FlatLED.py 16.2 KB
Newer Older
Zhang Xin's avatar
Zhang Xin committed
1
2
3
4
5


import galsim
import os, sys
import numpy as np
Fang Yuedong's avatar
Fang Yuedong committed
6
import time
Zhang Xin's avatar
Zhang Xin committed
7
8
import math
import astropy.constants as cons
Fang Yuedong's avatar
Fang Yuedong committed
9
10
from astropy.io import fits
from scipy.interpolate import griddata
Zhang Xin's avatar
Zhang Xin committed
11
12
13
14
15
16
17
from astropy.table import Table
from ObservationSim.MockObject.SpecDisperser import SpecDisperser
from scipy import interpolate

from ObservationSim.MockObject.MockObject import MockObject
# from ObservationSim.Straylight import calculateSkyMap_split_g

18
19
20
21
22
23
24
try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources


Zhang Xin's avatar
Zhang Xin committed
25
26
27
28
29
30
31
32
33
34
35
36
37
# flatDir = '/Volumes/EAGET/LED_FLAT/'
LED_name = ['LED1', 'LED2', 'LED3', 'LED4', 'LED5', 'LED6', 'LED7', 'LED8', 'LED9', 'LED10', 'LED11', 'LED12', 'LED13',
            'LED14']
cwaves_name = {'LED1': '275', 'LED2': '310', 'LED3': '430', 'LED4': '505', 'LED5': '545', 'LED6': '590', 'LED7': '670',
          'LED8': '760', 'LED9': '940', 'LED10': '940', 'LED11': '1050', 'LED12': '1050',
          'LED13': '340', 'LED14': '365'}

cwaves = {'LED1': 2750, 'LED2': 3100, 'LED3': 4300, 'LED4': 5050, 'LED5': 5250, 'LED6': 5900, 'LED7': 6700,
          'LED8': 7600, 'LED9': 8800, 'LED10': 9400, 'LED11': 10500, 'LED12': 15500, 'LED13': 3400, 'LED14': 3650}
cwaves_fwhm = {'LED1': 110, 'LED2': 120, 'LED3': 200, 'LED4': 300, 'LED5': 300, 'LED6': 130, 'LED7': 210,
          'LED8': 260, 'LED9': 400, 'LED10': 370, 'LED11': 500, 'LED12': 1400, 'LED13': 90, 'LED14': 100}
# LED_QE = {'LED1': 0.3, 'LED2': 0.4, 'LED13': 0.5, 'LED14': 0.5, 'LED10': 0.4}
# e-/ms
38
39
40
41
42
43
44
45
46
47
48
49
# fluxLED = {'LED1': 0.16478729, 'LED2': 0.084220931, 'LED3': 2.263360617, 'LED4': 2.190623489, 'LED5': 0.703504768,
#            'LED6': 0.446117963, 'LED7': 0.647122098, 'LED8': 0.922313442,
#            'LED9': 0.987278143, 'LED10': 2.043989167, 'LED11': 0.612571429, 'LED12': 1.228915663, 'LED13': 0.17029384,
#            'LED14': 0.27842925}

# e-/ms
fluxLED = {'LED1': 15, 'LED2': 15, 'LED3': 12.5, 'LED4': 9, 'LED5': 9,
           'LED6': 9, 'LED7': 9, 'LED8': 9, 'LED9': 9, 'LED10': 12.5, 'LED11': 15, 'LED12':15, 'LED13': 12.5,
           'LED14': 12.5}
# fluxLEDL = {'LED1': 10, 'LED2': 10, 'LED3': 10, 'LED4': 10, 'LED5': 10,
#            'LED6': 10, 'LED7': 10, 'LED8': 10, 'LED9': 10, 'LED10': 10, 'LED11': 10, 'LED12':10, 'LED13': 10,
#            'LED14': 10}
Zhang Xin's avatar
Zhang Xin committed
50
51

mirro_eff = {'GU':0.61, 'GV':0.8, 'GI':0.8}
52
# mirro_eff = {'GU':1, 'GV':1, 'GI':1}
Zhang Xin's avatar
Zhang Xin committed
53
54

class FlatLED(object):
55
    def __init__(self, chip,filt, flatDir = None, logger=None):
Zhang Xin's avatar
Zhang Xin committed
56
57
58
59
        # self.led_type_list = led_type_list
        self.filt = filt
        self.chip = chip
        self.logger = logger
60
61
62
63
64
65
66
67
68
        if flatDir is not None:
            self.flatDir = flatDir
        else:
            try:
                with pkg_resources.files('ObservationSim.MockObject.data.led').joinpath("") as ledDir:
                    self.flatDir = ledDir.as_posix()
            except AttributeError:
                with pkg_resources.path('ObservationSim.MockObject.data.led', "") as ledDir:
                    self.flatDir = ledDir.as_posix()
Zhang Xin's avatar
Zhang Xin committed
69
70
71
72
73
74

