MockObject.py 29.9 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
import os
import galsim
import numpy as np
import astropy.constants as cons
from astropy import wcs
from astropy.table import Table
import astropy.io.fits as fitsio

from observation_sim.mock_objects._util import magToFlux, VC_A, convolveGaussXorders, convolveImg
from observation_sim.mock_objects._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, \
    getABMAG
from observation_sim.mock_objects.SpecDisperser import SpecDisperser

Zhang Xin's avatar
Zhang Xin committed
14
15
from observation_sim.instruments.chip import chip_utils

Fang Yuedong's avatar
Fang Yuedong committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

class MockObject(object):
    def __init__(self, param, logger=None):
        self.param = param
        for key in self.param:
            setattr(self, key, self.param[key])

        if self.param["star"] == 0:
            self.type = "galaxy"
        elif self.param["star"] == 1:
            self.type = "star"
        elif self.param["star"] == 2:
            self.type = "quasar"
        # mock_stamp_START
        elif self.param["star"] == 3:
            self.type = "stamp"
        # mock_stamp_END
        # for calibration
        elif self.param["star"] == 4:
            self.type = "calib"
        # END

        self.sed = None
        self.fd_shear = None
        # Place holder for outputs
        self.additional_output_str = ""
        self.logger = logger

    def getMagFilter(self, filt):
        if filt.filter_type in ["GI", "GV", "GU"]:
            return self.param["mag_use_normal"]
        return self.param["mag_%s" % filt.filter_type.lower()]

    def getFluxFilter(self, filt):
        return self.param["flux_%s" % filt.filter_type.lower()]

    def getNumPhotons(self, flux, tel, exptime=150.):
        pupil_area = tel.pupil_area * (100.) ** 2  # m^2 to cm^2
        return flux * pupil_area * exptime

    def getElectronFluxFilt(self, filt, tel, exptime=150.):
        # photonEnergy = filt.getPhotonE()
        # flux = magToFlux(self.getMagFilter(filt))
        # factor = 1.0e4 * flux/photonEnergy * VC_A * (1.0/filt.blue_limit - 1.0/filt.red_limit)
        # return factor * filt.efficiency * tel.pupil_area * exptime
        flux = self.getFluxFilter(filt)
        return flux * tel.pupil_area * exptime

64
65
66
    def getPosWorld(self, ra_offset=0., dec_offset=0.):
        ra = self.param["ra"] + ra_offset
        dec = self.param["dec"] + dec_offset
Fang Yuedong's avatar
Fang Yuedong committed
67
68
        return galsim.CelestialCoord(ra=ra * galsim.degrees, dec=dec * galsim.degrees)

69
70
    def getPosImg_Offset_WCS(self, img, fdmodel=None, chip=None, verbose=True, chip_wcs=None, img_header=None, ra_offset=0., dec_offset=0.):
        self.posImg = img.wcs.toImage(self.getPosWorld(ra_offset, dec_offset))
Fang Yuedong's avatar
Fang Yuedong committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        self.localWCS = img.wcs.local(self.posImg)
        # Apply field distortion model
        if (fdmodel is not None) and (chip is not None):
            if verbose:
                print("\n")
                print("Before field distortion:\n")
                print("x = %.2f, y = %.2f\n" %
                      (self.posImg.x, self.posImg.y), flush=True)
            self.posImg, self.fd_shear = fdmodel.get_distorted(
                chip=chip, pos_img=self.posImg)
            if verbose:
                print("After field distortion:\n")
                print("x = %.2f, y = %.2f\n" %
                      (self.posImg.x, self.posImg.y), flush=True)

        x, y = self.posImg.x + 0.5, self.posImg.y + 0.5
        self.x_nominal = int(np.floor(x + 0.5))
        self.y_nominal = int(np.floor(y + 0.5))
        dx = x - self.x_nominal
        dy = y - self.y_nominal
        self.offset = galsim.PositionD(dx, dy)

