SpecDisperser.py 25.1 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from astropy.table import Table

import astropy.constants as cons

import collections
from collections import OrderedDict
from scipy import interpolate

from astropy import units as u

# from numpy import *

import numpy as np

from pylab import *

import galsim

import sys
import os


def rotate90(array_orig=None, xc=0, yc=0, isClockwise=0):
    if array_orig is None:
        return

    l1 = array_orig.shape[0]
    l2 = array_orig.shape[1]

    if xc < 0 or xc > l2 - 1 or yc < 0 or yc > l1 - 1:
        return

    n_xc = xc
    n_yc = yc

    array_final = np.zeros_like(array_orig.T)

    if isClockwise == 1:
        for i in np.arange(l2):
            array_final[i] = array_orig[:, l2 - i - 1]
        n_xc = yc
        n_yc = l2 - 1 - xc
    else:
        for i in np.arange(l2):
            array_final[i] = array_orig[::-1, i]

        n_xc = l1 - 1 - yc
        n_yc = xc
    return array_final, n_xc, n_yc


class SpecDisperser(object):
Zhang Xin's avatar
Zhang Xin committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    def __init__(
        self,
        orig_img=None,
        xcenter=0,
        ycenter=0,
        origin=[100, 100],
        tar_spec=None,
        band_start=6200,
        band_end=10000,
        isAlongY=0,
        conf="../param/CONF/csst.conf",
        gid=0,
        flat_cube=None,
        ignoreBeam=[],
    ):
Fang Yuedong's avatar
Fang Yuedong committed
68
69
70
71
72
73
74
75
76
77
78
79
80
        """
        orig_img: normal image,galsim image
        xcenter, ycenter: the center of galaxy in orig_img
        origin : [int, int]
            `origin` defines the lower left pixel index (y,x) of the `direct`
            cutout from a larger detector-frame image
        tar_spec: galsim.SED

        """

        # self.img_x = orig_img.shape[1]
        # self.img_y = orig_img.shape[0]

81
        # 5 orders, A, B ,
Zhang Xin's avatar
Zhang Xin committed
82
        orderName = ["A", "B", "C", "D", "E"]
83
84
85
86
87
        self.orig_img_orders = OrderedDict()
        if isinstance(orig_img, list):
            orig_img_list = orig_img
            list_len = len(orig_img_list)
            if list_len < 5:
Zhang Xin's avatar
Zhang Xin committed
88
89
                for i in np.arange(5 - list_len):
                    orig_img_list.append(orig_img_list[list_len - 1])
90
91
92
93
94
95
96
97
98
99
100
101
102
            for i, k in enumerate(orig_img_list):
                self.orig_img_orders[orderName[i]] = k

        if isinstance(orig_img, galsim.Image):
            for i in np.arange(5):
                self.orig_img_orders[orderName[i]] = orig_img

        orig_img_one = self.orig_img_orders["A"]

        self.thumb_img = np.abs(orig_img_one.array)
        self.thumb_x = orig_img_one.center.x
        self.thumb_y = orig_img_one.center.y
        self.img_sh = orig_img_one.array.shape
Fang Yuedong's avatar
Fang Yuedong committed
103
104
105
106
107
108
109
110
111

        self.id = gid

        self.xcenter = xcenter
        self.ycenter = ycenter

        self.isAlongY = isAlongY
        self.flat_cube = flat_cube
        if self.isAlongY == 1:
112
            for order in orderName:
Zhang Xin's avatar
Zhang Xin committed
113
114
115
116
117
118
                self.orig_img_orders[order], self.thumb_x, self.thumb_y = rotate90(
                    array_orig=self.orig_img_orders[order],
                    xc=orig_img_one.center.x,
                    yc=orig_img_one.center.y,
                    isClockwise=1,
                )
119
120
            # self.thumb_img, self.thumb_x, self.thumb_y = rotate90(array_orig=self.thumb_img, xc=orig_img_one.center.x,
            #                                                       yc=orig_img_one.center.y, isClockwise=1)
Fang Yuedong's avatar
Fang Yuedong committed
121

122
            self.img_sh = self.orig_img_orders[order].array.T.shape
Fang Yuedong's avatar
Fang Yuedong committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            self.xcenter = ycenter
            self.ycenter = xcenter

        self.origin = origin
        self.band_start = band_start
        self.band_end = band_end
        self.spec = tar_spec

        self.beam_flux = OrderedDict()

        self.grating_conf = aXeConf(conf)
        self.grating_conf.get_beams()
        self.grating_conf_file = conf
        self.ignoreBeam = ignoreBeam

    def compute_spec_orders(self):

        all_orders = OrderedDict()
        beam_names = self.grating_conf.beams

        for beam in beam_names:
            if beam in self.ignoreBeam:
                continue
            all_orders[beam] = self.compute_spec(beam)

        return all_orders

    def compute_spec(self, beam):

