PSFUtil.py 15.7 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import sys
import ctypes
import numpy as np
from scipy import ndimage
import scipy.spatial as spatial


###定义PSF像素的全局坐标###
def psfPixelLayout(nrows, ncols, cenPosRow, cenPosCol, pixSizeInMicrons=5.0):
    """
    convert psf pixels to physical position

    Parameters:
        nrows, ncols (int, int): psf sampling with [nrows, ncols].
        cenPosRow, cenPosCol (float, float): A physical position of the chief ray for a given psf.
        pixSizeInMicrons (float-optional): The pixel size in microns from the psf sampling.

    Returns:
        psfPixelPos (numpy.array-float): [posx, posy] in mm for [irow, icol]

    Notes:
        1. show positions on ccd, but not position on image only [+/- dy]
    """
    psfPixelPos = np.zeros([2, nrows, ncols])
    if nrows % 2 != 0:
        sys.exit()
    if ncols % 2 != 0:
        sys.exit()

    cenPix_row = nrows/2 + 1 #中心主光线对应pixle [由长光定义]
    cenPix_col = ncols/2 + 1

    for irow in range(nrows):
        for icol in range(ncols):
            delta_row = ((irow + 1) - cenPix_row)*pixSizeInMicrons*1e-3
            delta_col = ((icol + 1) - cenPix_col)*pixSizeInMicrons*1e-3
            psfPixelPos[0, irow, icol] = cenPosCol + delta_col
            psfPixelPos[1, irow, icol] = cenPosRow - delta_row  #note-1:in CCD全局坐标

    return psfPixelPos


###查找最大pixel位置###
def findMaxPix(img):
    """
    get the pixel position of the maximum-value

    Parameters:
        img (numpy.array-float): image

    Returns:
        imgMaxPix_x, imgMaxPix_y (int, int): pixel position in columns & rows
    """
    maxIndx = np.argmax(img)
    maxIndx = np.unravel_index(maxIndx, np.array(img).shape)
    imgMaxPix_x = maxIndx[1]
    imgMaxPix_y = maxIndx[0]

    return imgMaxPix_x, imgMaxPix_y


###查找neighbors位置###
def findNeighbors(tx, ty, px, py, dr=0.1, dn=1, OnlyDistance=True):
    """
    find nearest neighbors by 2D-KDTree

    Parameters:
        tx, ty (float, float): a given position
        px, py (numpy.array, numpy.array): position data for tree
        dr (float-optional): distance
        dn (int-optional): nearest-N
        OnlyDistance (bool-optional): only use distance to find neighbors. Default: True

    Returns:
        dataq (numpy.array): index
    """
    datax = px
    datay = py
    tree = spatial.KDTree(list(zip(datax.ravel(), datay.ravel())))

    dataq=[]
    rr = dr
    if OnlyDistance == True:
        dataq = tree.query_ball_point([tx, ty], rr)
    if OnlyDistance == False:
        while len(dataq) < dn:
            dataq = tree.query_ball_point([tx, ty], rr)
            rr += dr
        dd = np.hypot(datax[dataq]-tx, datay[dataq]-ty)
        ddSortindx = np.argsort(dd)
        dataq = np.array(dataq)[ddSortindx[0:dn]]
    return dataq

###查找neighbors位置-hoclist###
def hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy):
    if np.max(partx) > nhocx*dhocx:
        print('ERROR')
        sys.exit()
    if np.max(party) > nhocy*dhocy:
        print('ERROR')
        sys.exit()

    npart  = partx.size
    hoclist= np.zeros(npart, dtype=np.int32)-1
    hoc = np.zeros([nhocy, nhocx], dtype=np.int32)-1
    for ipart in range(npart):
        ix = int(partx[ipart]/dhocx)
        iy = int(party[ipart]/dhocy)
        hoclist[ipart] = hoc[iy, ix]
        hoc[iy, ix] = ipart
    return hoc, hoclist

def hocFind(px, py, dhocx, dhocy, hoc, hoclist):
    ix = int(px/dhocx)
    iy = int(py/dhocy)

    neigh=[]
    it = hoc[iy, ix]
    while it != -1:
        neigh.append(it)
        it = hoclist[it]
    return neigh

def findNeighbors_hoclist(px, py, tx=None,ty=None, dn=4, hoc=None, hoclist=None):
    nhocy = nhocx = 20

    pxMin = np.min(px)
    pxMax = np.max(px)
    pyMin = np.min(py)
    pyMax = np.max(py)

    dhocx = (pxMax - pxMin)/(nhocx-1)
    dhocy = (pyMax - pyMin)/(nhocy-1)
    partx = px - pxMin +dhocx/2
    party = py - pyMin +dhocy/2

    if hoc is None:
        hoc, hoclist = hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy)
        return hoc, hoclist

    if hoc is not None:
        tx = tx - pxMin +dhocx/2
        ty = ty - pyMin +dhocy/2
        itx = int(tx/dhocx)
        ity = int(ty/dhocy)

        ps = [-1, 0, 1]
        neigh=[]
        for ii in range(3):
            for jj in range(3):
                ix = itx + ps[ii]
                iy = ity + ps[jj]
                if ix < 0:
                    continue
                if iy < 0:
                    continue
                if ix > nhocx-1:
                    continue
                if iy > nhocy-1:
                    continue