        # Deal with chip rotation
        if chip_wcs is not None:
            self.chip_wcs = chip_wcs
        elif img_header is not None:
            self.chip_wcs = galsim.FitsWCS(header=img_header)
        else:
            self.chip_wcs = None

        return self.posImg, self.offset, self.localWCS, self.chip_wcs, self.fd_shear

    def getRealPos(self, img, global_x=0., global_y=0., img_real_wcs=None):
        img_global_pos = galsim.PositionD(global_x, global_y)
        cel_pos = img.wcs.toWorld(img_global_pos)
        realPos = img_real_wcs.toImage(cel_pos)
        return realPos

    def drawObj_multiband(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                          exptime=150., fd_shear=None):
        if nphotons_tot == None:
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
        # print("nphotons_tot = ", nphotons_tot)

        try:
            full = integrate_sed_bandpass(
                sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            if self.logger:
                self.logger.error(e)
            return 2, None
        # Set Galsim Parameters
        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        # Get real image position of object (deal with chip rotation w.r.t its center)
        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)
        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)
        # Get real local wcs of object (deal with chip rotation w.r.t its center)
        chip_wcs_local = self.chip_wcs.local(self.real_pos)
        is_updated = 0

        # Loop over all sub-bandpasses
        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                if self.logger:
                    self.logger.error(e)
                continue
            ratio = sub / full
            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                continue

            # nphotons_sum += nphotons
            # print("nphotons_sub-band_%d = %.2f"%(i, nphotons))

            # Get PSF model
            psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
                                               folding_threshold=folding_threshold)
            # star = galsim.DeltaFunction(gsparams=gsp)
            # star = star.withFlux(nphotons)
            # star = galsim.Convolve(psf, star)
            star = psf.withFlux(nphotons)

            stamp = star.drawImage(wcs=chip_wcs_local, offset=offset)
            if np.sum(np.isnan(stamp.array)) > 0:
                continue
            stamp.setCenter(x_nominal, y_nominal)
            bounds = stamp.bounds & galsim.BoundsI(
                0, chip.npix_x - 1, 0, chip.npix_y - 1)
            if bounds.area() > 0:
                chip.img.setOrigin(0, 0)
                chip.img[bounds] += stamp[bounds]
                is_updated = 1
                chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
                del stamp

        if is_updated == 0:
            # Return code 0: object has missed this detector
            print("obj %s missed" % (self.id))
            if self.logger:
                self.logger.info("obj %s missed" % (self.id))
            return 0, pos_shear
        return 1, pos_shear  # Return code 1: draw sucesss

    def addSLStoChipImage(self, sdp=None, chip=None, xOrderSigPlus=None, local_wcs=None):
        spec_orders = sdp.compute_spec_orders()
        for k, v in spec_orders.items():
            img_s = v[0]
            #########################################################
            # DEBUG
            #########################################################
            # print("before convolveGaussXorders, img_s:", img_s)
199
200
201
202
203
            # nan_ids = np.isnan(img_s)
            # if img_s[nan_ids].shape[0] > 0:
            #     # img_s[nan_ids] = 0
            #     print("DEBUG: before convolveGaussXorders specImg nan num is",
            #           img_s[nan_ids].shape[0])
Fang Yuedong's avatar
Fang Yuedong committed
204
            #########################################################
205
206
            # img_s, orig_off = convolveGaussXorders(img_s, xOrderSigPlus[k])
            orig_off = 0
Fang Yuedong's avatar
Fang Yuedong committed
207
208
209
210
211
212
            origin_order_x = v[1] - orig_off
            origin_order_y = v[2] - orig_off
            #########################################################
            # DEBUG
            #########################################################
            # print("DEBUG: orig_off is", orig_off)
213
214
215
216
            # nan_ids = np.isnan(img_s)
            # if img_s[nan_ids].shape[0] > 0:
            #     img_s[nan_ids] = 0
            #     print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
Fang Yuedong's avatar
Fang Yuedong committed
217
            #########################################################
218
            stamp = galsim.ImageF(img_s)
Fang Yuedong's avatar
Fang Yuedong committed
219
220
221
222
223
224
225
226
            stamp.wcs = local_wcs
            stamp.setOrigin(origin_order_x, origin_order_y)

            bounds = stamp.bounds & galsim.BoundsI(
                0, chip.npix_x - 1, 0, chip.npix_y - 1)
            if bounds.area() == 0:
                continue
            chip.img.setOrigin(0, 0)
227
            chip.img[bounds] = chip.img[bounds]+stamp[bounds]
Fang Yuedong's avatar
Fang Yuedong committed
228
229
230
231
232
233
            chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
            del stamp
        del spec_orders

    def addSLStoChipImageWithPSF(self, sdp=None, chip=None, pos_img_local=[1, 1], psf_model=None, bandNo=1, grating_split_pos=3685, local_wcs=None, pos_img=None):
        spec_orders = sdp.compute_spec_orders()
234
        pos_shear = galsim.Shear(e=0., beta=(np.pi/2)*galsim.radians)
Zhang Xin's avatar
Zhang Xin committed
235
236
237
        if chip.slsPSFOptim:
            for k, v in spec_orders.items():
                img_s = v[0]
238
                            