152
153
154
        # if beam == "B":
        #     return self.thumb_img, self.origin[1], self.origin[0], None, None, None

Fang Yuedong's avatar
Fang Yuedong committed
155
156
        from .disperse_c import interp
        from .disperse_c import disperse
Zhang Xin's avatar
Zhang Xin committed
157

Fang Yuedong's avatar
Fang Yuedong committed
158
        # from MockObject.disperse_c import disperse
159
160
161
162
        self.thumb_img = np.abs(self.orig_img_orders[beam].array)
        self.thumb_x = self.orig_img_orders[beam].center.x
        self.thumb_y = self.orig_img_orders[beam].center.y
        self.img_sh = self.orig_img_orders[beam].array.shape
Fang Yuedong's avatar
Fang Yuedong committed
163
164
        dx = self.grating_conf.dxlam[beam]
        xoff = 0
Zhang Xin's avatar
Zhang Xin committed
165
166
167
        ytrace_beam, lam_beam = self.grating_conf.get_beam_trace(
            x=self.xcenter, y=self.ycenter, dx=(dx + xoff), beam=beam
        )
Fang Yuedong's avatar
Fang Yuedong committed
168
169

        # Account for pixel centering of the trace
Zhang Xin's avatar
Zhang Xin committed
170
        yfrac_beam = ytrace_beam - floor(ytrace_beam + 0.5)
Fang Yuedong's avatar
Fang Yuedong committed
171
172
173
174
175

        ysens = lam_beam * 0
        lam_index = argsort(lam_beam)
        conf_sens = self.grating_conf.sens[beam]

Zhang Xin's avatar
Zhang Xin committed
176
        lam_intep = np.linspace(self.band_start, self.band_end, int((self.band_end - self.band_start) / 0.1))
Fang Yuedong's avatar
Fang Yuedong committed
177

Zhang Xin's avatar
Zhang Xin committed
178
179
        thri = interpolate.interp1d(conf_sens["WAVELENGTH"], conf_sens["SENSITIVITY"])
        spci = interpolate.interp1d(self.spec["WAVELENGTH"], self.spec["FLUX"])
Fang Yuedong's avatar
Fang Yuedong committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

        beam_thr = thri(lam_intep)
        spec_sample = spci(lam_intep)

        bean_thr_spec = beam_thr * spec_sample

        # generate sensitivity file for aXe
        # ysensitivity = lam_beam * 0
        #
        # ysensitivity[lam_index] = interp.interp_conserve_c(lam_beam[lam_index], lam_intep,
        #                                                    beam_thr * math.pi * 100 * 100 * 1e-7 / (
        #                                                                cons.h.value * cons.c.value / (
        #                                                                    lam_intep * 1e-10)), integrate=0, left=0,
        #                                                    right=0)
        #
        # self.writerSensitivityFile(conffile = self.grating_conf_file,  beam = beam, w = lam_beam[lam_index], sens = ysensitivity[lam_index])

Zhang Xin's avatar
Zhang Xin committed
197
198
199
        ysens[lam_index] = interp.interp_conserve_c(
            lam_beam[lam_index], lam_intep, bean_thr_spec, integrate=1, left=0, right=0
        )
Fang Yuedong's avatar
Fang Yuedong committed
200
201
202
203

        sensitivity_beam = ysens

        len_spec_x = len(dx)
Zhang Xin's avatar
Zhang Xin committed
204
        len_spec_y = int(abs(ceil(ytrace_beam[-1]) - floor(ytrace_beam[0])) + 1)
Fang Yuedong's avatar
Fang Yuedong committed
205
206
207
208
209
210
211
212
213

        beam_sh = (self.img_sh[0] + len_spec_y, self.img_sh[1] + len_spec_x)
        modelf = zeros(product(beam_sh), dtype=float)
        model = modelf.reshape(beam_sh)
        idx = np.arange(modelf.size, dtype=int64).reshape(beam_sh)
        x0 = array((self.thumb_y, self.thumb_x), dtype=int64)

        dxpix = dx - dx[0] + x0[1]

Zhang Xin's avatar
Zhang Xin committed
214
        dyc = cast[int](np.floor(ytrace_beam + 0.5))
Fang Yuedong's avatar
Fang Yuedong committed
215