                #neightt = myUtil.hocFind(ppx, ppy, dhocx, dhocy, hoc, hoclist)
                it = hoc[iy, ix]
                while it != -1:
                    neigh.append(it)
                    it = hoclist[it]
                #neigh.append(neightt)
        #ll = [i for k in neigh for i in k]
        if dn != -1:
            ptx = np.array(partx[neigh])
            pty = np.array(party[neigh])
            dd  = np.hypot(ptx-tx, pty-ty)
            idx = np.argsort(dd)
            neigh= np.array(neigh)[idx[0:dn]]
        return neigh



###PSF中心对齐###
def psfCentering(img, apSizeInArcsec=0.5, psfSampleSizeInMicrons=5, focalLengthInMeters=28, CenteringMode=1):
    """
    centering psf within an aperture

    Parameters:
        img (numpy.array): image
        apSizeInArcsec (float-optional): aperture size in arcseconds.
        psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
        focalLengthInMeters (float-optional): csst focal length im meters.
        CenteringMode (int-optional): how to center psf images

    Returns:
        imgT (numpy.array)
    """
    if CenteringMode == 1:
        imgMaxPix_x, imgMaxPix_y = findMaxPix(img)
    if CenteringMode == 2:
        y,x = ndimage.center_of_mass(img)  #y-rows, x-cols
        imgMaxPix_x = int(x)
        imgMaxPix_y = int(y)
    apSizeInMicrons = np.deg2rad(apSizeInArcsec/3600.)*focalLengthInMeters*1e6
    apSizeInPix = apSizeInMicrons/psfSampleSizeInMicrons
    apSizeInPix = np.int(np.ceil(apSizeInPix))
    imgT = np.zeros_like(img)
    ngy, ngx = img.shape
    cy = int(ngy/2)
    cx = int(ngx/2)
    imgT[cy-apSizeInPix:cy+apSizeInPix+1,
         cx-apSizeInPix:cx+apSizeInPix+1] = \
    img[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
        imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1]
    return imgT


###插值对齐-fft###
def psfCentering_FFT(image):
    """
    centering psf within an aperture by FFT
    """
    ny, nx = image.shape
    py, px = ndimage.center_of_mass(image)
    dx = (px - nx/2)
    dy = (py - ny/2)
    k=np.zeros((nx,ny,2),dtype=float)
    fg=np.fft.fft2(image)
    ge =np.zeros_like(fg)

    inx = int(nx/2)
    jny = int(ny/2)
    #prepare for the phase multiply matrix
    #left bottom
    for i in range(inx+1):
        for j in range(jny+1):
            k[i][j][0]=i;
            k[i][j][1]=j;
    #top right
    for i in range(inx-1):
        for j in range(jny-1):
            k[i+inx+1][j+jny+1][0]=(-(nx/2-1)+i)
            k[i+inx+1][j+jny+1][1]=(-(ny/2-1)+j)
    #bottom right
    for i in range(inx+1):
        for j in range(jny-1):
            k[i][j+jny+1][0]=i
            k[i][j+jny+1][1]=(-(ny/2-1)+j)
    #top left
    for i in range(inx-1):
        for j in range(int(jny+1)):
            k[i+inx+1][j][0]=(-(nx/2-1)+i)
            k[i+inx+1][j][1]=j
    for i in range(nx):
        for j in range(ny):
            ge[i][j]=fg[i][j]*np.exp(2.*np.pi*(dx*k[i][j][0]/nx+dy*k[i][j][1]/ny)*1j)
    get=np.fft.ifft2(ge).real
    return(get)


###图像叠加###
def psfStack(*psfMat):
    """
    stacked image from the different psfs

    Parameters:
        *psfMat (numpy.array): the different psfs for stacking

    Returns:
        img (numpy.array): image
    """
    nn = len(psfMat)
    img = np.zeros_like(psfMat[0])
    for ii in range(nn):
        img += psfMat[ii]/np.sum(psfMat[ii])
    img /= np.sum(img)
    return img