Zhang Xin's avatar
Zhang Xin committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
                nan_ids = np.isnan(img_s)
                if img_s[nan_ids].shape[0] > 0:
                    img_s[nan_ids] = 0
                    print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
                #########################################################
                # img_s, orig_off = convolveImg(img_s, psf_img_m)
                orig_off = [0,0]
                origin_order_x = v[1] - orig_off[0]
                origin_order_y = v[2] - orig_off[1]

                specImg = galsim.ImageF(img_s)

                specImg.wcs = local_wcs
                specImg.setOrigin(origin_order_x, origin_order_y)

                bounds = specImg.bounds & galsim.BoundsI(
                    0, chip.npix_x - 1, 0, chip.npix_y - 1)
                if bounds.area() == 0:
                    continue

                # orders = {'A': 'order1', 'B': 'order0', 'C': 'order2', 'D': 'order-1', 'E': 'order-2'}
                orders = {'A': 'order1', 'B': 'order0', 'C': 'order0', 'D': 'order0', 'E': 'order0'}
                gratingN = chip_utils.getChipSLSGratingID(chip.chipID)[1]
                if pos_img_local[0] < grating_split_pos:
                    gratingN = chip_utils.getChipSLSGratingID(chip.chipID)[0]
                

                chip.img_stack[gratingN][orders[k]]['w' + str(bandNo)].setOrigin(0, 0)
                chip.img_stack[gratingN][orders[k]]['w' + str(bandNo)][bounds] = chip.img_stack[gratingN][orders[k]]['w' + str(bandNo)][bounds] + specImg[bounds]
                chip.img_stack[gratingN][orders[k]]['w' + str(bandNo)].setOrigin(chip.bound.xmin, chip.bound.ymin)
Fang Yuedong's avatar
Fang Yuedong committed
269

Zhang Xin's avatar
Zhang Xin committed
270
271
        else:
            for k, v in spec_orders.items():
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
                # img_s = v[0]
                # # print(bandNo,k)
                # try:
                #     psf, pos_shear = psf_model.get_PSF(
                #         chip, pos_img_local=pos_img_local, bandNo=bandNo, galsimGSObject=True, g_order=k, grating_split_pos=grating_split_pos)
                # except:
                #     psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img)

                # psf_img = psf.drawImage(nx=100, ny=100, wcs=local_wcs)

                # psf_img_m = psf_img.array

                # #########################################################
                # # DEBUG
                # #########################################################
                # # ids_p = psf_img_m < 0
                # # psf_img_m[ids_p] = 0

                # # from astropy.io import fits
                # # fits.writeto(str(bandNo) + '_' + str(k) + '_psf.fits', psf_img_m)

                # # print("DEBUG: orig_off is", orig_off)
                # nan_ids = np.isnan(img_s)
                # if img_s[nan_ids].shape[0] > 0:
                #     img_s[nan_ids] = 0
                #     print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
                # #########################################################
                # img_s, orig_off = convolveImg(img_s, psf_img_m)
                # origin_order_x = v[1] - orig_off[0]
                # origin_order_y = v[2] - orig_off[1]

                # specImg = galsim.ImageF(img_s)
                # # photons = galsim.PhotonArray.makeFromImage(specImg)
                # # photons.x += origin_order_x
                # # photons.y += origin_order_y

                # # xlen_imf = int(specImg.xmax - specImg.xmin + 1)
                # # ylen_imf = int(specImg.ymax - specImg.ymin + 1)
                # # stamp = galsim.ImageF(xlen_imf, ylen_imf)
                # # stamp.wcs = local_wcs
                # # stamp.setOrigin(origin_order_x, origin_order_y)

                # specImg.wcs = local_wcs
                # specImg.setOrigin(origin_order_x, origin_order_y)
                
Zhang Xin's avatar
Zhang Xin committed
317
                # print('DEBUG: BEGIN -----------',bandNo,k)
318
                
