Chip.py 53.5 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
import galsim
import os
import numpy as np
Fang Yuedong's avatar
Fang Yuedong committed
4
5
import pickle
import json
6
import ObservationSim.Instrument._util as _util
Fang Yuedong's avatar
Fang Yuedong committed
7
8
from astropy.table import Table
from numpy.random import Generator, PCG64
Fang Yuedong's avatar
Fang Yuedong committed
9
10
from astropy.io import fits
from datetime import datetime
Fang Yuedong's avatar
Fang Yuedong committed
11

12
13
14
from ObservationSim.Instrument.Chip import Effects as effects
from ObservationSim.Instrument.FocalPlane import FocalPlane
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader
Fang Yuedong's avatar
Fang Yuedong committed
15
from ObservationSim.Instrument._util import rotate_conterclockwise
16
from ObservationSim.Instrument.Chip import ChipUtils as chip_utils
17

Wei Chengliang's avatar
Wei Chengliang committed
18
19
from ObservationSim.Instrument.Chip.libCTI.CTI_modeling import CTI_sim

Fang Yuedong's avatar
Fang Yuedong committed
20
21
22
23
24
25
try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources

Fang Yuedong's avatar
Fang Yuedong committed
26

Fang Yuedong's avatar
Fang Yuedong committed
27
class Chip(FocalPlane):
28
    def __init__(self, chipID, ccdEffCurve_dir=None, CRdata_dir=None, sls_dir=None, config=None, treering_func=None, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
29
30
        # Get focal plane (instance of paraent class) info
        super().__init__()
31
32
        self.nsecy = 2
        self.nsecx = 8
Fang Yuedong's avatar
Fang Yuedong committed
33
        self.gain_channel = np.ones(self.nsecy * self.nsecx)
Fang Yuedong's avatar
Fang Yuedong committed
34
        self._set_attributes_from_config(config)
Fang Yuedong's avatar
Fang Yuedong committed
35

36
37
        self.logger = logger

Fang Yuedong's avatar
Fang Yuedong committed
38
39
        # A chip ID must be assigned
        self.chipID = int(chipID)
Fang Yuedong's avatar
Fang Yuedong committed
40
        self.chip_name = str(chipID).rjust(2, '0')
Fang Yuedong's avatar
Fang Yuedong committed
41
42
43
44
45

        # Get corresponding filter info
        self.filter_id, self.filter_type = self.getChipFilter()
        self.survey_type = self._getSurveyType()

Fang Yuedong's avatar
Fang Yuedong committed
46
47
48
        if self.filter_type != "FGS":
            self._getChipRowCol()

49
        # Set the relavent specs for detectors
Fang Yuedong's avatar
Fang Yuedong committed
50
51
52
53
54
55
56
57
58
59
        try:
            with pkg_resources.files('ObservationSim.Instrument.data.ccd').joinpath("chip_definition.json") as chip_definition:
                with open(chip_definition, "r") as f:
                    chip_dict = json.load(f)[str(self.chipID)]
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data.ccd', "chip_definition.json") as chip_definition:
                with open(chip_definition, "r") as f:
                    chip_dict = json.load(f)[str(self.chipID)]
        for key in chip_dict:
            setattr(self, key, chip_dict[key])
Fang Yuedong's avatar
Fang Yuedong committed
60

61
        self.fdModel = None
Fang Yuedong's avatar
Fang Yuedong committed
62
        if self.filter_type == "FGS":
63
64
            fgs_name = self.chip_name[0:4]
            try:
Fang Yuedong's avatar
Fang Yuedong committed
65
                with pkg_resources.files('ObservationSim.Instrument.data.field_distortion').joinpath("FieldDistModelGlobal_pr4_%s.pickle" % (fgs_name.lower())) as field_distortion:
66
67
68
                    with open(field_distortion, "rb") as f:
                        self.fdModel = pickle.load(f)
            except AttributeError:
Fang Yuedong's avatar
Fang Yuedong committed
69
                with pkg_resources.path('ObservationSim.Instrument.data.field_distortion', "FieldDistModelGlobal_pr4_%s.pickle" % (fgs_name.lower())) as field_distortion:
70
71
                    with open(field_distortion, "rb") as f:
                        self.fdModel = pickle.load(f)
Fang Yuedong's avatar
Fang Yuedong committed
72
73
        else:
            # Get the corresponding field distortion model
74
75
76
77
78
79
80
81
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.field_distortion').joinpath("FieldDistModel_v2.0.pickle") as field_distortion:
                    with open(field_distortion, "rb") as f:
                        self.fdModel = pickle.load(f)
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.field_distortion', "FieldDistModelGlobal_mainFP_v1.0.pickle") as field_distortion:
                    with open(field_distortion, "rb") as f:
                        self.fdModel = pickle.load(f)
Fang Yuedong's avatar
Fang Yuedong committed
82

Fang Yuedong's avatar
Fang Yuedong committed
83
84
        # Get boundary (in pix)
        self.bound = self.getChipLim()
Fang Yuedong's avatar
Fang Yuedong committed
85

Fang Yuedong's avatar
Fang Yuedong committed
86
87
        self.ccdEffCurve_dir = ccdEffCurve_dir
        self.CRdata_dir = CRdata_dir
Fang Yuedong's avatar
Fang Yuedong committed
88

89
        slsconfs = chip_utils.getChipSLSConf(chipID=self.chipID)
Fang Yuedong's avatar
Fang Yuedong committed
90
        if np.size(slsconfs) == 1:
91
92
93
94
95
96
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs) as conf_path:
                    self.sls_conf = str(conf_path)
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs) as conf_path:
                    self.sls_conf = str(conf_path)
Fang Yuedong's avatar
Fang Yuedong committed
97
        else:
Fang Yuedong's avatar
Fang Yuedong committed
98
99
            # self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
            self.sls_conf = []
100
101
102
103
104
105
106
107
108
109
110
111
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs[0]) as conf_path:
                    self.sls_conf.append(str(conf_path))
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[0]) as conf_path:
                    self.sls_conf.append(str(conf_path))
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs[1]) as conf_path:
                    self.sls_conf.append(str(conf_path))
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[1]) as conf_path:
                    self.sls_conf.append(str(conf_path))
Fang Yuedong's avatar
Fang Yuedong committed
112