216
217
        # dypix = cast[int](np.floor(ytrace_beam - dyc[0] + x0[0] + 0.5))
        dypix = dyc - dyc[0] + x0[0]
Fang Yuedong's avatar
Fang Yuedong committed
218
219
220
221

        frac_ids = yfrac_beam < 0

        dypix[frac_ids] = dypix[frac_ids] - 1
Zhang Xin's avatar
Zhang Xin committed
222
        yfrac_beam[frac_ids] = 1 + yfrac_beam[frac_ids]
Fang Yuedong's avatar
Fang Yuedong committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

        flat_index = idx[dypix, dxpix]

        nonz = sensitivity_beam != 0

        origin_in = zeros_like(self.origin)
        dx0_in = dx[0]
        dy0_in = dyc[0]
        if self.isAlongY == 1:
            origin_in[0] = self.origin[0]
            origin_in[1] = self.origin[1] - len_spec_y
            dx0_in = -dyc[0]
            dy0_in = dx[0]
        else:
            origin_in[0] = self.origin[0]
            origin_in[1] = self.origin[1]
            dx0_in = dx[0]
            dy0_in = dyc[0]
            originOut_x = origin_in[1] + dx0_in
        originOut_y = origin_in[0] + dy0_in

        if self.flat_cube is None:
            beam_flat = None
        else:
            beam_flat = zeros([len(modelf), len(self.flat_cube)])

Zhang Xin's avatar
Zhang Xin committed
249
250
            sub_flat_cube = zeros([len(self.flat_cube), beam_sh[0], beam_sh[1]])
            sub_flat_cube[0] = sub_flat_cube[0] + 1.0
Fang Yuedong's avatar
Fang Yuedong committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

            overlap_flag = 1

            sub_y_s = originOut_y
            sub_y_e = originOut_y + beam_sh[0] - 1
            sub_x_s = originOut_x
            sub_x_e = originOut_x + beam_sh[1] - 1

            beam_x_s = max(sub_x_s, 0)
            if beam_x_s > self.flat_cube[0].shape[1] - 1:
                overlap_flag = 0
            if overlap_flag == 1:
                beam_x_e = min(sub_x_e, self.flat_cube[0].shape[1] - 1)
                if beam_x_e < 0:
                    overlap_flag = 0

            if overlap_flag == 1:
                beam_y_s = max(sub_y_s, 0)
                if beam_y_s > self.flat_cube[0].shape[0] - 1:
                    overlap_flag = 0
            if overlap_flag == 1:
                beam_y_e = min(sub_y_e, self.flat_cube[0].shape[0] - 1)
                if beam_y_e < 0:
                    overlap_flag = 0

            if overlap_flag == 1:
Zhang Xin's avatar
Zhang Xin committed
277
278
279
280
281
                sub_flat_cube[
                    :,
                    beam_y_s - originOut_y : beam_y_e - originOut_y + 1,
                    beam_x_s - originOut_x : beam_x_e - originOut_x + 1,
                ] = self.flat_cube[:, beam_y_s : beam_y_e + 1, beam_x_s : beam_x_e + 1]
Fang Yuedong's avatar
Fang Yuedong committed
282
283
284

            for i in arange(0, len(self.flat_cube), 1):
                beam_flat[:, i] = sub_flat_cube[i].flatten()
Zhang Xin's avatar
Zhang Xin committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        #            beam_flat = zeros([len(modelf), len(self.flat_cube)])
        #            flat_sh = self.flat_cube[0].shape
        #            for i in arange(0, beam_sh[0], 1):
        #                for j in arange(0, beam_sh[1], 1):
        #                    k = i * beam_sh[1] + j
        #                    if originOut_y + i >= flat_sh[0] or originOut_y + i < 0 or originOut_x + j>= flat_sh[1] or originOut_x+j < 0:
        #                        temp_bf = np.zeros_like(self.flat_cube[:, 0, 0])
        #                        temp_bf[0] = 1.0
        #                        beam_flat[k] = temp_bf
        #                    else:
        #                        beam_flat[k] = self.flat_cube[:, originOut_y + i, originOut_x + j]

        status = disperse.disperse_grism_object(
            self.thumb_img.astype(np.float32),
            flat_index[nonz],
            yfrac_beam[nonz],
            sensitivity_beam[nonz],
            modelf,
            x0,
            array(self.img_sh, dtype=int64),
            array(beam_sh, dtype=int64),
            beam_flat,
            lam_beam[lam_index][nonz],
        )
Fang Yuedong's avatar
Fang Yuedong committed
309
310

