tt.py 3.91 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import matplotlib.pyplot as plt
import ctypes
import galsim

libCentroid = ctypes.CDLL('../libCentroid.so')  # CDLL加载库
print('load libCenroid')


libCentroid.centroidWgt.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_double)]

'''
IMAGE_WIDTH = 180
IMAGE_HEIGHT = 180
dx = 0.#275
dy =-0.#393
center_x = 90 +dx #89.5 #IMAGE_WIDTH/2 -0.
center_y = 90 +dy #89.5 #IMAGE_HEIGHT/2+0.

R = np.sqrt(center_x**2 + center_y**2)
Gauss_map = np.zeros((IMAGE_HEIGHT, IMAGE_WIDTH))
for i in range(IMAGE_HEIGHT):
    for j in range(IMAGE_WIDTH):
        dis = (i-center_y)**2+(j-center_x)**2
        Gauss_map[i, j] = np.exp(-0.5*dis/R)

ymap = galsim.InterpolatedImage(galsim.ImageF(Gauss_map), scale=0.01)
zmap = ymap.shear(g1 = 0.15, g2=0.27)
Gauss_map = zmap.drawImage(nx = 180, ny = 180, scale=0.01).array


fig=plt.figure(figsize=(5,5))
plt.imshow(Gauss_map, origin='lower')
imx = Gauss_map#/np.sum(Gauss_map)
ny,nx = imx.shape
print(nx, ny, np.max(imx))
nn = nx*ny
arr   = (ctypes.c_float*nn)()
arr[:] = imx.reshape(nn)
para   = (ctypes.c_double*10)()
libCentroid.centroidWgt(arr, ny, nx, para)

print('haha')
print(para[0:5])
cx = para[3]
cy = para[4]
print('{:}'.format(cx), '{:}'.format(cy))

from scipy import ndimage
cx, cy = ndimage.center_of_mass(imx)
print('center_of_mass:', cx, cy)
plt.plot(para[4], para[3], 'bx', ms = 15)
plt.plot(cy, cx, 'r+', ms = 15)
plt.annotate('dx,dy:', [10, 170], color='w')
plt.annotate('{:8.5}, {:8.5}'.format(dx, dy), [10, 160], color='w')
plt.annotate('cx, cy:', [10, 150], color='w')
plt.annotate('{:0<8.5}, {:0<8.5}'.format(center_x, center_y), [10, 140], color='w')
plt.annotate('{:0<8.5}, {:0<8.5}'.format(para[4], para[3]), [10, 130], color='w')
plt.annotate('{:0<8.5}, {:0<8.5}'.format(cy, cx), [10, 120], color='w')


'''
from scipy.io import loadmat
data = loadmat('/Users/chengliangwei/csstPSFdata/CSSOS_psf_ciomp/ccd13/wave_1/5_psf_array/psf_10.mat')
#plt.imshow(data['psf'])
#plt.show()
imx = data['psf']
imx = imx/np.sum(imx)
ny,nx = imx.shape
print(nx, ny)
nn = nx*ny
arr   = (ctypes.c_float*nn)()
arr[:] = imx.reshape(nn)
para   = (ctypes.c_double*10)()
print(arr[0:10])
#libCentroid.centroidWgt(arr, ny, nx, para)
nxt = nyt = 160
nn = nxt*nyt
yat = (ctypes.c_float*nn)()
libCentroid.centroidWgt(arr, ny, nx, para,nxt, nyt, yat)
mm = np.array(yat[:]).reshape([nxt, nyt])
imx = mm

print('haha')
print(para[0:5])
cx = para[3]
cy = para[4]
print(cx, cy)

fig = plt.figure(figsize=(12, 12))
cpix = 80
dpix = 10
#plt.imshow(np.log10(imx[cpix-dpix:cpix+dpix, cpix-dpix:cpix+dpix]), origin='lower')
plt.imshow(imx[cpix-dpix:cpix+dpix, cpix-dpix:cpix+dpix], origin='lower')
plt.plot(cy - cpix+dpix, cx - cpix+dpix, 'bx', ms = 20)
'''
from scipy import ndimage
cx, cy = ndimage.center_of_mass(imx)
print(cx, cy)
plt.plot(cy - cpix+dpix, cx - cpix+dpix, 'r+', ms = 20)

maxIndx = np.argmax(imx)
maxIndx = np.unravel_index(maxIndx, np.array(imx).shape)
imgMaxPix_x = maxIndx[1]
imgMaxPix_y = maxIndx[0]
apSizeInPix = 23
imgT = np.zeros_like(imx)
imgT[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
    imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1] = \
    imx[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
        imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1]
cx, cy = ndimage.center_of_mass(imgT)
print(cx, cy)
plt.plot(cy - cpix+dpix, cx - cpix+dpix, 'b+', ms = 15)



maxIndx = np.argmax(imx)
maxIndx = np.unravel_index(maxIndx, np.array(imx).shape)
imgMaxPix_x = maxIndx[1]
imgMaxPix_y = maxIndx[0]
apSizeInPix =5 
imgT = np.zeros_like(imx)
imgT[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
    imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1] = \
    imx[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
        imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1]
cx, cy = ndimage.center_of_mass(imgT)
print(cx, cy)
plt.plot(cy - cpix+dpix, cx - cpix+dpix, 'm+', ms = 10)



print('maxPix:', imgMaxPix_x, imgMaxPix_y, imx[imgMaxPix_y, imgMaxPix_x])
'''

plt.show()