Fang Yuedong's avatar
Fang Yuedong committed
113
114
115
        self.effCurve = self._getChipEffCurve(self.filter_type)
        self._getCRdata()

116
117
        # # Define the sensor model
        self.sensor = galsim.Sensor()
Fang Yuedong's avatar
Fang Yuedong committed
118

Fang Yuedong's avatar
Fang Yuedong committed
119
        self.flat_cube = None  # for spectroscopic flat field cube simulation
120

Fang Yuedong's avatar
Fang Yuedong committed
121
122
123
124
125
    def _set_attributes_from_config(self, config):
        # Default setting
        self.read_noise = 5.0   # e/pix
        self.dark_noise = 0.02  # e/pix/s
        self.rotate_angle = 0.
Fang Yuedong's avatar
Fang Yuedong committed
126
        self.overscan = 1000
Fang Yuedong's avatar
Fang Yuedong committed
127
        # Override default values
128
129
130
        # for key in ["gain", "bias_level, dark_exptime", "flat_exptime", "readout_time", "full_well", "read_noise", "dark_noise", "overscan"]:
        #     if key in config["ins_effects"]:
        #         setattr(self, key, config["ins_effects"][key])
Fang Yuedong's avatar
Fang Yuedong committed
131

Fang Yuedong's avatar
Fang Yuedong committed
132
133
134
135
136
137
138
139
140
    def _getChipRowCol(self):
        self.rowID, self.colID = self.getChipRowCol(self.chipID)

    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID

    def _getSurveyType(self):
141
        if self.filter_type in _util.SPEC_FILTERS:
Fang Yuedong's avatar
Fang Yuedong committed
142
            return "spectroscopic"
143
        elif self.filter_type in _util.PHOT_FILTERS:
Fang Yuedong's avatar
Fang Yuedong committed
144
            return "photometric"
Fang Yuedong's avatar
Fang Yuedong committed
145
146
        # elif self.filter_type in ["FGS"]:
        #     return "FGS"
Fang Yuedong's avatar
Fang Yuedong committed
147
148
149

    def _getChipEffCurve(self, filter_type):
        # CCD efficiency curves
Fang Yuedong's avatar
Fang Yuedong committed
150
151
152
153
154
155
156
        if filter_type in ['NUV', 'u', 'GU']:
            filename = 'UV0.txt'
        if filter_type in ['g', 'r', 'GV', 'FGS']:
            # TODO, need to switch to the right efficiency curvey for FGS CMOS
            filename = 'Astro_MB.txt'
        if filter_type in ['i', 'z', 'y', 'GI']:
            filename = 'Basic_NIR.txt'
157
158
159
160
161
162
        try:
            with pkg_resources.files('ObservationSim.Instrument.data.ccd').joinpath(filename) as ccd_path:
                table = Table.read(ccd_path, format='ascii')
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data.ccd', filename) as ccd_path:
                table = Table.read(ccd_path, format='ascii')
Fang Yuedong's avatar
Fang Yuedong committed
163
164
        throughput = galsim.LookupTable(
            x=table['col1'], f=table['col2'], interpolant='linear')
Fang Yuedong's avatar
Fang Yuedong committed
165
166
167
168
        bandpass = galsim.Bandpass(throughput, wave_type='nm')
        return bandpass

    def _getCRdata(self):
169
170
171
172
173
174
        try:
            with pkg_resources.files('ObservationSim.Instrument.data').joinpath("wfc-cr-attachpixel.dat") as cr_path:
                self.attachedSizes = np.loadtxt(cr_path)
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data', "wfc-cr-attachpixel.dat") as cr_path:
                self.attachedSizes = np.loadtxt(cr_path)
175

Fang Yuedong's avatar
Fang Yuedong committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    # def loadSLSFLATCUBE(self, flat_fn='flat_cube.fits'):
    #     try:
    #         with pkg_resources.files('ObservationSim.Instrument.data').joinpath(flat_fn) as data_path:
    #             flat_fits = fits.open(data_path, ignore_missing_simple=True)
    #     except AttributeError:
    #         with pkg_resources.path('ObservationSim.Instrument.data', flat_fn) as data_path:
    #             flat_fits = fits.open(data_path, ignore_missing_simple=True)

    #     fl = len(flat_fits)
    #     fl_sh = flat_fits[0].data.shape
    #     assert fl == 4, 'FLAT Field Cube is Not 4 layess!!!!!!!'
    #     self.flat_cube = np.zeros([fl, fl_sh[0], fl_sh[1]])
    #     for i in np.arange(0, fl, 1):
    #         self.flat_cube[i] = flat_fits[i].data
Fang Yuedong's avatar
Fang Yuedong committed
190

191
    def getChipFilter(self, chipID=None):
Fang Yuedong's avatar
Fang Yuedong committed
192
193
        """Return the filter index and type for a given chip #(chipID)
        """
194
        filter_type_list = _util.ALL_FILTERS
Fang Yuedong's avatar
Fang Yuedong committed
195
196
197
198
        if chipID == None:
            chipID = self.chipID

        # updated configurations
Fang Yuedong's avatar
Fang Yuedong committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        if chipID > 42 or chipID < 1:
            raise ValueError("!!! Chip ID: [1,42]")
        if chipID in [6, 15, 16, 25]:
            filter_type = "y"
        if chipID in [11, 20]:
            filter_type = "z"
        if chipID in [7, 24]:
            filter_type = "i"
        if chipID in [14, 17]:
            filter_type = "u"
        if chipID in [9, 22]:
            filter_type = "r"
        if chipID in [12, 13, 18, 19]:
            filter_type = "NUV"
        if chipID in [8, 23]:
            filter_type = "g"
        if chipID in [1, 10, 21, 30]:
            filter_type = "GI"
        if chipID in [2, 5, 26, 29]:
            filter_type = "GV"
        if chipID in [3, 4, 27, 28]:
            filter_type = "GU"
        if chipID in range(31, 43):
            filter_type = 'FGS'
Fang Yuedong's avatar
Fang Yuedong committed
223
224
225
226
227
228
        filter_id = filter_type_list.index(filter_type)