###计算PSF椭率-接口###
def psfSizeCalculator(psfMat, psfSampleSize=2.5, CalcPSFcenter=True, SigRange=True, TailorScheme=2, cenPix=None):
    """
    calculate psf size & ellipticity

    Parameters:
        psfMat (numpy.array): image
        psfSampleSize (float-optional): psf size in microns.
        CalcPSFcenter (bool-optional): whether calculate psf center. Default: True
        SigRange (bool-optional): whether use psf tailor. Default: False
        TailorScheme (int-optional): which method for psf tailor. Default: 1
    Returns:
        cenX, cenY (float, float): the pixel position of the mass center
        sz (float): psf size
        e1, e2 (float, float): psf ellipticity
        REE80 (float): radius of REE80 in arcseconds
    """
    psfSampleSize = psfSampleSize*1e-3 #mm

    REE80 = -1.0  ##encircling 80% energy
    if SigRange is True:
        if TailorScheme == 1:
            psfMat = imSigRange(psfMat, fraction=0.80)
            psfInfo['psfMat'] = psfMat  #set on/off
        if TailorScheme == 2:
            #img = psfTailor(psfMat, apSizeInArcsec=0.5)
            imgX, REE80 = psfEncircle(psfMat, cenPix=cenPix)
            #psfMat = img
            REE80 = REE80[0]

    if CalcPSFcenter is True:
        img = psfMat/np.sum(psfMat)
        y,x = ndimage.center_of_mass(img)  #y-rows, x-cols
        cenX = x
        cenY = y
    if CalcPSFcenter is False:
        cenPix_X = psfMat.shape[1]/2 #90
        cenPix_Y = psfMat.shape[0]/2 #90
        cenX = cenPix_X + psfInfo['centroid_x']/psfSampleSize
        cenY = cenPix_Y - psfInfo['centroid_y']/psfSampleSize

    pixSize = 1
    sz, e1, e2 = psfSecondMoments(psfMat, cenX, cenY, pixSize=pixSize)

    return cenX, cenY, sz, e1, e2, REE80


###计算PSF椭率###
def psfSecondMoments(psfMat, cenX, cenY, pixSize=1):
    """
    estimate the psf ellipticity by the second moment of surface brightness

    Parameters:
        psfMat (numpy.array-float): image
        cenX, cenY (float, float): pixel position of the psf center
        pixSize (float-optional): pixel size

    Returns:
        sz (float): psf size
        e1, e2 (float, float): psf ellipticity
    """
    apr = 0.5 #arcsec, 0.5角秒内测量
    fl  = 28. #meters
    pxs = 5.0 #microns
    apr = np.deg2rad(apr/3600.)*fl*1e6
    apr = apr/pxs
    apr = np.int(np.ceil(apr))

    I = psfMat
    ncol = I.shape[1]
    nrow = I.shape[0]
    w   = 0.0
    w11 = 0.0
    w12 = 0.0
    w22 = 0.0
    for icol in range(ncol):
        for jrow in range(nrow):
            x = icol*pixSize - cenX
            y = jrow*pixSize - cenY
            rr = np.sqrt(x*x + y*y)
            wgt= 0.0
            if rr <= apr:
                wgt = 1.0
            w   += I[jrow, icol]*wgt
            w11 += x*x*I[jrow, icol]*wgt
            w12 += x*y*I[jrow, icol]*wgt
            w22 += y*y*I[jrow, icol]*wgt
    w11 /= w
    w12 /= w
    w22 /= w
    sz = w11 + w22
    e1 = (w11 - w22)/sz
    e2 = 2.0*w12/sz

    return sz, e1, e2


###计算REE80###
def psfEncircle(img, fraction=0.8, psfSampleSizeInMicrons=2.5, focalLengthInMeters=28, cenPix=None):
    """
    psf tailor within a given percentage.

    Parameters:
        img (numpy.array-float): image
        fraction (float-optional): a percentage for psf tailor.
        psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
        focalLengthInMeters (float-optional): csst focal length im meters.
    Returns:
        img*wgt (numpy.array-float): image
        REE80 (float): radius of REE80 in arcseconds.
    """
    #imgMaxPix_x, imgMaxPix_y = findMaxPix(img)
    y,x = ndimage.center_of_mass(img)  #y-rows, x-cols
    imgMaxPix_x = x #int(x)
    imgMaxPix_y = y #int(y)
    if cenPix != None:
        imgMaxPix_x = cenPix[0]
        imgMaxPix_y = cenPix[1]

    im1 = img.copy()
    im1size = im1.shape

    dis = np.zeros_like(img)
    for irow in range(im1size[0]):
        for icol in range(im1size[1]):
            dx = icol - imgMaxPix_x
            dy = irow - imgMaxPix_y
            dis[irow, icol] = np.hypot(dx, dy)

    nn = im1size[1]*im1size[0]
    disX = dis.reshape(nn)
    disXsortId = np.argsort(disX)

    imgX = img.reshape(nn)
    imgY = imgX[disXsortId]
    psfFrac = np.cumsum(imgY)/np.sum(imgY)
    ind = np.where(psfFrac > fraction)[0][0]

    wgt = np.ones_like(dis)
    #wgt[np.where(dis > dis[np.where(img == imgY[ind])])] = 0