Zhang Xin's avatar
Zhang Xin committed
319
                img_s = v[0]
320
            
Zhang Xin's avatar
Zhang Xin committed
321
322
323
324
325
                nan_ids = np.isnan(img_s)
                if img_s[nan_ids].shape[0] > 0:
                    img_s[nan_ids] = 0
                    print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
                #########################################################
326
327
                origin_order_x = v[1]
                origin_order_y = v[2]
Zhang Xin's avatar
Zhang Xin committed
328
329
330
331
                specImg = galsim.ImageF(img_s)

                specImg.wcs = local_wcs
                specImg.setOrigin(origin_order_x, origin_order_y)
332
                try:
Zhang Xin's avatar
Zhang Xin committed
333
                    specImg = psf_model.get_PSF_AND_convolve_withsubImg(chip, cutImg=specImg, pos_img_local=pos_img_local, bandNo=bandNo, g_order=k, grating_split_pos=grating_split_pos)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
                except:
                    psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img)

                    psf_img = psf.drawImage(nx=100, ny=100, wcs=local_wcs)

                    psf_img_m = psf_img.array

                    img_s, orig_off = convolveImg(img_s, psf_img_m)
                    origin_order_x = v[1] - orig_off[0]
                    origin_order_y = v[2] - orig_off[1]

                    specImg = galsim.ImageF(img_s)

                    specImg.wcs = local_wcs
                    specImg.setOrigin(origin_order_x, origin_order_y)
Zhang Xin's avatar
Zhang Xin committed
349
350
351
352
353
354
355
356
357
358
359
360

                bounds = specImg.bounds & galsim.BoundsI(
                    0, chip.npix_x - 1, 0, chip.npix_y - 1)
                if bounds.area() == 0:
                    continue
                chip.img.setOrigin(0, 0)
                chip.img[bounds] = chip.img[bounds] + specImg[bounds]
                # stamp[bounds] = chip.img[bounds]
                # # chip.sensor.accumulate(photons, stamp)
                # chip.img[bounds] = stamp[bounds]
                chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
                # del stamp
Fang Yuedong's avatar
Fang Yuedong committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        del spec_orders
        return pos_shear

    def drawObj_slitless(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                         exptime=150., normFilter=None, grating_split_pos=3685, fd_shear=None):
        if normFilter is not None:
            norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
            sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'], spectrum=self.sed,
                                                          norm_thr=normFilter,
                                                          sWave=np.floor(
                                                              normFilter[norm_thr_rang_ids][0][0]),
                                                          eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
            if sedNormFactor == 0:
                return 2, None
        else:
            sedNormFactor = 1.

        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        normalSED = Table(np.array([self.sed['WAVELENGTH'], self.sed['FLUX'] * sedNormFactor]).T,
                          names=('WAVELENGTH', 'FLUX'))

        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)

        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)

        chip_wcs_local = self.chip_wcs.local(self.real_pos)

        flat_cube = chip.flat_cube

        xOrderSigPlus = {'A': 1.3909419820029296, 'B': 1.4760376591236062, 'C': 4.035447379743442,
                         'D': 5.5684364343742825, 'E': 16.260021029735388}
        grating_split_pos_chip = 0 + grating_split_pos

        branges = np.zeros([len(bandpass_list), 2])

        if hasattr(psf_model, 'bandranges'):
            if psf_model.bandranges is None:
                return 2, None
            if len(psf_model.bandranges) != len(bandpass_list):
                return 2, None
            branges = psf_model.bandranges
        else:
            for i in range(len(bandpass_list)):
                branges[i, 0] = bandpass_list[i].blue_limit * 10
                branges[i, 1] = bandpass_list[i].red_limit * 10

        for i in range(len(bandpass_list)):
            # bandpass = bandpass_list[i]
            brange = branges[i]

            # psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
            #                                    folding_threshold=folding_threshold)

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
            # star = galsim.DeltaFunction(gsparams=gsp)
            # star = star.withFlux(tel.pupil_area * exptime)