        return filter_id, filter_type

    def getChipLim(self, chipID=None):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
Fang Yuedong's avatar
Fang Yuedong committed
229
        NOTE: There are 5*4 CCD chips in the focus plane for photometric / spectroscopic observation.
Fang Yuedong's avatar
Fang Yuedong committed
230
231
232
233
234
235
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """
236
237
238
239
240
241
242
243
        xmin, xmax, ymin, ymax = 1e10, -1e10, 1e10, -1e10
        xcen = self.x_cen / self.pix_size
        ycen = self.y_cen / self.pix_size
        sign_x = [-1., 1., -1., 1.]
        sign_y = [-1., -1., 1., 1.]
        for i in range(4):
            x = xcen + sign_x[i] * self.npix_x / 2.
            y = ycen + sign_y[i] * self.npix_y / 2.
Fang Yuedong's avatar
Fang Yuedong committed
244
245
            x, y = _util.rotate_conterclockwise(
                x0=xcen, y0=ycen, x=x, y=y, angle=self.rotate_angle)
246
247
248
            xmin, xmax = min(xmin, x), max(xmax, x)
            ymin, ymax = min(ymin, y), max(ymax, y)
        return galsim.BoundsD(xmin, xmax, ymin, ymax)
Fang Yuedong's avatar
Fang Yuedong committed
249
250

    def getSkyCoverage(self, wcs):
Fang Yuedong's avatar
Fang Yuedong committed
251
        # print("In getSkyCoverage: xmin = %.3f, xmax = %.3f, ymin = %.3f, ymax = %.3f"%(self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax))
Fang Yuedong's avatar
Fang Yuedong committed
252
253
254
255
256
257
258
259
260
        return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)

    def getSkyCoverageEnlarged(self, wcs, margin=0.5):
        """The enlarged sky coverage of the chip
        """
        margin /= 60.0
        bound = self.getSkyCoverage(wcs)
        return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)

Fang Yuedong's avatar
Fang Yuedong committed
261
    def isContainObj(self, ra_obj=None, dec_obj=None, x_image=None, y_image=None, wcs=None, margin=1):
Fang Yuedong's avatar
Fang Yuedong committed
262
        # magin in number of pix
Fang Yuedong's avatar
Fang Yuedong committed
263
264
265
        if (ra_obj is not None) and (dec_obj is not None):
            if wcs is None:
                wcs = self.img.wcs
Fang Yuedong's avatar
Fang Yuedong committed
266
267
            pos_obj = wcs.toImage(galsim.CelestialCoord(
                ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
Fang Yuedong's avatar
Fang Yuedong committed
268
269
            x_image, y_image = pos_obj.x, pos_obj.y
        elif (x_image is None) or (y_image is None):
Fang Yuedong's avatar
Fang Yuedong committed
270
271
            raise ValueError(
                "Either (ra_obj, dec_obj) or (x_image, y_image) should be given")
Fang Yuedong's avatar
Fang Yuedong committed
272

Fang Yuedong's avatar
Fang Yuedong committed
273
274
        xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
        ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
Fang Yuedong's avatar
Fang Yuedong committed
275
        if (x_image - xmin) * (x_image - xmax) > 0.0 or (y_image - ymin) * (y_image - ymax) > 0.0:
Fang Yuedong's avatar
Fang Yuedong committed
276
277
278
279
280
281
282
            return False
        return True

    def getChipNoise(self, exptime=150.0):
        noise = self.dark_noise * exptime + self.read_noise**2
        return noise

Fang Yuedong's avatar
Fang Yuedong committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    # def addEffects(self, config, img, chip_output, filt, ra_cen, dec_cen, img_rot, exptime=150., pointing_ID=0, timestamp_obs=1621915200, pointing_type='SCI', sky_map=None, post_flash_map=None, tel=None, logger=None):
    #     # Set random seeds
    #     SeedGainNonuni = int(config["random_seeds"]["seed_gainNonUniform"])
    #     SeedBiasNonuni = int(config["random_seeds"]["seed_biasNonUniform"])
    #     SeedRnNonuni = int(config["random_seeds"]["seed_rnNonUniform"])
    #     SeedBadColumns = int(config["random_seeds"]["seed_badcolumns"])
    #     SeedDefective = int(config["random_seeds"]["seed_defective"])
    #     SeedCosmicRay = int(config["random_seeds"]["seed_CR"])
    #     fullwell = int(self.full_well)
    #     if config["ins_effects"]["add_hotpixels"] == True:
    #         BoolHotPix = True
    #     else:
    #         BoolHotPix = False
    #     if config["ins_effects"]["add_deadpixels"] == True:
    #         BoolDeadPix = True
    #     else:
    #         BoolDeadPix = False
    #     self.logger = logger

    #     # Get Poisson noise generator
    #     rng_poisson, poisson_noise = chip_utils.get_poisson(
    #         seed=int(config["random_seeds"]["seed_poisson"]) + pointing_ID*30 + self.chipID, sky_level=0.)

    #     # Add sky background
    #     if config["ins_effects"]["add_back"] == True:
    #         img, sky_map = chip_utils.add_sky_background(
    #             img=img, filt=filt, exptime=exptime, sky_map=sky_map, tel=tel)
    #         del sky_map

    #     # Apply flat-field large scale structure for one chip
    #     if config["ins_effects"]["flat_fielding"] == True:
    #         chip_utils.log_info(
    #             msg="  Creating and applying Flat-Fielding", logger=self.logger)
    #         chip_utils.log_info(msg=str(img.bounds), logger=self.logger)
    #         flat_img, flat_normal = chip_utils.get_flat(
    #             img=img, seed=int(config["random_seeds"]["seed_flat"]))
    #         if self.survey_type == "photometric":
    #             img *= flat_normal
    #         del flat_normal
    #         if config["output_setting"]["flat_output"] == False:
    #             del flat_img

    #     if post_flash_map is not None:
    #         img = img + post_flash_map

    #     # Apply Shutter-effect for one chip
    #     if config["ins_effects"]["shutter_effect"] == True:
    #         chip_utils.log_info(
    #             msg="  Apply shutter effect", logger=self.logger)
    #         # shutter effect normalized image for this chip
    #         shuttimg = effects.ShutterEffectArr(
    #             img, t_shutter=1.3, dist_bearing=735, dt=1E-3)
    #         if self.survey_type == "photometric":
    #             img *= shuttimg
    #         # output 16-bit shutter effect image with pixel value <=65535
    #         if config["output_setting"]["shutter_output"] == True:
    #             shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
    #             shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" %
    #                               (chip_output.subdir, self.chipID))
    #             del shutt_gsimg
    #         del shuttimg
    #     # # Add Poisson noise to the resulting images
    #     # # (NOTE): this can only applied to the slitless image
    #     # # since it dose not use photon shooting to draw stamps
    #     # if self.survey_type == "spectroscopic":
    #     #     img.addNoise(poisson_noise)