    REE80 = np.rad2deg(dis[np.where(img == imgY[ind])]*psfSampleSizeInMicrons*1e-6/focalLengthInMeters)*3600
    return img*wgt, REE80


###图像能量百分比查找###
def imSigRange(img, fraction=0.80):
    """
    extract the image within x-percent (DISCARD)

    Parameters:
        img (numpy.array-float): image
        fraction (float-optional): a percentage

    Returns:
        im1 (numpy.array-float): image
    """
    im1 = img.copy()
    im1size = im1.shape
    im2 = np.sort(im1.reshape(im1size[0]*im1size[1]))
    im2 = im2[::-1]
    im3 = np.cumsum(im2)/np.sum(im2)
    loc = np.where(im3 > fraction)
    #print(im3[loc[0][0]], im2[loc[0][0]])
    im1[np.where(im1 <= im2[loc[0][0]])]=0

    return im1


###孔径内图像裁剪###
def psfTailor(img, apSizeInArcsec=0.5, psfSampleSizeInMicrons=5, focalLengthInMeters=28, cenPix=None):
    """
    psf tailor within a given aperture size

    Parameters:
        img (numpy.array-float): image
        apSizeInArcsec (float-optional): aperture size in arcseconds.
        psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
        focalLengthInMeters (float-optional): csst focal length im meters.
    Returns:
        imgT (numpy.array-float): image
    """
    #imgMaxPix_x, imgMaxPix_y = findMaxPix(img)
    y,x = ndimage.center_of_mass(img)  #y-rows, x-cols
    imgMaxPix_x = int(x)
    imgMaxPix_y = int(y)
    if cenPix != None:
        imgMaxPix_x = int(cenPix[0])
        imgMaxPix_y = int(cenPix[1])

    apSizeInMicrons = np.deg2rad(apSizeInArcsec/3600.)*focalLengthInMeters*1e6
    apSizeInPix = apSizeInMicrons/psfSampleSizeInMicrons
    apSizeInPix = np.int(np.ceil(apSizeInPix))
    print('apSizeInPix=',apSizeInPix)
    imgT = np.zeros_like(img)
    imgT[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
         imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1] = \
    img[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
        imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1]
    return imgT


###centroid with a window###
def centroidWgt(img, nt=160):
    #libCentroid = ctypes.CDLL('/public/home/weichengliang/lnData/CSST_new_framwork/csstPSF/libCentroid/libCentroid.so')  # CDLL加载库
    libCentroid = ctypes.CDLL('/public/home/weichengliang/lnData/CSST_new_framwork/csstPSF_20210108/libCentroid/libCentroid.so')  # CDLL加载库
    libCentroid.centroidWgt.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_double)]
    libCentroid.imSplint.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_float)]

    imx = img/np.sum(img)
    ny, nx = imx.shape

    #imx centroid
    nn = nx*ny
    arr   = (ctypes.c_float*nn)()
    arr[:] = imx.reshape(nn)
    para   = (ctypes.c_double*10)()
    libCentroid.centroidWgt(arr, ny, nx, para)
    imx_cy = para[3] #irow
    imx_cx = para[4] #icol

    #imx -> imy
    nxt=nyt=nt
    nn=nxt*nyt
    yat = (ctypes.c_float*nn)()
    libCentroid.imSplint(arr, ny, nx, para, nxt, nyt, yat)
    imy = np.array(yat[:]).reshape([nxt, nyt])

    return imy, imx_cx, imx_cy

'''
def psfCentering_wgt(ipsfMat, psf_image_x, psf_image_y, psfSampleSizeInMicrons=5.0):
    img, cx, cy = centroidWgt(ipsfMat, nt=160)
    
    nrows, ncols = ipsfMat.shape
    cyt = (cy + nrows/2)*psfSampleSizeInMicrons*1e-3 +psf_image_y
    cxt = (cx + ncols/2)*psfSampleSizeInMicrons*1e-3 +psf_image_x
    return img, cxt, cyt
'''




###binning image###
def binningPSF(img, ngg):
    imgX = img.reshape(ngg, img.shape[0]//ngg, ngg, img.shape[1]//ngg).mean(-1).mean(1)
    return imgX