.sum((np.array(xy).T * coeffs).T, axis=0)

        return a

    def evaluate_dp(self, dx, dydx):
        """Evalate arc length along the trace given trace polynomial coefficients

        Parameters
        ----------
        dx : array-like
            x pixel to evaluate

        dydx : array-like
            Coefficients of the trace polynomial

        Returns
        -------
        dp : array-like
            Arc length along the trace at position `dx`.

        For `dydx` polynomial orders 0, 1 or 2, integrate analytically.
        Higher orders must be integrated numerically.

        **Constant:**
            .. math:: dp = dx

        **Linear:**
            .. math:: dp = \sqrt{1+\mathrm{DYDX}[1]}\cdot dx

        **Quadratic:**
            .. math:: u = \mathrm{DYDX}[1] + 2\ \mathrm{DYDX}[2]\cdot dx

            .. math:: dp = (u \sqrt{1+u^2} + \mathrm{arcsinh}\ u) / (4\cdot \mathrm{DYDX}[2])

        """
        # dp is the arc length along the trace
        # $\lambda = dldp_0 + dldp_1 dp + dldp_2 dp^2$ ...

        poly_order = len(dydx) - 1
Zhang Xin's avatar
Zhang Xin committed
532
        if poly_order == 2:
Fang Yuedong's avatar
Fang Yuedong committed
533
534
535
536
537
538
539
540
541
            if np.abs(np.unique(dydx[2])).max() == 0:
                poly_order = 1

        if poly_order == 0:  # dy=0
            dp = dx
        elif poly_order == 1:  # constant dy/dx
            dp = np.sqrt(1 + dydx[1] ** 2) * (dx)
        elif poly_order == 2:  # quadratic trace
            u0 = dydx[1] + 2 * dydx[2] * (0)
Zhang Xin's avatar
Zhang Xin committed
542
            dp0 = (u0 * np.sqrt(1 + u0**2) + np.arcsinh(u0)) / (4 * dydx[2])
Fang Yuedong's avatar
Fang Yuedong committed
543
            u = dydx[1] + 2 * dydx[2] * (dx)
Zhang Xin's avatar
Zhang Xin committed
544
            dp = (u * np.sqrt(1 + u**2) + np.arcsinh(u)) / (4 * dydx[2]) - dp0
Fang Yuedong's avatar
Fang Yuedong committed
545
546
547
548
549
550
551
552
553
554
555
        else:
            # high order shape, numerical integration along trace
            # (this can be slow)
            xmin = np.minimum((dx).min(), 0)
            xmax = np.maximum((dx).max(), 0)
            xfull = np.arange(xmin, xmax)
            dyfull = 0
            for i in range(1, poly_order):
                dyfull += i * dydx[i] * (xfull - 0.5) ** (i - 1)

            # Integrate from 0 to dx / -dx
Zhang Xin's avatar
Zhang Xin committed
556
            dpfull = xfull * 0.0
Fang Yuedong's avatar
Fang Yuedong committed
557
558
            lt0 = xfull < 0
            if lt0.sum() > 1:
Zhang Xin's avatar
Zhang Xin committed
559
560
                dpfull[lt0] = np.cumsum(
                    np.sqrt(1 + dyfull[lt0][::-1] ** 2))[::-1]
Fang Yuedong's avatar
Fang Yuedong committed
561
562
563
564
565
566
567
568
569
570
571
572
573
                dpfull[lt0] *= -1

            #
            gt0 = xfull > 0
            if gt0.sum() > 0:
                dpfull[gt0] = np.cumsum(np.sqrt(1 + dyfull[gt0] ** 2))

            dp = np.interp(dx, xfull, dpfull)
            if dp[-1] == dp[-2]:
                dp[-1] = dp[-2] + np.diff(dp)[-2]

        return dp

Zhang Xin's avatar
Zhang Xin committed
574
    def get_beam_trace(self, x=507, y=507, dx=0.0, beam="A"):
Fang Yuedong's avatar
Fang Yuedong committed
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        """Get an aXe beam trace for an input reference pixel and list of output x pixels `dx`

        Parameters
        ----------
        x, y : float or array-like
            Evaluate trace definition at detector coordinates `x` and `y`.

        dx : float or array-like
            Offset in x pixels from `(x,y)` where to compute trace offset and
            effective wavelength

        beam : str
            Beam name (i.e., spectral order) to compute.  By aXe convention,
            `beam='A'` is the first order, 'B' is the zeroth order and
            additional beams are the higher positive and negative orders.