    #     # Add cosmic-rays
    #     if config["ins_effects"]["cosmic_ray"] == True and pointing_type == 'SCI':
    #         chip_utils.log_info(msg="  Adding Cosmic-Ray", logger=self.logger)
    #         img, crmap_gsimg, cr_event_num = chip_utils.add_cosmic_rays(img=img, chip=self, exptime=exptime,
    #                                                                     seed=SeedCosmicRay+pointing_ID*30+self.chipID)
    #         chip_utils.outputCal(
    #             chip=self,
    #             img=crmap_gsimg,
    #             ra_cen=ra_cen,
    #             dec_cen=dec_cen,
    #             img_rot=img_rot,
    #             im_type='CRS',
    #             pointing_ID=pointing_ID,
    #             output_dir=chip_output.subdir,
    #             exptime=exptime,
    #             project_cycle=config["project_cycle"],
    #             run_counter=config["run_counter"],
    #             timestamp=timestamp_obs)
    #         del crmap_gsimg

    #     # Apply PRNU effect and output PRNU flat file:
    #     if config["ins_effects"]["prnu_effect"] == True:
    #         chip_utils.log_info(
    #             msg="  Applying PRNU effect", logger=self.logger)
    #         img, prnu_img = chip_utils.add_PRNU(img=img, chip=self,
    #                                             seed=int(config["random_seeds"]["seed_prnu"]+self.chipID))
    #         if config["output_setting"]["prnu_output"] == True:
    #             prnu_img.write("%s/FlatImg_PRNU_%s.fits" %
    #                            (chip_output.subdir, self.chipID))
    #         if config["output_setting"]["flat_output"] == False:
    #             del prnu_img

    #     # # Add dark current
    #     # if config["ins_effects"]["add_dark"] == True:
    #     #     dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng_poisson, self.dark_noise*(exptime+0.5*self.readout_time)))
    #     #     img.addNoise(dark_noise)

    #     # Add dark current & Poisson noise
    #     InputDark = False
    #     if config["ins_effects"]["add_dark"] == True:
    #         if InputDark:
    #             img = chip_utils.add_inputdark(
    #                 img=img, chip=self, exptime=exptime)
    #         else:
    #             img, _ = chip_utils.add_poisson(
    #                 img=img, chip=self, exptime=exptime, poisson_noise=poisson_noise)
    #     else:
    #         img, _ = chip_utils.add_poisson(
    #             img=img, chip=self, exptime=exptime, poisson_noise=poisson_noise, dark_noise=0.)

    #     # Add diffusion & brighter-fatter effects
    #     if config["ins_effects"]["bright_fatter"] == True:
    #         img = chip_utils.add_brighter_fatter(img=img)

    #     # Add Hot Pixels or/and Dead Pixels
    #     rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
    #     badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
    #     img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix,
    #                                   fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

    #     # Apply Bad lines
    #     if config["ins_effects"]["add_badcolumns"] == True:
    #         img = effects.BadColumns(
    #             img, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)

    #     # Apply Nonlinearity on the chip image
    #     if config["ins_effects"]["non_linear"] == True:
    #         chip_utils.log_info(
    #             msg="  Applying Non-Linearity on the chip image", logger=self.logger)
    #         img = effects.NonLinearity(GSImage=img, beta1=5.e-7, beta2=0)

    #     # Apply CCD Saturation & Blooming
    #     if config["ins_effects"]["saturbloom"] == True:
    #         chip_utils.log_info(
    #             msg="  Applying CCD Saturation & Blooming", logger=self.logger)
    #         img = effects.SaturBloom(
    #             GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)

    #     # Apply CTE Effect
    #     # if config["ins_effects"]["cte_trail"] == True:
    #     # chip_utils.log_info(msg="  Apply CTE Effect", logger=self.logger)
    #     # img = effects.CTE_Effect(GSImage=img, threshold=27)

    #     pre1 = self.prescan_x  # 27
    #     over1 = self.overscan_x  # 71
    #     pre2 = self.prescan_y  # 0 #4
    #     over2 = self.overscan_y  # 84 #80

    #     if config["ins_effects"]["cte_trail"] == True:
    #         chip_utils.log_info(msg="  Apply CTE Effect", logger=self.logger)
    #         # img = effects.CTE_Effect(GSImage=img, threshold=27)
    #         # CTI_modeling
    #         # 2*8 -> 1*16 img-layout
    #         img = chip_utils.formatOutput(GSImage=img)
    #         self.nsecy = 1
    #         self.nsecx = 16

    #         img_arr = img.array
    #         ny, nx = img_arr.shape
    #         dx = int(nx/self.nsecx)
    #         dy = int(ny/self.nsecy)
    #         newimg = galsim.Image(nx, int(ny+over2), init_value=0)
    #         for ichannel in range(16):
    #             print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(
    #                 pointing_ID, self.chipID, ichannel+1))
    #             # nx,ny,noverscan,nsp,nmax = 4608,4616,84,3,10
    #             noverscan, nsp, nmax = over2, 3, 10
    #             beta, w, c = 0.478, 84700, 0
    #             t = np.array([0.74, 7.7, 37], dtype=np.float32)
    #             rho_trap = np.array([0.6, 1.6, 1.4], dtype=np.float32)
    #             trap_seeds = np.array(
    #                 [0, 1000, 10000], dtype=np.int32) + ichannel + self.chipID*16
    #             release_seed = 50 + ichannel + pointing_ID*30 + self.chipID*16
    #             newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(
    #                 img_arr[:, 0+ichannel*dx:dx+ichannel*dx], dx, dy, noverscan, nsp, nmax, beta, w, c, t, rho_trap, trap_seeds, release_seed)
    #         newimg.wcs = img.wcs
    #         del img
    #         img = newimg

    #         # 1*16 -> 2*8 img-layout
    #         img = chip_utils.formatRevert(GSImage=img)
    #         self.nsecy = 2
    #         self.nsecx = 8