        model = modelf.reshape(beam_sh)
311
312
313
314
315
316
317
        # n1 = np.sum(np.isinf(model))
        # n2 = np.sum(np.isnan(model))
        # n3 = np.sum(np.isinf(modelf))
        # n4 = np.sum(np.isnan(modelf))
        # if n1>0 or n2 > 0:
        #     print("DEBUG: SpecDisperser, inf:%d, nan:%d--------%d,%d"%(n1, n2, n3, n4))
        #     print(dypix)
Zhang Xin's avatar
Zhang Xin committed
318
319
320
321
322
323
324
        # n1 = np.sum(np.isinf(self.thumb_img.astype(np.float32)))
        # n2 = np.sum(np.isnan(self.thumb_img.astype(np.float32)))
        # n3 = np.sum(np.isinf(yfrac_beam))
        # n4 = np.sum(np.isnan(yfrac_beam))
        # n5 = np.sum(np.isinf(sensitivity_beam))
        # n6 = np.sum(np.isnan(sensitivity_beam))
        # print("DEBUG: SpecDisperser, innput ---inf:%d, nan:%d, yfrac_beam:%d/%d, sensitivity_beam:%d/%d"%(n1, n2, n3, n4, n5, n6))
Fang Yuedong's avatar
Fang Yuedong committed
325
326
327
328
329
330
        self.beam_flux[beam] = sum(modelf)

        if self.isAlongY == 1:
            model, _, _ = rotate90(array_orig=model, isClockwise=0)
        return model, originOut_x, originOut_y, dxpix, dypix, lam_beam, ysens

Zhang Xin's avatar
Zhang Xin committed
331
332
333
    def writerSensitivityFile(self, conffile="", beam="", w=None, sens=None):
        orders = {"A": "1st", "B": "0st", "C": "2st", "D": "-1st", "E": "-2st"}
        sens_file_name = conffile[0:-5] + "_sensitivity_" + orders[beam] + ".fits"
Fang Yuedong's avatar
Fang Yuedong committed
334
        if not os.path.exists(sens_file_name) == True:
Zhang Xin's avatar
Zhang Xin committed
335
336
            senstivity_out = Table(array([w, sens]).T, names=("WAVELENGTH", "SENSITIVITY"))
            senstivity_out.write(sens_file_name, format="fits")
Fang Yuedong's avatar
Fang Yuedong committed
337
338
339
340
341
342
343


"""
Demonstrate aXe trace polynomials.
"""


Zhang Xin's avatar
Zhang Xin committed
344
345
class aXeConf:
    def __init__(self, conf_file="WFC3.IR.G141.V2.5.conf"):
Fang Yuedong's avatar
Fang Yuedong committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        """Read an aXe-compatible configuration file

        Parameters
        ----------
        conf_file: str
            Filename of the configuration file to read

        """
        if conf_file is not None:
            self.conf = self.read_conf_file(conf_file)
            self.conf_file = conf_file
            self.count_beam_orders()

            # Global XOFF/YOFF offsets
Zhang Xin's avatar
Zhang Xin committed
360
361
            if "XOFF" in self.conf.keys():
                self.xoff = np.float(self.conf["XOFF"])
Fang Yuedong's avatar
Fang Yuedong committed
362
            else:
Zhang Xin's avatar
Zhang Xin committed
363
                self.xoff = 0.0
Fang Yuedong's avatar
Fang Yuedong committed
364

Zhang Xin's avatar
Zhang Xin committed
365
366
            if "YOFF" in self.conf.keys():
                self.yoff = np.float(self.conf["YOFF"])
Fang Yuedong's avatar
Fang Yuedong committed
367
            else:
Zhang Xin's avatar
Zhang Xin committed
368
                self.yoff = 0.0
Fang Yuedong's avatar
Fang Yuedong committed
369

Zhang Xin's avatar
Zhang Xin committed
370
    def read_conf_file(self, conf_file="WFC3.IR.G141.V2.5.conf"):
Fang Yuedong's avatar
Fang Yuedong committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        """Read an aXe config file, convert floats and arrays

        Parameters
        ----------
        conf_file: str
            Filename of the configuration file to read.