        Returns
        -------
        dy : float or array-like
            Center of the trace in y pixels offset from `(x,y)` evaluated at
            `dx`.

        lam : float or array-like
            Effective wavelength along the trace evaluated at `dx`.

        """
        NORDER = self.orders[beam] + 1

        xi, yi = x - self.xoff, y - self.yoff
Zhang Xin's avatar
Zhang Xin committed
604
605
606
607
        xoff_beam = self.field_dependent(
            xi, yi, self.conf["XOFF_{0}".format(beam)])
        yoff_beam = self.field_dependent(
            xi, yi, self.conf["YOFF_{0}".format(beam)])
Fang Yuedong's avatar
Fang Yuedong committed
608
609
610
611
612
613

        # y offset of trace (DYDX)
        dydx = np.zeros(NORDER)  # 0 #+1.e-80
        dydx = [0] * NORDER

        for i in range(NORDER):
Zhang Xin's avatar
Zhang Xin committed
614
615
            if "DYDX_{0:s}_{1:d}".format(beam, i) in self.conf.keys():
                coeffs = self.conf["DYDX_{0:s}_{1:d}".format(beam, i)]
Fang Yuedong's avatar
Fang Yuedong committed
616
617
618
619
620
621
622
623
624
625
626
627
628
                dydx[i] = self.field_dependent(xi, yi, coeffs)

        # $dy = dydx_0+dydx_1 dx+dydx_2 dx^2+$ ...

        dy = yoff_beam
        for i in range(NORDER):
            dy += dydx[i] * (dx - xoff_beam) ** i

        # wavelength solution
        dldp = np.zeros(NORDER)
        dldp = [0] * NORDER

        for i in range(NORDER):
Zhang Xin's avatar
Zhang Xin committed
629
630
            if "DLDP_{0:s}_{1:d}".format(beam, i) in self.conf.keys():
                coeffs = self.conf["DLDP_{0:s}_{1:d}".format(beam, i)]
Fang Yuedong's avatar
Fang Yuedong committed
631
632
                dldp[i] = self.field_dependent(xi, yi, coeffs)

Zhang Xin's avatar
Zhang Xin committed
633
634
635
636
637
638
639
640
641
642
        self.eval_input = {"x": x, "y": y, "beam": beam, "dx": dx}
        self.eval_output = {
            "xi": xi,
            "yi": yi,
            "dldp": dldp,
            "dydx": dydx,
            "xoff_beam": xoff_beam,
            "yoff_beam": yoff_beam,
            "dy": dy,
        }
Fang Yuedong's avatar
Fang Yuedong committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

        dp = self.evaluate_dp(dx - xoff_beam, dydx)
        # ## dp is the arc length along the trace
        # ## $\lambda = dldp_0 + dldp_1 dp + dldp_2 dp^2$ ...
        # if self.conf['DYDX_ORDER_%s' %(beam)] == 0:   ## dy=0
        #     dp = dx-xoff_beam
        # elif self.conf['DYDX_ORDER_%s' %(beam)] == 1: ## constant dy/dx
        #     dp = np.sqrt(1+dydx[1]**2)*(dx-xoff_beam)
        # elif self.conf['DYDX_ORDER_%s' %(beam)] == 2: ## quadratic trace
        #     u0 = dydx[1]+2*dydx[2]*(0)
        #     dp0 = (u0*np.sqrt(1+u0**2)+np.arcsinh(u0))/(4*dydx[2])
        #     u = dydx[1]+2*dydx[2]*(dx-xoff_beam)
        #     dp = (u*np.sqrt(1+u**2)+np.arcsinh(u))/(4*dydx[2])-dp0
        # else:
        #     ## high order shape, numerical integration along trace
        #     ## (this can be slow)
        #     xmin = np.minimum((dx-xoff_beam).min(), 0)
        #     xmax = np.maximum((dx-xoff_beam).max(), 0)
        #     xfull = np.arange(xmin, xmax)
        #     dyfull = 0
        #     for i in range(1, NORDER):
        #         dyfull += i*dydx[i]*(xfull-0.5)**(i-1)
        #
        #     ## Integrate from 0 to dx / -dx
        #     dpfull = xfull*0.
        #     lt0 = xfull <= 0
        #     if lt0.sum() > 1:
        #         dpfull[lt0] = np.cumsum(np.sqrt(1+dyfull[lt0][::-1]**2))[::-1]
        #         dpfull[lt0] *= -1
        #     #
        #     gt0 = xfull >= 0
        #     if gt0.sum() > 0:
        #         dpfull[gt0] = np.cumsum(np.sqrt(1+dyfull[gt0]**2))
        #
        #     dp = np.interp(dx-xoff_beam, xfull, dpfull)