    #     # prescan & overscan
    #     if config["ins_effects"]["add_prescan"] == True:
    #         chip_utils.log_info(
    #             msg="  Apply pre/over-scan", logger=self.logger)
    #         if config["ins_effects"]["cte_trail"] == False:
    #             img = chip_utils.AddPreScan(
    #                 GSImage=img, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
    #         if config["ins_effects"]["cte_trail"] == True:
    #             img = chip_utils.AddPreScan(
    #                 GSImage=img, pre1=pre1, pre2=pre2, over1=over1, over2=0)

    #     # 1*16 output
    #     if config["ins_effects"]["format_output"] == True:
    #         chip_utils.log_info(msg="  Apply 1*16 format", logger=self.logger)
    #         img = chip_utils.formatOutput(GSImage=img)
    #         self.nsecy = 1
    #         self.nsecx = 16

    #     # Add Bias level
    #     if config["ins_effects"]["add_bias"] == True:
    #         chip_utils.log_info(
    #             msg="  Adding Bias level and 16-channel non-uniformity", logger=self.logger)
    #         if config["ins_effects"]["bias_16channel"] == True:
    #             img = effects.AddBiasNonUniform16(img,
    #                                               bias_level=float(
    #                                                   self.bias_level),
    #                                               nsecy=self.nsecy, nsecx=self.nsecx,
    #                                               seed=SeedBiasNonuni+self.chipID,
    #                                               logger=self.logger)
    #         elif config["ins_effects"]["bias_16channel"] == False:
    #             img += self.bias_level

    #     # Add Read-out Noise
    #     if config["ins_effects"]["add_readout"] == True:
    #         seed = int(config["random_seeds"]["seed_readout"]
    #                    ) + pointing_ID*30 + self.chipID
    #         rng_readout = galsim.BaseDeviate(seed)
    #         readout_noise = galsim.GaussianNoise(
    #             rng=rng_readout, sigma=self.read_noise)
    #         img.addNoise(readout_noise)

    #     # Apply Gain & Quantization
    #     chip_utils.log_info(
    #         msg="  Applying Gain (and 16 channel non-uniformity) & Quantization", logger=self.logger)
    #     if config["ins_effects"]["gain_16channel"] == True:
    #         img, self.gain_channel = effects.ApplyGainNonUniform16(
    #             img, gain=self.gain,
    #             nsecy=self.nsecy, nsecx=self.nsecx,
    #             seed=SeedGainNonuni+self.chipID,
    #             logger=self.logger)
    #     elif config["ins_effects"]["gain_16channel"] == False:
    #         img /= self.gain

    #     img.array[img.array > 65535] = 65535
    #     img.replaceNegative(replace_value=0)
    #     img.quantize()

    #     ######################################################################################
    #     # Output images for calibration pointing
    #     ######################################################################################
    #     # Bias output
    #     if config["ins_effects"]["add_bias"] == True and config["output_setting"]["bias_output"] == True and pointing_type == 'CAL':
    #         if self.logger is not None:
    #             self.logger.info("  Output N frame Bias files")
    #         else:
    #             print("  Output N frame Bias files", flush=True)
    #         NBias = int(config["output_setting"]["NBias"])
    #         for i in range(NBias):
    #             # BiasCombImg, BiasTag = effects.MakeBiasNcomb(
    #             # self.npix_x, self.npix_y,
    #             # bias_level=float(self.bias_level),
    #             # ncombine=1, read_noise=self.read_noise, gain=1,
    #             # seed=SeedBiasNonuni+self.chipID,
    #             # logger=self.logger)
    #             BiasCombImg = galsim.Image(
    #                 self.npix_x, self.npix_y, init_value=0)
    #             if config["ins_effects"]["add_bias"] == True:
    #                 biaslevel = self.bias_level
    #                 overscan = biaslevel-2
    #             elif config["ins_effects"]["add_bias"] == False:
    #                 biaslevel = 0
    #                 overscan = 0

    #             # Readout noise for Biases is not generated with random seeds. So readout noise for bias images can't be reproduced.
    #             if config["ins_effects"]["cosmic_ray"] == True:
    #                 if config["ins_effects"]["cray_differ"] == True:
    #                     cr_map, cr_event_num = effects.produceCR_Map(
    #                         xLen=self.npix_x, yLen=self.npix_y,
    #                         exTime=0.01,
    #                         cr_pixelRatio=0.003 *
    #                         (0.01+0.5*self.readout_time)/150.,
    #                         gain=self.gain,
    #                         attachedSizes=self.attachedSizes,
    #                         seed=SeedCosmicRay+pointing_ID*30+self.chipID+1)
    #                     # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
    #                 BiasCombImg += cr_map
    #                 del cr_map

    #             # Apply Bad lines
    #             if config["ins_effects"]["add_badcolumns"] == True:
    #                 BiasCombImg = effects.BadColumns(
    #                     BiasCombImg-float(self.bias_level)+5, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger) + float(self.bias_level)-5

    #             # Non-Linearity for Bias
    #             if config["ins_effects"]["non_linear"] == True:
    #                 if self.logger is not None:
    #                     self.logger.info(
    #                         "  Applying Non-Linearity on the Bias image")
    #                 else:
    #                     print(
    #                         "  Applying Non-Linearity on the Bias image", flush=True)
    #                 BiasCombImg = effects.NonLinearity(
    #                     GSImage=BiasCombImg, beta1=5.e-7, beta2=0)

    #             # START
    #             pre1 = self.prescan_x  # 27
    #             over1 = self.overscan_x  # 71
    #             pre2 = self.prescan_y  # 0 #4
    #             over2 = self.overscan_y  # 84 #80

    #             # prescan & overscan
    #             if config["ins_effects"]["add_prescan"] == True:
    #                 chip_utils.log_info(
    #                     msg="  Apply pre/over-scan", logger=self.logger)
    #                 BiasCombImg = chip_utils.AddPreScan(
    #                     GSImage=BiasCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)

    #             # 1*16 output
    #             if config["ins_effects"]["format_output"] == True:
    #                 chip_utils.log_info(
    #                     msg="  Apply 1*16 format", logger=self.logger)
    #                 BiasCombImg = chip_utils.formatOutput(GSImage=BiasCombImg)
    #                 self.nsecy = 1
    #                 self.nsecx = 16
    #             # END