        Parameters are stored in an OrderedDict in `self.conf`.
        """
        from collections import OrderedDict

        conf = OrderedDict()
        lines = open(conf_file).readlines()
        for line in lines:
            # empty / commented lines
Zhang Xin's avatar
Zhang Xin committed
386
            if (line.startswith("#")) | (line.strip() == "") | ('"' in line):
Fang Yuedong's avatar
Fang Yuedong committed
387
388
389
                continue

            # split the line, taking out ; and # comments
Zhang Xin's avatar
Zhang Xin committed
390
            spl = line.split(";")[0].split("#")[0].split()
Fang Yuedong's avatar
Fang Yuedong committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            param = spl[0]
            if len(spl) > 2:
                value = np.cast[float](spl[1:])
            else:
                try:
                    value = float(spl[1])
                except:
                    value = spl[1]

            conf[param] = value

        return conf

    def count_beam_orders(self):
Zhang Xin's avatar
Zhang Xin committed
405
        """Get the maximum polynomial order in DYDX or DLDP for each beam"""
Fang Yuedong's avatar
Fang Yuedong committed
406
        self.orders = {}
Zhang Xin's avatar
Zhang Xin committed
407
        for beam in ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]:
Fang Yuedong's avatar
Fang Yuedong committed
408
            order = 0
Zhang Xin's avatar
Zhang Xin committed
409
            while "DYDX_{0:s}_{1:d}".format(beam, order) in self.conf.keys():
Fang Yuedong's avatar
Fang Yuedong committed
410
411
                order += 1

Zhang Xin's avatar
Zhang Xin committed
412
            while "DLDP_{0:s}_{1:d}".format(beam, order) in self.conf.keys():
Fang Yuedong's avatar
Fang Yuedong committed
413
414
415
416
417
                order += 1

            self.orders[beam] = order - 1

    def get_beams(self):
Zhang Xin's avatar
Zhang Xin committed
418
        """Get beam parameters and read sensitivity curves"""
Fang Yuedong's avatar
Fang Yuedong committed
419
420
421
422
423
424
425
426
427
428
429
430
        import os
        from collections import OrderedDict
        from astropy.table import Table, Column

        self.dxlam = OrderedDict()
        self.nx = OrderedDict()
        self.sens = OrderedDict()
        self.beams = []

        for beam in self.orders:
            if self.orders[beam] > 0:
                self.beams.append(beam)
Zhang Xin's avatar
Zhang Xin committed
431
432
433
434
                self.dxlam[beam] = np.arange(
                    self.conf["BEAM{0}".format(beam)].min(), self.conf["BEAM{0}".format(beam)].max(), dtype=int
                )
                self.nx[beam] = int(self.dxlam[beam].max() - self.dxlam[beam].min()) + 1
Fang Yuedong's avatar
Fang Yuedong committed
435
                self.sens[beam] = Table.read(
Zhang Xin's avatar
Zhang Xin committed
436
437
                    "{0}/{1}".format(os.path.dirname(self.conf_file), self.conf["SENSITIVITY_{0}".format(beam)])
                )
Fang Yuedong's avatar
Fang Yuedong committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
                # self.sens[beam].wave = np.cast[np.double](self.sens[beam]['WAVELENGTH'])
                # self.sens[beam].sens = np.cast[np.double](self.sens[beam]['SENSITIVITY'])

                # Need doubles for interpolating functions
                for col in self.sens[beam].colnames:
                    data = np.cast[np.double](self.sens[beam][col])
                    self.sens[beam].remove_column(col)
                    self.sens[beam].add_column(Column(data=data, name=col))

        self.beams.sort()

    def field_dependent(self, xi, yi, coeffs):
        """aXe field-dependent coefficients

        See the `aXe manual <http://axe.stsci.edu/axe/manual/html/node7.html#SECTION00721200000000000000>`_ for a description of how the field-dependent coefficients are specified.

        Parameters
        ----------
        xi, yi : float or array-like
            Coordinate to evaluate the field dependent coefficients, where
            `xi = x-REFX` and `yi = y-REFY`.

        coeffs : array-like
            Field-dependency coefficients

        Returns
        -------
        a : float or array-like
            Evaluated field-dependent coefficients

        """
        # number of coefficients for a given polynomial order
        # 1:1, 2:3, 3:6, 4:10, order:order*(order+1)/2
        if isinstance(coeffs, float):
            order = 1
        else:
            order = int(-1 + np.sqrt(1 + 8 * len(coeffs))) // 2

        # Build polynomial terms array
        # $a = a_0+a_1x_i+a_2y_i+a_3x_i^2+a_4x_iy_i+a_5yi^2+$ ...
        xy = []
        for p in range(order):
            for px in range(p + 1):
                # print 'x**%d y**%d' %(p-px, px)
                xy.append(xi ** (p - px) * yi ** (px))

        # Evaluate the polynomial, allowing for N-dimensional inputs
        a = np.sum((np.array(xy).T * coeffs).T, axis=0)

        return a

    def evaluate_dp(self, dx, dydx):
        """Evalate arc length along the trace given trace polynomial coefficients

        Parameters
        ----------
        dx : array-like
            x pixel to evaluate

        dydx : array-like
            Coefficients of the trace polynomial

        Returns
        -------
        dp : array-like
            Arc length along the trace at position `dx`.

