Quasar.py 5 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import galsim
import os
import sys
import numpy as np
import astropy.constants as cons
from astropy.table import Table
from scipy import interpolate

from observation_sim.mock_objects.MockObject import MockObject
from observation_sim.mock_objects._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, getABMAG


class Quasar(MockObject):
    def __init__(self, param, logger=None):
        super().__init__(param, logger=logger)
        if not hasattr(self, "mu"):
            if hasattr(self, "detA"):
                self.mu = 1./self.detA
            else:
                self.mu = 1.

    def load_SED(self, survey_type, sed_path=None, cosids=None, objtypes=None, sed_templates=None, normFilter=None, target_filt=None):
        '''
        --------------------------------------------------------------------
        (Deprecated) Left over codes from cycle-1 to cycle-3 implementations
        --------------------------------------------------------------------
        '''
        if survey_type == "photometric":
            norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
            if sed_templates is None:
                # Read SED data directly
                itype = objtypes[cosids == self.sed_type][0]
                sed_file = os.path.join(
                    sed_path, itype + "_ID%s.sed" % (self.sed_type))
                if not os.path.exists(sed_file):
                    raise ValueError("!!! No SED found.")
                sed_data = Table.read(sed_file, format="ascii")
                wave, flux = sed_data["observedLambda"].data, sed_data["observedFlux"].data
            else:
                # Load SED from templates
                sed_data = sed_templates[self.sed_type]
                # redshift, intrinsic extinction
                sed_data = getObservedSED(
                    sedCat=sed_data,
                    redshift=self.z,
                    av=self.param['av'],
                    redden=self.param['redden'])
                wave, flux = sed_data[0], sed_data[1]

            flux_photon = flux * (wave / (cons.h.value * cons.c.value)) * 1e-13
            sed_photon = Table(
                np.array([wave, flux_photon]).T, names=('WAVELENGTH', 'FLUX'))
            # Get scaling factor for SED
            sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'],
                                                          spectrum=sed_photon,
                                                          norm_thr=normFilter,
                                                          sWave=np.floor(
                                                              normFilter[norm_thr_rang_ids][0][0]),
                                                          eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
            sed_photon = np.array(
                [sed_photon['WAVELENGTH'], sed_photon['FLUX']*sedNormFactor]).T
            # Convert to galsim.SED object
            spec = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(
                sed_photon[:, 1]), interpolant='nearest')
            self.sed = galsim.SED(spec, wave_type='A',
                                  flux_type='1', fast=False)
            # Get magnitude
            interFlux = integrate_sed_bandpass(
                sed=self.sed, bandpass=target_filt.bandpass_full)
            self.param['mag_%s' % target_filt.filter_type] = getABMAG(
                interFlux=interFlux,
                bandpass=target_filt.bandpass_full)
            # print('mag_use_normal = ', self.param['mag_use_normal'])
            # print('mag_%s = '%target_filt.filter_type, self.param['mag_%s'%target_filt.filter_type])

        elif survey_type == "spectroscopic":
            if sed_templates is None:
                self.sedPhotons(sed_path=sed_path,
                                cosids=cosids, objtypes=objtypes)
            else:
                sed_data = sed_templates[self.sed_type]
                sed_data = getObservedSED(
                    sedCat=sed_data,
                    redshift=self.z,
                    av=self.param['av'],
                    redden=self.param['redden'])
                speci = interpolate.interp1d(sed_data[0], sed_data[1])
                lamb = np.arange(2500, 10001 + 0.5, 0.5)
                y = speci(lamb)
                # erg/s/cm2/A --> photo/s/m2/A
                all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
                self.sed = Table(
                    np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))

    def unload_SED(self):
        """(Test) free up SED memory
        """
        del self.sed

    def getGSObj(self, psf, g1=0, g2=0, flux=None, filt=None, tel=None, exptime=150.):
        if flux == None:
            flux = self.getElectronFluxFilt(filt, tel, exptime)
        qso = galsim.Gaussian(sigma=1.e-8, flux=1.)
        qso = qso.withFlux(flux)
        final = galsim.Convolve(psf, qso)
        return final