    #             # Add Bias level
    #             if config["ins_effects"]["add_bias"] == True:
    #                 if self.logger is not None:
    #                     self.logger.info(
    #                         "  Adding Bias level and 16-channel non-uniformity")
    #                 else:
    #                     print("  Adding Bias level and 16-channel non-uniformity")
    #                 BiasCombImg = effects.AddBiasNonUniform16(BiasCombImg,
    #                                                           bias_level=biaslevel,
    #                                                           nsecy=self.nsecy, nsecx=self.nsecx,
    #                                                           seed=SeedBiasNonuni+self.chipID,
    #                                                           logger=self.logger)
    #                 rng = galsim.UniformDeviate()
    #                 ncombine = 1
    #                 NoiseBias = galsim.GaussianNoise(
    #                     rng=rng, sigma=self.read_noise*ncombine**0.5)
    #                 BiasCombImg.addNoise(NoiseBias)

    #             BiasCombImg, self.gain_channel = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain,
    #                                                                            nsecy=self.nsecy, nsecx=self.nsecx,
    #                                                                            seed=SeedGainNonuni+self.chipID,
    #                                                                            logger=self.logger)
    #             # BiasCombImg = effects.AddOverscan(
    #             #     BiasCombImg,
    #             #     overscan=float(config["ins_effects"]["bias_level"])-2, gain=self.gain,
    #             #     widthl=27, widthr=27, widtht=8, widthb=8)
    #             BiasCombImg.replaceNegative(replace_value=0)
    #             BiasCombImg.quantize()
    #             BiasCombImg = galsim.ImageUS(BiasCombImg)
    #             timestamp_obs += 10 * 60
    #             chip_utils.outputCal(
    #                 chip=self,
    #                 img=BiasCombImg,
    #                 ra_cen=ra_cen,
    #                 dec_cen=dec_cen,
    #                 img_rot=img_rot,
    #                 im_type='BIAS',
    #                 pointing_ID=pointing_ID,
    #                 output_dir=chip_output.subdir,
    #                 exptime=0.0,
    #                 project_cycle=config["project_cycle"],
    #                 run_counter=config["run_counter"],
    #                 timestamp=timestamp_obs)
    #         del BiasCombImg

    #     # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
    #     if config["ins_effects"]["flat_fielding"] == True and config["output_setting"]["flat_output"] == True and pointing_type == 'CAL':
    #         if self.logger is not None:
    #             self.logger.info("  Output N frame Flat-Field files")
    #         else:
    #             print("  Output N frame Flat-Field files", flush=True)
    #         NFlat = int(config["output_setting"]["NFlat"])
    #         if config["ins_effects"]["add_bias"] == True:
    #             biaslevel = self.bias_level
    #             overscan = biaslevel-2
    #         elif config["ins_effects"]["add_bias"] == False:
    #             biaslevel = 0
    #             overscan = 0
    #         darklevel = self.dark_noise * \
    #             (self.flat_exptime+0.5*self.readout_time)
    #         for i in range(NFlat):
    #             FlatSingle = flat_img * prnu_img + darklevel
    #             FlatCombImg, FlatTag = effects.MakeFlatNcomb(
    #                 flat_single_image=FlatSingle,
    #                 ncombine=1,
    #                 read_noise=self.read_noise,
    #                 gain=1,
    #                 overscan=overscan,
    #                 biaslevel=0,
    #                 seed_bias=SeedDefective+self.chipID,
    #                 logger=self.logger
    #             )
    #             if config["ins_effects"]["cosmic_ray"] == True:
    #                 if config["ins_effects"]["cray_differ"] == True:
    #                     cr_map, cr_event_num = effects.produceCR_Map(
    #                         xLen=self.npix_x, yLen=self.npix_y,
    #                         exTime=self.flat_exptime+0.5*self.readout_time,
    #                         cr_pixelRatio=0.003 *
    #                         (self.flat_exptime+0.5*self.readout_time)/150.,
    #                         gain=self.gain,
    #                         attachedSizes=self.attachedSizes,
    #                         seed=SeedCosmicRay+pointing_ID*30+self.chipID+3)
    #                     # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
    #                 FlatCombImg += cr_map
    #                 del cr_map

    #             # Add Hot Pixels or/and Dead Pixels
    #             rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
    #             badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
    #             FlatCombImg = effects.DefectivePixels(
    #                 FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

    #             # Apply Bad lines
    #             if config["ins_effects"]["add_badcolumns"] == True:
    #                 FlatCombImg = effects.BadColumns(
    #                     FlatCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)

    #             if config["ins_effects"]["non_linear"] == True:
    #                 if self.logger is not None:
    #                     self.logger.info(
    #                         "  Applying Non-Linearity on the Flat image")
    #                 else:
    #                     print(
    #                         "  Applying Non-Linearity on the Flat image", flush=True)
    #                 FlatCombImg = effects.NonLinearity(
    #                     GSImage=FlatCombImg, beta1=5.e-7, beta2=0)

    #             # if config["ins_effects"]["cte_trail"] == True:
    #             # FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)
    #             # START
    #             pre1 = self.prescan_x  # 27
    #             over1 = self.overscan_x  # 71
    #             pre2 = self.prescan_y  # 0 #4
    #             over2 = self.overscan_y  # 84 #80
    #             if config["ins_effects"]["cte_trail"] == True:
    #                 chip_utils.log_info(
    #                     msg="  Apply CTE Effect", logger=self.logger)
    #                 # img = effects.CTE_Effect(GSImage=img, threshold=27)
    #                 # CTI_modeling
    #                 # 2*8 -> 1*16 img-layout
    #                 FlatCombImg = chip_utils.formatOutput(GSImage=FlatCombImg)
    #                 self.nsecy = 1
    #                 self.nsecx = 16