        For `dydx` polynomial orders 0, 1 or 2, integrate analytically.
        Higher orders must be integrated numerically.

        **Constant:**
            .. math:: dp = dx

        **Linear:**
            .. math:: dp = \sqrt{1+\mathrm{DYDX}[1]}\cdot dx

        **Quadratic:**
            .. math:: u = \mathrm{DYDX}[1] + 2\ \mathrm{DYDX}[2]\cdot dx

            .. math:: dp = (u \sqrt{1+u^2} + \mathrm{arcsinh}\ u) / (4\cdot \mathrm{DYDX}[2])

        """
        # dp is the arc length along the trace
        # $\lambda = dldp_0 + dldp_1 dp + dldp_2 dp^2$ ...

        poly_order = len(dydx) - 1
Zhang Xin's avatar
Zhang Xin committed
524
        if poly_order == 2:
Fang Yuedong's avatar
Fang Yuedong committed
525
526
527
528
529
530
531
532
533
            if np.abs(np.unique(dydx[2])).max() == 0:
                poly_order = 1

        if poly_order == 0:  # dy=0
            dp = dx
        elif poly_order == 1:  # constant dy/dx
            dp = np.sqrt(1 + dydx[1] ** 2) * (dx)
        elif poly_order == 2:  # quadratic trace
            u0 = dydx[1] + 2 * dydx[2] * (0)
Zhang Xin's avatar
Zhang Xin committed
534
            dp0 = (u0 * np.sqrt(1 + u0**2) + np.arcsinh(u0)) / (4 * dydx[2])
Fang Yuedong's avatar
Fang Yuedong committed
535
            u = dydx[1] + 2 * dydx[2] * (dx)
Zhang Xin's avatar
Zhang Xin committed
536
            dp = (u * np.sqrt(1 + u**2) + np.arcsinh(u)) / (4 * dydx[2]) - dp0
Fang Yuedong's avatar
Fang Yuedong committed
537
538
539
540
541
542
543
544
545
546
547
        else:
            # high order shape, numerical integration along trace
            # (this can be slow)
            xmin = np.minimum((dx).min(), 0)
            xmax = np.maximum((dx).max(), 0)
            xfull = np.arange(xmin, xmax)
            dyfull = 0
            for i in range(1, poly_order):
                dyfull += i * dydx[i] * (xfull - 0.5) ** (i - 1)

            # Integrate from 0 to dx / -dx
Zhang Xin's avatar
Zhang Xin committed
548
            dpfull = xfull * 0.0
Fang Yuedong's avatar
Fang Yuedong committed
549
550
            lt0 = xfull < 0
            if lt0.sum() > 1:
Zhang Xin's avatar
Zhang Xin committed
551
                dpfull[lt0] = np.cumsum(np.sqrt(1 + dyfull[lt0][::-1] ** 2))[::-1]
Fang Yuedong's avatar
Fang Yuedong committed
552
553
554
555
556
557
558
559
560
561
562
563
564
                dpfull[lt0] *= -1

            #
            gt0 = xfull > 0
            if gt0.sum() > 0:
                dpfull[gt0] = np.cumsum(np.sqrt(1 + dyfull[gt0] ** 2))

            dp = np.interp(dx, xfull, dpfull)
            if dp[-1] == dp[-2]:
                dp[-1] = dp[-2] + np.diff(dp)[-2]

        return dp

Zhang Xin's avatar
Zhang Xin committed
565
    def get_beam_trace(self, x=507, y=507, dx=0.0, beam="A"):
Fang Yuedong's avatar
Fang Yuedong committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
        """Get an aXe beam trace for an input reference pixel and list of output x pixels `dx`

        Parameters
        ----------
        x, y : float or array-like
            Evaluate trace definition at detector coordinates `x` and `y`.

        dx : float or array-like
            Offset in x pixels from `(x,y)` where to compute trace offset and
            effective wavelength

        beam : str
            Beam name (i.e., spectral order) to compute.  By aXe convention,
            `beam='A'` is the first order, 'B' is the zeroth order and
            additional beams are the higher positive and negative orders.

