Catalog_example.py 7.74 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import os
import numpy as np
import astropy.constants as cons
from astropy.table import Table
from scipy import interpolate

from ObservationSim.MockObject import CatalogBase, Star, Galaxy, Quasar

class Catalog_example(CatalogBase):
    """An user customizable class for reading in catalog(s) of objects and SEDs.
    
    NOTE: must inherit the "CatalogBase" abstract class

    ...
    
    Attributes
    ----------
    cat_dir : str
        a directory that contains the catalog file(s)
    star_path : str
        path to the star catalog file
    star_SED_path : str
        path to the star SED data
    objs : list
        a list of ObservationSim.MockObject (Star, Galaxy, or Quasar)
        NOTE: must have "obj" list when implement your own Catalog
    
    Methods
    ----------
    load_sed(obj, **kwargs):
        load the corresponding SED data for one object
    load_norm_filt(obj):
        load the filter throughput for the input catalog's photometric system.
    """

36
    def __init__(self, config, chip, pointing, **kwargs):
37
38
39
40
41
42
        """Constructor method.
        
        Parameters
        ----------
        config : dict
            configuration dictionary which is parsed from the input YAML file
43
        chip: ObservationSim.Instrument.Chip
44
            a ObservationSim.Instrument.Chip instance, can be used to identify the band etc.
45
46
47
48
49
50
51
52
53
54
55
        **kwargs : dict
            other needed input parameters (in key-value pairs), please modify corresponding
            initialization call in "ObservationSim.py" as you need.
        
        Returns
        ----------
        None
        """
        
        super().__init__()
        self.cat_dir = os.path.join(config["data_dir"], config["input_path"]["cat_dir"])
56
        self.chip = chip
57
        self.pointing = pointing
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        if "star_cat" in config["input_path"] and config["input_path"]["star_cat"]:
            star_file = config["input_path"]["star_cat"]
            star_SED_file = config["SED_templates_path"]["star_SED"]
            self.star_path = os.path.join(self.cat_dir, star_file)
            self.star_SED_path = os.path.join(config["data_dir"], star_SED_file)
        # NOTE: must call _load() method here to read in all objects
        self.objs = []
        self._load()

    def _load(self, **kwargs):
        """Read in all objects in from the catalog file(s).

        This is a must implemented method which is used to read in all objects, and
        then convert them to ObservationSim.MockObject (Star, Galaxy, or Quasar).
        
        Currently, 
        the model of ObservationSim.MockObject.Star class requires:
            param["star"] : int
                specify the object type: 0: galaxy, 1: star, 2: quasar
            param["id"] : int
                ID number of the object
            param["ra"] : float
                Right ascension (in degrees)
            param["dec"] : float
                Declination (in degrees)
            param["mag_use_normal"]: float
                the absolute magnitude in a particular filter
                NOTE: if that filter is not the corresponding CSST filter, the 
                load_norm_filt(obj) function must be implemented to load the filter
                throughput of that particular photometric system
        
        the model of ObservationSim.MockObject.Galaxy class requires:
            param["star"] : int
                specify the object type: 0: galaxy, 1: star, 2: quasar
            param["id"] : int
                ID number of the object
            param["ra"] : float
                Right ascension (in degrees)
            param["dec"] : float
                Declination (in degrees)
            param["mag_use_normal"]: float
                the absolute magnitude in a particular filter
                NOTE: if that filter is not the corresponding CSST filter, the 
                load_norm_filt(obj) function must be implemented to load the filter
                throughput of that particular photometric system
            param["theta"] : float
                the position angle (in degrees)
            param["bfrac"] : float
                the bulge fraction
            param["hlr_bulge] : float
                the half-light-radius of the bulge
            param["hlr_disk] : float
                the half-light-radius of the disk
             param["ell_bulge] : float
                the ellipticity of the bulge
             param["ell_disk] : float
                the ellipticity of the disk
             param["ell_tot] : float
                the total ellipticity
        the model of ObservationSim.MockObject.Galaxy class requires:
            Currently a Quasar is modeled as a point source, just like a Star.

        NOTE: To construct an object, according to its type, just call:
        Star(param), Galaxy(param), or Quasar(param)

        NOTE: All constructed objects should be appened to "self.objs".

        Parameters
        ----------
        **kwargs : dict
            other needed input parameters (in key-value pairs), please modify corresponding
            initialization call in "ObservationSim.py" as you need.

        Returns
        ----------
        None
        """

        stars = Table.read(self.star_path)
        nstars = stars['sourceID'].size
        for istars in range(nstars):
            param = self.initialize_param()
            param['id'] = istars + 1
            param['ra'] = stars['RA'][istars]
            param['dec'] = stars['Dec'][istars]
            param['sed_type'] = stars['sourceID'][istars]
            param['model_tag'] = stars['model_tag'][istars]
            param['z'] = 0.0
            param['star'] = 1   # Star
            param['mag_use_normal'] = stars['app_sdss_g'][istars]
            obj = Star(param)
            self.objs.append(obj)

    def load_sed(self, obj, **kwargs):
        """Load the corresponding SED data for a particular obj.

        Parameters
        ----------
        obj : ObservationSim.MockObject
            the object to get SED data for
        **kwargs : dict
            other needed input parameters (in key-value pairs), please modify corresponding
            initialization call in "ObservationSim.py" as you need.

        Returns
        ----------
        sed : Astropy.Table
            the SED Table with two columns (namely, "WAVELENGTH", "FLUX"):
                sed["WAVELENGTH"] : wavelength in Angstroms
                sed["FLUX"] : fluxes in photons/s/m^2/A
            NOTE: the range of wavelengthes must at least cover [2450 - 11000] Angstorms
        """

        if obj.type == 'star':
            wave = Table.read(self.star_SED_path, path=f"/SED/wave_{obj.model_tag}")
            flux = Table.read(self.star_SED_path, path=f"/SED/{obj.sed_type}")
            wave, flux = wave['col0'].data, flux['col0'].data
        else:
            raise ValueError("Object type not known")
        speci = interpolate.interp1d(wave, flux)
        lamb = np.arange(2400, 11001 + 0.5, 0.5)
        y = speci(lamb)
        # erg/s/cm^2/A --> photons/s/m^2/A
        all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
        sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))
        return sed

    def load_norm_filt(self, obj):
        """Load the corresponding thourghput for the input magnitude "param["mag_use_normal"]".

        NOTE: if the input magnitude is already in CSST magnitude, simply return None

        Parameters
        ----------
        obj : ObservationSim.MockObject
            the object to get thourghput data for

        Returns
        ----------
        norm_filt : Astropy.Table
            the throughput Table with two columns (namely, "WAVELENGTH", "SENSITIVITY"):
                norm_filt["WAVELENGTH"] : wavelengthes in Angstroms
                norm_filt["SENSITIVITY"] : efficiencies
        """
        return None