            #psf list :["A","B","C","D","E"]
            starImg_List = []
            try:
                pos_img_local = [0,0]
                x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
                y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.
                pos_img_local[0] = pos_img.x - x_start
                pos_img_local[1] = pos_img.y - y_start
                nnx = 0
                nny = 0
                for order in ["A","B"]:
                    psf, pos_shear = psf_model.get_PSF(
                        chip, pos_img_local=pos_img_local, bandNo=i+1, galsimGSObject=True, g_order=order, grating_split_pos=grating_split_pos)
                    # star_p = galsim.Convolve(psf, star)
                    star_p =  psf.withFlux(tel.pupil_area * exptime)
                    if nnx == 0:
                        starImg = star_p.drawImage(wcs=chip_wcs_local, offset=offset)
                        nnx = starImg.xmax - starImg.xmin + 1
                        nny = starImg.ymax - starImg.ymin + 1
                    else:
                        starImg = star_p.drawImage(nx = nnx, ny = nny, wcs=chip_wcs_local, offset=offset)
                    # n1 = np.sum(np.isinf(starImg.array))
                    # n2 = np.sum(np.isnan(starImg.array))
                    # if n1>0 or n2 > 0:
                    #     print("DEBUG: MockObject, inf:%d, nan:%d"%(n1, n2))
                    starImg.setOrigin(0, 0)
                    starImg_List.append(starImg)
                for order in ["C","D","E"]:
                    starImg_List.append(starImg)
            except:
                psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img)
                # star_p = galsim.Convolve(psf, star)
                star_p =  psf.withFlux(tel.pupil_area * exptime)
                starImg = star_p.drawImage(wcs=chip_wcs_local, offset=offset)
                starImg.setOrigin(0, 0)
                for order in ["A","B","C","D","E"]:
                    starImg_List.append(starImg)

            
            # psf_tmp = galsim.Gaussian(sigma=0.002)
            # star = galsim.Convolve(psf_tmp, star)

            # starImg = star.drawImage(
            #     nx=60, ny=60, wcs=chip_wcs_local, offset=offset)
Fang Yuedong's avatar
Fang Yuedong committed
472
473
474

            origin_star = [y_nominal - (starImg.center.y - starImg.ymin),
                           x_nominal - (starImg.center.x - starImg.xmin)]
475
            
Fang Yuedong's avatar
Fang Yuedong committed
476
477
478
479
            gal_origin = [origin_star[0], origin_star[1]]
            gal_end = [origin_star[0] + starImg.array.shape[0] -
                       1, origin_star[1] + starImg.array.shape[1] - 1]
            if gal_origin[1] < grating_split_pos_chip < gal_end[1]:
480
                subSlitPos = int(grating_split_pos_chip - gal_origin[1])
Fang Yuedong's avatar
Fang Yuedong committed
481
                # part img disperse
482
483
                star_p1s=[]
                for starImg in starImg_List:
Fang Yuedong's avatar
Fang Yuedong committed
484

485
486
487
488
                    subImg_p1 = starImg.array[:, 0:subSlitPos]
                    star_p1 = galsim.Image(subImg_p1)
                    star_p1.setOrigin(0, 0)
                    star_p1s.append(star_p1)
Fang Yuedong's avatar
Fang Yuedong committed
489
490
491
492
                origin_p1 = origin_star
                xcenter_p1 = min(x_nominal, grating_split_pos_chip - 1) - 0
                ycenter_p1 = y_nominal - 0

493
                sdp_p1 = SpecDisperser(orig_img=star_p1s, xcenter=xcenter_p1,
Fang Yuedong's avatar
Fang Yuedong committed
494
495
496
497
498
499
500
                                       ycenter=ycenter_p1, origin=origin_p1,
                                       tar_spec=normalSED,
                                       band_start=brange[0], band_end=brange[1],
                                       conf=chip.sls_conf[0],
                                       isAlongY=0,
                                       flat_cube=flat_cube)

501
502
503
504
505
506
507
508
                self.addSLStoChipImage(sdp=sdp_p1, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p1, chip=chip, pos_img_local=[xcenter_p1, ycenter_p1],
                #                                           psf_model=psf_model, bandNo=i+1, grating_split_pos=grating_split_pos,
                #                                           local_wcs=chip_wcs_local, pos_img=pos_img)


                star_p2s=[]
                for starImg in starImg_List:
Fang Yuedong's avatar
Fang Yuedong committed
509

510
                    subImg_p2 = starImg.array[:,
511
                                          subSlitPos:starImg.array.shape[1]]
512
513
514
                    star_p2 = galsim.Image(subImg_p2)
                    star_p2.setOrigin(0, 0)
                    star_p2s.append(star_p2)
Fang Yuedong's avatar
Fang Yuedong committed
515
                origin_p2 = [origin_star[0], grating_split_pos_chip]
516
                xcenter_p2 = max(x_nominal, grating_split_pos_chip) - 0
Fang Yuedong's avatar
Fang Yuedong committed
517
518
                ycenter_p2 = y_nominal - 0