        Returns
        -------
        dy : float or array-like
            Center of the trace in y pixels offset from `(x,y)` evaluated at
            `dx`.

        lam : float or array-like
            Effective wavelength along the trace evaluated at `dx`.

        """
        NORDER = self.orders[beam] + 1

        xi, yi = x - self.xoff, y - self.yoff
Zhang Xin's avatar
Zhang Xin committed
595
596
        xoff_beam = self.field_dependent(xi, yi, self.conf["XOFF_{0}".format(beam)])
        yoff_beam = self.field_dependent(xi, yi, self.conf["YOFF_{0}".format(beam)])
Fang Yuedong's avatar
Fang Yuedong committed
597
598
599
600
601
602

        # y offset of trace (DYDX)
        dydx = np.zeros(NORDER)  # 0 #+1.e-80
        dydx = [0] * NORDER

        for i in range(NORDER):
Zhang Xin's avatar
Zhang Xin committed
603
604
            if "DYDX_{0:s}_{1:d}".format(beam, i) in self.conf.keys():
                coeffs = self.conf["DYDX_{0:s}_{1:d}".format(beam, i)]
Fang Yuedong's avatar
Fang Yuedong committed
605
606
607
608
609
610
611
612
613
614
615
616
617
                dydx[i] = self.field_dependent(xi, yi, coeffs)

        # $dy = dydx_0+dydx_1 dx+dydx_2 dx^2+$ ...

        dy = yoff_beam
        for i in range(NORDER):
            dy += dydx[i] * (dx - xoff_beam) ** i

        # wavelength solution
        dldp = np.zeros(NORDER)
        dldp = [0] * NORDER

        for i in range(NORDER):
Zhang Xin's avatar
Zhang Xin committed
618
619
            if "DLDP_{0:s}_{1:d}".format(beam, i) in self.conf.keys():
                coeffs = self.conf["DLDP_{0:s}_{1:d}".format(beam, i)]
Fang Yuedong's avatar
Fang Yuedong committed
620
621
                dldp[i] = self.field_dependent(xi, yi, coeffs)

Zhang Xin's avatar
Zhang Xin committed
622
623
624
625
626
627
628
629
630
631
        self.eval_input = {"x": x, "y": y, "beam": beam, "dx": dx}
        self.eval_output = {
            "xi": xi,
            "yi": yi,
            "dldp": dldp,
            "dydx": dydx,
            "xoff_beam": xoff_beam,
            "yoff_beam": yoff_beam,
            "dy": dy,
        }
Fang Yuedong's avatar
Fang Yuedong committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

        dp = self.evaluate_dp(dx - xoff_beam, dydx)
        # ## dp is the arc length along the trace
        # ## $\lambda = dldp_0 + dldp_1 dp + dldp_2 dp^2$ ...
        # if self.conf['DYDX_ORDER_%s' %(beam)] == 0:   ## dy=0
        #     dp = dx-xoff_beam
        # elif self.conf['DYDX_ORDER_%s' %(beam)] == 1: ## constant dy/dx
        #     dp = np.sqrt(1+dydx[1]**2)*(dx-xoff_beam)
        # elif self.conf['DYDX_ORDER_%s' %(beam)] == 2: ## quadratic trace
        #     u0 = dydx[1]+2*dydx[2]*(0)
        #     dp0 = (u0*np.sqrt(1+u0**2)+np.arcsinh(u0))/(4*dydx[2])
        #     u = dydx[1]+2*dydx[2]*(dx-xoff_beam)
        #     dp = (u*np.sqrt(1+u**2)+np.arcsinh(u))/(4*dydx[2])-dp0
        # else:
        #     ## high order shape, numerical integration along trace
        #     ## (this can be slow)
        #     xmin = np.minimum((dx-xoff_beam).min(), 0)
        #     xmax = np.maximum((dx-xoff_beam).max(), 0)
        #     xfull = np.arange(xmin, xmax)
        #     dyfull = 0
        #     for i in range(1, NORDER):
        #         dyfull += i*dydx[i]*(xfull-0.5)**(i-1)
        #
        #     ## Integrate from 0 to dx / -dx
        #     dpfull = xfull*0.
        #     lt0 = xfull <= 0
        #     if lt0.sum() > 1:
        #         dpfull[lt0] = np.cumsum(np.sqrt(1+dyfull[lt0][::-1]**2))[::-1]
        #         dpfull[lt0] *= -1
        #     #
        #     gt0 = xfull >= 0
        #     if gt0.sum() > 0:
        #         dpfull[gt0] = np.cumsum(np.sqrt(1+dyfull[gt0]**2))
        #
        #     dp = np.interp(dx-xoff_beam, xfull, dpfull)