    #                 img_arr = FlatCombImg.array
    #                 ny, nx = img_arr.shape
    #                 dx = int(nx/self.nsecx)
    #                 dy = int(ny/self.nsecy)
    #                 newimg = galsim.Image(nx, int(ny+over2), init_value=0)
    #                 for ichannel in range(16):
    #                     print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(
    #                         pointing_ID, self.chipID, ichannel+1))
    #                     # nx,ny,noverscan,nsp,nmax = 4608,4616,84,3,10
    #                     noverscan, nsp, nmax = over2, 3, 10
    #                     beta, w, c = 0.478, 84700, 0
    #                     t = np.array([0.74, 7.7, 37], dtype=np.float32)
    #                     rho_trap = np.array([0.6, 1.6, 1.4], dtype=np.float32)
    #                     trap_seeds = np.array(
    #                         [0, 1000, 10000], dtype=np.int32) + ichannel + self.chipID*16
    #                     release_seed = 50 + ichannel + pointing_ID*30 + self.chipID*16
    #                     newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(
    #                         img_arr[:, 0+ichannel*dx:dx+ichannel*dx], dx, dy, noverscan, nsp, nmax, beta, w, c, t, rho_trap, trap_seeds, release_seed)
    #                 newimg.wcs = FlatCombImg.wcs
    #                 del FlatCombImg
    #                 FlatCombImg = newimg

    #                 # 1*16 -> 2*8 img-layout
    #                 FlatCombImg = chip_utils.formatRevert(GSImage=FlatCombImg)
    #                 self.nsecy = 2
    #                 self.nsecx = 8

    #             # prescan & overscan
    #             if config["ins_effects"]["add_prescan"] == True:
    #                 chip_utils.log_info(
    #                     msg="  Apply pre/over-scan", logger=self.logger)
    #                 if config["ins_effects"]["cte_trail"] == False:
    #                     FlatCombImg = chip_utils.AddPreScan(
    #                         GSImage=FlatCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
    #                 if config["ins_effects"]["cte_trail"] == True:
    #                     FlatCombImg = chip_utils.AddPreScan(
    #                         GSImage=FlatCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=0)

    #             # 1*16 output
    #             if config["ins_effects"]["format_output"] == True:
    #                 chip_utils.log_info(
    #                     msg="  Apply 1*16 format", logger=self.logger)
    #                 FlatCombImg = chip_utils.formatOutput(GSImage=FlatCombImg)
    #                 self.nsecy = 1
    #                 self.nsecx = 16
    #             # END

    #             # Add Bias level
    #             if config["ins_effects"]["add_bias"] == True:
    #                 if self.logger is not None:
    #                     self.logger.info(
    #                         "  Adding Bias level and 16-channel non-uniformity")
    #                 else:
    #                     print("  Adding Bias level and 16-channel non-uniformity")
    #                 # img += float(config["ins_effects"]["bias_level"])
    #                 FlatCombImg = effects.AddBiasNonUniform16(FlatCombImg,
    #                                                           bias_level=biaslevel,
    #                                                           nsecy=self.nsecy, nsecx=self.nsecx,
    #                                                           seed=SeedBiasNonuni+self.chipID,
    #                                                           logger=self.logger)

    #             # Add Read-out Noise
    #             if config["ins_effects"]["add_readout"] == True:
    #                 seed = int(config["random_seeds"]["seed_readout"]
    #                            ) + pointing_ID*30 + self.chipID + 3
    #                 rng_readout = galsim.BaseDeviate(seed)
    #                 readout_noise = galsim.GaussianNoise(
    #                     rng=rng_readout, sigma=self.read_noise)
    #                 FlatCombImg.addNoise(readout_noise)

    #             FlatCombImg, self.gain_channel = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain,
    #                                                                            nsecy=self.nsecy, nsecx=self.nsecx,
    #                                                                            seed=SeedGainNonuni+self.chipID,
    #                                                                            logger=self.logger)
    #             # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
    #             FlatCombImg.replaceNegative(replace_value=0)
    #             FlatCombImg.quantize()
    #             FlatCombImg = galsim.ImageUS(FlatCombImg)
    #             timestamp_obs += 10 * 60
    #             chip_utils.outputCal(
    #                 chip=self,
    #                 img=FlatCombImg,
    #                 ra_cen=ra_cen,
    #                 dec_cen=dec_cen,
    #                 img_rot=img_rot,
    #                 im_type='FLAT',
    #                 pointing_ID=pointing_ID,
    #                 output_dir=chip_output.subdir,
    #                 exptime=self.flat_exptime,
    #                 project_cycle=config["project_cycle"],
    #                 run_counter=config["run_counter"],
    #                 timestamp=timestamp_obs)

    #         del FlatCombImg, FlatSingle, prnu_img
    #         # flat_img.replaceNegative(replace_value=0)
    #         # flat_img.quantize()
    #         # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
    #         del flat_img

    #     # Export Dark current images
    #     if config["ins_effects"]["add_dark"] == True and config["output_setting"]["dark_output"] == True and pointing_type == 'CAL':
    #         if self.logger is not None:
    #             self.logger.info("  Output N frame Dark Current files")
    #         else:
    #             print("  Output N frame Dark Current files", flush=True)
    #         NDark = int(config["output_setting"]["NDark"])
    #         if config["ins_effects"]["add_bias"] == True:
    #             biaslevel = self.bias_level
    #             overscan = biaslevel-2
    #         elif config["ins_effects"]["add_bias"] == False:
    #             biaslevel = 0
    #             overscan = 0
    #         for i in range(NDark):
    #             DarkCombImg, DarkTag = effects.MakeDarkNcomb(
    #                 self.npix_x, self.npix_y,
    #                 overscan=overscan, bias_level=0, darkpsec=0.02, exptime=self.dark_exptime+0.5*self.readout_time,
    #                 ncombine=1, read_noise=self.read_noise,
    #                 gain=1, seed_bias=SeedBiasNonuni+self.chipID,
    #                 logger=self.logger)
    #             if config["ins_effects"]["cosmic_ray"] == True:
    #                 if config["ins_effects"]["cray_differ"] == True:
    #                     cr_map, cr_event_num = effects.produceCR_Map(
    #                         xLen=self.npix_x, yLen=self.npix_y,
    #                         exTime=self.dark_exptime+0.5*self.readout_time,
    #                         cr_pixelRatio=0.003 *
    #                         (self.dark_exptime+0.5*self.readout_time)/150.,
    #                         gain=self.gain,
    #                         attachedSizes=self.attachedSizes,
    #                         seed=SeedCosmicRay+pointing_ID*30+self.chipID+2)
    #                     # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
    #                 DarkCombImg += cr_map
    #                 cr_map[cr_map > 65535] = 65535
    #                 cr_map[cr_map < 0] = 0
    #                 crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
    #                 del cr_map
    #                 # START
    #                 # prescan & overscan
    #                 if config["ins_effects"]["add_prescan"] == True:
    #                     chip_utils.log_info(
    #                         msg="  Apply pre/over-scan", logger=self.logger)
    #                     crmap_gsimg = chip_utils.AddPreScan(
    #                         GSImage=crmap_gsimg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)

