FocalPlane.py 3.83 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
import galsim
import numpy as np


class FocalPlane(object):
    def __init__(self, chip_list=None, survey_type='Photometric', bad_chips=None):
        """Get the focal plane layout
        """
        self.nchips = 42
        self.ignore_chips = []

Wei Chengliang's avatar
Wei Chengliang committed
12
        if bad_chips is None:
Fang Yuedong's avatar
Fang Yuedong committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            self.bad_chips = []
        else:
            self.bad_chips = bad_chips
            for chip_id in bad_chips:
                self.ignore_chips.append(chip_id)

        if chip_list is not None:
            for i in range(42):
                if not (i+1 in chip_list):
                    self.ignore_chips.append(i+1)
        elif survey_type == 'Photometric':
            for i in range(5):
                self.ignore_chips.append(i+1)
                self.ignore_chips.append(i+26)
            self.ignore_chips.append(10)
            self.ignore_chips.append(21)
            for i in range(31, 43):
                self.ignore_chips.append(i)
        elif survey_type == 'Spectroscopic':
            for i in range(6, 26):
                if i == 10 or i == 21:
                    continue
                else:
                    self.ignore_chips.append(i)
            for i in range(31, 43):
                self.ignore_chips.append(i)
        elif survey_type == 'FGS':
            for i in range(1, 31):
                self.ignore_chips.append(i)

        self.nchip_x = 6
        self.nchip_y = 5
        self.npix_tot_x = 59516
        self.npix_tot_y = 49752
        self.npix_gap_x = (534, 1309)
        self.npix_gap_y = 898

        self._getCenter()

    def _getCenter(self):
        self.cen_pix_x = 0
        self.cen_pix_y = 0

    def getChipLabel(self, chipID):
        return str("0%d" % chipID)[-2:]

    def isBadChip(self, chipID):
        """Check if chip #(chipID) on the focal plane is bad or not
        """
        return (chipID in self.bad_chips)

    def isIgnored(self, chipID):
        return (chipID in self.ignore_chips)

    def getTanWCS(self, ra, dec, img_rot, pix_scale, xcen=None, ycen=None, logger=None):
        """ Get the WCS of the image mosaic using Gnomonic/TAN projection

        Parameter:
            ra, dec:    float
                        (RA, Dec) of pointing of optical axis
            img_rot:    galsim Angle object
                        Rotation of image
            pix_scale:  float
                        Pixel size in unit of as/pix
        Returns:
            WCS of the focal plane
        """
        if logger is not None:
            logger.info(
                "    Construct the wcs of the entire image mosaic using Gnomonic/TAN projection")
Wei Chengliang's avatar
Wei Chengliang committed
83
        if (xcen is None) or (ycen is None):
Fang Yuedong's avatar
Fang Yuedong committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            xcen = self.cen_pix_x
            ycen = self.cen_pix_y

        dudx = -np.cos(img_rot.rad) * pix_scale
        dudy = +np.sin(img_rot.rad) * pix_scale
        dvdx = -np.sin(img_rot.rad) * pix_scale
        dvdy = -np.cos(img_rot.rad) * pix_scale

        moscen = galsim.PositionD(x=xcen, y=ycen)
        sky_center = galsim.CelestialCoord(
            ra=ra*galsim.degrees, dec=dec*galsim.degrees)
        affine = galsim.AffineTransform(dudx, dudy, dvdx, dvdy, origin=moscen)
        WCS = galsim.TanWCS(affine, sky_center, units=galsim.arcsec)

        return WCS

    def getSkyCoverage(self, wcs, x0, x1, y0, y1):
        """
        The sky coverage of an area
        """
        r2d = 180.0/np.pi
        s1 = wcs.toWorld(galsim.PositionD(x0, y0))
        s2 = wcs.toWorld(galsim.PositionD(x0, y1))
        s3 = wcs.toWorld(galsim.PositionD(x1, y0))
        s4 = wcs.toWorld(galsim.PositionD(x1, y1))
        ra = [s1.ra.rad*r2d, s2.ra.rad*r2d, s3.ra.rad*r2d, s4.ra.rad*r2d]
        dec = [s1.dec.rad*r2d, s2.dec.rad*r2d, s3.dec.rad*r2d, s4.dec.rad*r2d]

        return galsim.BoundsD(min(ra), max(ra), min(dec), max(dec))