        # Evaluate dldp
Zhang Xin's avatar
Zhang Xin committed
680
        lam = dp * 0.0
Fang Yuedong's avatar
Fang Yuedong committed
681
        for i in range(NORDER):
Zhang Xin's avatar
Zhang Xin committed
682
            lam += dldp[i] * dp**i
Fang Yuedong's avatar
Fang Yuedong committed
683
684
685

        return dy, lam

Zhang Xin's avatar
Zhang Xin committed
686
    def show_beams(self, beams=["E", "D", "C", "B", "A"]):
Fang Yuedong's avatar
Fang Yuedong committed
687
688
689
690
691
692
693
694
        """
        Make a demo plot of the beams of a given configuration file
        """
        import matplotlib.pyplot as plt

        x0, x1 = 507, 507
        dx = np.arange(-800, 1200)

Zhang Xin's avatar
Zhang Xin committed
695
        if "WFC3.UV" in self.conf_file:
Fang Yuedong's avatar
Fang Yuedong committed
696
697
            x0, x1 = 2073, 250
            dx = np.arange(-1200, 1200)
Zhang Xin's avatar
Zhang Xin committed
698
        if "G800L" in self.conf_file:
Fang Yuedong's avatar
Fang Yuedong committed
699
700
701
702
703
            x0, x1 = 2124, 1024
            dx = np.arange(-1200, 1200)

        s = 200  # marker size
        fig = plt.figure(figsize=[10, 3])
Zhang Xin's avatar
Zhang Xin committed
704
705
        plt.scatter(0, 0, marker="s", s=s, color="black",
                    edgecolor="0.8", label="Direct")
Fang Yuedong's avatar
Fang Yuedong committed
706
707

        for beam in beams:
Zhang Xin's avatar
Zhang Xin committed
708
            if "XOFF_{0}".format(beam) not in self.conf.keys():
Fang Yuedong's avatar
Fang Yuedong committed
709
710
                continue

Zhang Xin's avatar
Zhang Xin committed
711
712
            xoff = self.field_dependent(
                x0, x1, self.conf["XOFF_{0}".format(beam)])
Fang Yuedong's avatar
Fang Yuedong committed
713
            dy, lam = self.get_beam_trace(x0, x1, dx=dx, beam=beam)
Zhang Xin's avatar
Zhang Xin committed
714
            xlim = self.conf["BEAM{0}".format(beam)]
Fang Yuedong's avatar
Fang Yuedong committed
715
            ok = (dx >= xlim[0]) & (dx <= xlim[1])
Zhang Xin's avatar
Zhang Xin committed
716
717
718
719
720
721
            plt.scatter(dx[ok] + xoff, dy[ok], c=lam[ok] / 1.0e4,
                        marker="s", s=s, alpha=0.5, edgecolor="None")
            plt.text(np.median(dx[ok]), np.median(
                dy[ok]) + 1, beam, ha="center", va="center", fontsize=14)
            print("Beam {0}, lambda=({1:.1f} - {2:.1f})".format(beam,
                  lam[ok].min(), lam[ok].max()))
Fang Yuedong's avatar
Fang Yuedong committed
722
723

        plt.grid()
Zhang Xin's avatar
Zhang Xin committed
724
725
        plt.xlabel(r"$\Delta x$")
        plt.ylabel(r"$\Delta y$")
Fang Yuedong's avatar
Fang Yuedong committed
726
727

        cb = plt.colorbar(pad=0.01, fraction=0.05)
Zhang Xin's avatar
Zhang Xin committed
728
        cb.set_label(r"$\lambda\,(\mu\mathrm{m})$")
Fang Yuedong's avatar
Fang Yuedong committed
729
730
        plt.title(self.conf_file)
        plt.tight_layout()
Zhang Xin's avatar
Zhang Xin committed
731
        plt.savefig("{0}.pdf".format(self.conf_file))
Fang Yuedong's avatar
Fang Yuedong committed
732
733

    # def load_grism_config(conf_file):
Zhang Xin's avatar
Zhang Xin committed
734
735


Fang Yuedong's avatar
Fang Yuedong committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
#     """Load parameters from an aXe configuration file

#     Parameters
#     ----------
#     conf_file : str
#         Filename of the configuration file

#     Returns
#     -------
#     conf : `~grizli.grismconf.aXeConf`
#         Configuration file object.  Runs `conf.get_beams()` to read the
#         sensitivity curves.
#     """
#     conf = aXeConf(conf_file)
#     conf.get_beams()
#     return conf