        # Evaluate dldp
Zhang Xin's avatar
Zhang Xin committed
669
        lam = dp * 0.0
Fang Yuedong's avatar
Fang Yuedong committed
670
        for i in range(NORDER):
Zhang Xin's avatar
Zhang Xin committed
671
            lam += dldp[i] * dp**i
Fang Yuedong's avatar
Fang Yuedong committed
672
673
674

        return dy, lam

Zhang Xin's avatar
Zhang Xin committed
675
    def show_beams(self, beams=["E", "D", "C", "B", "A"]):
Fang Yuedong's avatar
Fang Yuedong committed
676
677
678
679
680
681
682
683
        """
        Make a demo plot of the beams of a given configuration file
        """
        import matplotlib.pyplot as plt

        x0, x1 = 507, 507
        dx = np.arange(-800, 1200)

Zhang Xin's avatar
Zhang Xin committed
684
        if "WFC3.UV" in self.conf_file:
Fang Yuedong's avatar
Fang Yuedong committed
685
686
            x0, x1 = 2073, 250
            dx = np.arange(-1200, 1200)
Zhang Xin's avatar
Zhang Xin committed
687
        if "G800L" in self.conf_file:
Fang Yuedong's avatar
Fang Yuedong committed
688
689
690
691
692
            x0, x1 = 2124, 1024
            dx = np.arange(-1200, 1200)

        s = 200  # marker size
        fig = plt.figure(figsize=[10, 3])
Zhang Xin's avatar
Zhang Xin committed
693
        plt.scatter(0, 0, marker="s", s=s, color="black", edgecolor="0.8", label="Direct")
Fang Yuedong's avatar
Fang Yuedong committed
694
695

        for beam in beams:
Zhang Xin's avatar
Zhang Xin committed
696
            if "XOFF_{0}".format(beam) not in self.conf.keys():
Fang Yuedong's avatar
Fang Yuedong committed
697
698
                continue

Zhang Xin's avatar
Zhang Xin committed
699
            xoff = self.field_dependent(x0, x1, self.conf["XOFF_{0}".format(beam)])
Fang Yuedong's avatar
Fang Yuedong committed
700
            dy, lam = self.get_beam_trace(x0, x1, dx=dx, beam=beam)
Zhang Xin's avatar
Zhang Xin committed
701
            xlim = self.conf["BEAM{0}".format(beam)]
Fang Yuedong's avatar
Fang Yuedong committed
702
            ok = (dx >= xlim[0]) & (dx <= xlim[1])
Zhang Xin's avatar
Zhang Xin committed
703
704
705
            plt.scatter(dx[ok] + xoff, dy[ok], c=lam[ok] / 1.0e4, marker="s", s=s, alpha=0.5, edgecolor="None")
            plt.text(np.median(dx[ok]), np.median(dy[ok]) + 1, beam, ha="center", va="center", fontsize=14)
            print("Beam {0}, lambda=({1:.1f} - {2:.1f})".format(beam, lam[ok].min(), lam[ok].max()))
Fang Yuedong's avatar
Fang Yuedong committed
706
707

        plt.grid()
Zhang Xin's avatar
Zhang Xin committed
708
709
        plt.xlabel(r"$\Delta x$")
        plt.ylabel(r"$\Delta y$")
Fang Yuedong's avatar
Fang Yuedong committed
710
711

        cb = plt.colorbar(pad=0.01, fraction=0.05)
Zhang Xin's avatar
Zhang Xin committed
712
        cb.set_label(r"$\lambda\,(\mu\mathrm{m})$")
Fang Yuedong's avatar
Fang Yuedong committed
713
714
        plt.title(self.conf_file)
        plt.tight_layout()
Zhang Xin's avatar
Zhang Xin committed
715
        plt.savefig("{0}.pdf".format(self.conf_file))
Fang Yuedong's avatar
Fang Yuedong committed
716
717

    # def load_grism_config(conf_file):
Zhang Xin's avatar
Zhang Xin committed
718
719


Fang Yuedong's avatar
Fang Yuedong committed
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
#     """Load parameters from an aXe configuration file

#     Parameters
#     ----------
#     conf_file : str
#         Filename of the configuration file

#     Returns
#     -------
#     conf : `~grizli.grismconf.aXeConf`
#         Configuration file object.  Runs `conf.get_beams()` to read the
#         sensitivity curves.
#     """
#     conf = aXeConf(conf_file)
#     conf.get_beams()
#     return conf