    #                 # 1*16 output
    #                 if config["ins_effects"]["format_output"] == True:
    #                     chip_utils.log_info(
    #                         msg="  Apply 1*16 format", logger=self.logger)
    #                     crmap_gsimg = chip_utils.formatOutput(
    #                         GSImage=crmap_gsimg)
    #                     self.nsecy = 1
    #                     self.nsecx = 16
    #                 # END
    #                 chip_utils.outputCal(
    #                     chip=self,
    #                     img=crmap_gsimg,
    #                     ra_cen=ra_cen,
    #                     dec_cen=dec_cen,
    #                     img_rot=img_rot,
    #                     im_type='CRD',
    #                     pointing_ID=pointing_ID,
    #                     output_dir=chip_output.subdir,
    #                     exptime=self.dark_exptime,
    #                     project_cycle=config["project_cycle"],
    #                     run_counter=config["run_counter"],
    #                     timestamp=timestamp_obs)
    #                 del crmap_gsimg

    #             # Add Hot Pixels or/and Dead Pixels
    #             rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
    #             badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
    #             DarkCombImg = effects.DefectivePixels(
    #                 DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

    #             # Apply Bad lines
    #             if config["ins_effects"]["add_badcolumns"] == True:
    #                 DarkCombImg = effects.BadColumns(
    #                     DarkCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)

    #             # Non-Linearity for Dark
    #             if config["ins_effects"]["non_linear"] == True:
    #                 if self.logger is not None:
    #                     self.logger.info(
    #                         "  Applying Non-Linearity on the Dark image")
    #                 else:
    #                     print(
    #                         "  Applying Non-Linearity on the Dark image", flush=True)
    #                 DarkCombImg = effects.NonLinearity(
    #                     GSImage=DarkCombImg, beta1=5.e-7, beta2=0)

    #             # if config["ins_effects"]["cte_trail"] == True:
    #             # DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)
    #             # START
    #             pre1 = self.prescan_x  # 27
    #             over1 = self.overscan_x  # 71
    #             pre2 = self.prescan_y  # 0 #4
    #             over2 = self.overscan_y  # 84 #80
    #             if config["ins_effects"]["cte_trail"] == True:
    #                 chip_utils.log_info(
    #                     msg="  Apply CTE Effect", logger=self.logger)
    #                 # img = effects.CTE_Effect(GSImage=img, threshold=27)
    #                 # CTI_modeling
    #                 # 2*8 -> 1*16 img-layout
    #                 DarkCombImg = chip_utils.formatOutput(GSImage=DarkCombImg)
    #                 self.nsecy = 1
    #                 self.nsecx = 16

    #                 img_arr = DarkCombImg.array
    #                 ny, nx = img_arr.shape
    #                 dx = int(nx/self.nsecx)
    #                 dy = int(ny/self.nsecy)
    #                 newimg = galsim.Image(nx, int(ny+over2), init_value=0)
    #                 for ichannel in range(16):
    #                     print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(
    #                         pointing_ID, self.chipID, ichannel+1))
    #                     # nx,ny,noverscan,nsp,nmax = 4608,4616,84,3,10
    #                     noverscan, nsp, nmax = over2, 3, 10
    #                     beta, w, c = 0.478, 84700, 0
    #                     t = np.array([0.74, 7.7, 37], dtype=np.float32)
    #                     rho_trap = np.array([0.6, 1.6, 1.4], dtype=np.float32)
    #                     trap_seeds = np.array(
    #                         [0, 1000, 10000], dtype=np.int32) + ichannel + self.chipID*16
    #                     release_seed = 50 + ichannel + pointing_ID*30 + self.chipID*16
    #                     newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(
    #                         img_arr[:, 0+ichannel*dx:dx+ichannel*dx], dx, dy, noverscan, nsp, nmax, beta, w, c, t, rho_trap, trap_seeds, release_seed)
    #                 newimg.wcs = DarkCombImg.wcs
    #                 del DarkCombImg
    #                 DarkCombImg = newimg

    #                 # 1*16 -> 2*8 img-layout
    #                 DarkCombImg = chip_utils.formatRevert(GSImage=DarkCombImg)
    #                 self.nsecy = 2
    #                 self.nsecx = 8

    #             # prescan & overscan
    #             if config["ins_effects"]["add_prescan"] == True:
    #                 chip_utils.log_info(
    #                     msg="  Apply pre/over-scan", logger=self.logger)
    #                 if config["ins_effects"]["cte_trail"] == False:
    #                     DarkCombImg = chip_utils.AddPreScan(
    #                         GSImage=DarkCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
    #                 if config["ins_effects"]["cte_trail"] == True:
    #                     DarkCombImg = chip_utils.AddPreScan(
    #                         GSImage=DarkCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=0)

    #             # 1*16 output
    #             if config["ins_effects"]["format_output"] == True:
    #                 chip_utils.log_info(
    #                     msg="  Apply 1*16 format", logger=self.logger)
    #                 DarkCombImg = chip_utils.formatOutput(GSImage=DarkCombImg)
    #                 self.nsecy = 1
    #                 self.nsecx = 16
    #             # END

    #             # Add Bias level
    #             if config["ins_effects"]["add_bias"] == True:
    #                 if self.logger is not None:
    #                     self.logger.info(
    #                         "  Adding Bias level and 16-channel non-uniformity")
    #                 else:
    #                     print("  Adding Bias level and 16-channel non-uniformity")
    #                 # img += float(config["ins_effects"]["bias_level"])
    #                 DarkCombImg = effects.AddBiasNonUniform16(DarkCombImg,
    #                                                           bias_level=biaslevel,
    #                                                           nsecy=self.nsecy, nsecx=self.nsecx,
    #                                                           seed=SeedBiasNonuni+self.chipID,
    #                                                           logger=self.logger)

For faster browsing, not all history is shown. View entire blame