519
                sdp_p2 = SpecDisperser(orig_img=star_p2s, xcenter=xcenter_p2,
Fang Yuedong's avatar
Fang Yuedong committed
520
521
522
523
524
525
526
                                       ycenter=ycenter_p2, origin=origin_p2,
                                       tar_spec=normalSED,
                                       band_start=brange[0], band_end=brange[1],
                                       conf=chip.sls_conf[1],
                                       isAlongY=0,
                                       flat_cube=flat_cube)

527
528
529
530
                self.addSLStoChipImage(sdp=sdp_p2, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p2, chip=chip, pos_img_local=[xcenter_p2, ycenter_p2],
                #                                           psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                #                                           local_wcs=chip_wcs_local, pos_img=pos_img)
Fang Yuedong's avatar
Fang Yuedong committed
531
532
533
534

                del sdp_p1
                del sdp_p2
            elif grating_split_pos_chip <= gal_origin[1]:
535
                sdp = SpecDisperser(orig_img=starImg_List, xcenter=x_nominal - 0,
Fang Yuedong's avatar
Fang Yuedong committed
536
537
538
539
540
541
                                    ycenter=y_nominal - 0, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=brange[0], band_end=brange[1],
                                    conf=chip.sls_conf[1],
                                    isAlongY=0,
                                    flat_cube=flat_cube)
542
543
544
545
                self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                #                                           psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                #                                           local_wcs=chip_wcs_local, pos_img=pos_img)
Fang Yuedong's avatar
Fang Yuedong committed
546
547
                del sdp
            elif grating_split_pos_chip >= gal_end[1]:
548
                sdp = SpecDisperser(orig_img=starImg_List, xcenter=x_nominal - 0,
Fang Yuedong's avatar
Fang Yuedong committed
549
550
551
552
553
554
                                    ycenter=y_nominal - 0, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=brange[0], band_end=brange[1],
                                    conf=chip.sls_conf[0],
                                    isAlongY=0,
                                    flat_cube=flat_cube)
555
556
557
558
                self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                #                                           psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                #                                           local_wcs=chip_wcs_local, pos_img=pos_img)
Fang Yuedong's avatar
Fang Yuedong committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
                del sdp
            # del psf
        return 1, pos_shear

    def SNRestimate(self, img_obj, flux, noise_level=0.0, seed=31415):
        img_flux = img_obj.added_flux
        stamp = img_obj.copy() * 0.0
        rng = galsim.BaseDeviate(seed)
        gaussianNoise = galsim.GaussianNoise(rng, sigma=noise_level)
        stamp.addNoise(gaussianNoise)
        sig_obj = np.std(stamp.array)
        snr_obj = img_flux / sig_obj
        return snr_obj

    def drawObj_PSF(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                    exptime=150., fd_shear=None, chip_output=None):
        if nphotons_tot == None:
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
        # print("nphotons_tot = ", nphotons_tot)

        try:
            full = integrate_sed_bandpass(
                sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            if self.logger:
                self.logger.error(e)
            return 2, None

        # Set Galsim Parameters
        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        # Get real image position of object (deal with chip rotation w.r.t its center)
        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)
        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)
        # Get real local wcs of object (deal with chip rotation w.r.t its center)
        chip_wcs_local = self.chip_wcs.local(self.real_pos)
        is_updated = 0

        # Loop over all sub-bandpasses
        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                if self.logger:
                    self.logger.error(e)
                continue
            ratio = sub / full
            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                continue

            # Get PSF model
            psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
                                               folding_threshold=folding_threshold)
            star_temp = psf.withFlux(nphotons)

            if i == 0:
                star = star_temp
            else:
                star = star+star_temp

        pixelScale = 0.074
        stamp = star.drawImage(wcs=chip_wcs_local, offset=offset)
        # stamp = star.drawImage(nx=256, ny=256, scale=pixelScale)
        if np.sum(np.isnan(stamp.array)) > 0:
            return None

        fn = chip_output.subdir + "/psfIDW"
        os.makedirs(fn, exist_ok=True)
        fn = fn + "/ccd_{:}".format(chip.chipID) + \
            "_psf_"+str(self.param['id'])+".fits"
        if fn != None:
            if os.path.exists(fn):
                os.remove(fn)
        hdu = fitsio.PrimaryHDU()
        hdu.data = stamp.array
        hdu.header.set('name',      self.type)
        hdu.header.set('pixScale',  pixelScale)
        hdu.header.set('objID',     self.param['id'])
        hdu.writeto(fn)

        del stamp
        return None