    ###
    ### return LED flat, e/s
    ###
    def getLEDImage(self, led_type='LED1'):
        # cwave = cwaves[led_type]
75
        flat = fits.open(os.path.join(self.flatDir, 'model_' + cwaves_name[led_type] + 'nm.fits'))
Zhang Xin's avatar
Zhang Xin committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        xlen = flat[0].header['NAXIS1']
        ylen = 601
        x = np.linspace(0, self.chip.npix_x * 6, xlen)
        y = np.linspace(0, self.chip.npix_y * 5, ylen)
        xx, yy = np.meshgrid(x, y)

        a1 = flat[0].data[0:ylen, 0:xlen]
        # z = np.sin((xx+yy+xx**2+yy**2))
        # fInterp = interp2d(xx, yy, z, kind='linear')

        X_ = np.hstack((xx.flatten()[:, None], yy.flatten()[:, None]))
        Z_ = a1.flatten()

        n_x = np.arange(0, self.chip.npix_x * 6, 1)
        n_y = np.arange(0, self.chip.npix_y * 5, 1)

        M, N = np.meshgrid(n_x, n_y)

        i = self.chip.rowID - 1
        j = self.chip.colID - 1
        U = griddata(X_, Z_, (
            M[self.chip.npix_y * i:self.chip.npix_y * (i + 1), self.chip.npix_x * j:self.chip.npix_x * (j + 1)],
            N[self.chip.npix_y * i:self.chip.npix_y * (i + 1), self.chip.npix_x * j:self.chip.npix_x * (j + 1)]),
                     method='cubic')
        U = U/np.mean(U)
        flatImage = U*fluxLED[led_type]*1000
        return flatImage

    def drawObj_LEDFlat_img(self, led_type_list=['LED1'], exp_t_list=[0.1]):
        if len(led_type_list) > len(exp_t_list):
            return np.ones([self.chip.npix_y,self.chip.npix_x])

        ledFlat = np.zeros([self.chip.npix_y,self.chip.npix_x])
109
110
111
112
113

        ledStat = '00000000000000'
        ledTimes = [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]

        nledStat = '2'
Zhang Xin's avatar
Zhang Xin committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        for i in np.arange(len(led_type_list)):
            led_type = led_type_list[i]
            exp_t = exp_t_list[i]
            unitFlatImg = self.getLEDImage(led_type=led_type)
            led_wave = cwaves[led_type]
            led_fwhm = cwaves_fwhm[led_type]
            led_spec = self.gaussian1d_profile_led(led_wave, led_fwhm)
            speci = interpolate.interp1d(led_spec['WAVELENGTH'], led_spec['FLUX'])
            w_list = np.arange(self.filt.blue_limit, self.filt.red_limit, 0.5) #A

            f_spec = speci(w_list)
            ccd_bp = self.chip._getChipEffCurve(self.chip.filter_type)
            ccd_eff = ccd_bp.__call__(w_list / 10.)
            filt_bp = self.filt.filter_bandpass
            fil_eff = filt_bp.__call__(w_list / 10.)
            t_spec = np.trapz(f_spec*ccd_eff*fil_eff, w_list)
Zhang Xin's avatar
Zhang Xin committed
130
            # print(i, np.mean(unitFlatImg), t_spec, exp_t)
Zhang Xin's avatar
Zhang Xin committed
131
            unitFlatImg = unitFlatImg * t_spec
132
            # print("DEBUG1:---------------",np.mean(unitFlatImg))
Zhang Xin's avatar
Zhang Xin committed
133
            ledFlat = ledFlat+unitFlatImg*exp_t
134
135
136
137

            ledStat = ledStat[0:int(led_type[3:])-1]+nledStat+ledStat[int(led_type[3:]):]
            ledTimes[int(led_type[3:])-1] = exp_t * 1000
        return ledFlat, ledStat, ledTimes
Zhang Xin's avatar
Zhang Xin committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    def drawObj_LEDFlat_slitless(self, led_type_list=['LED1'], exp_t_list=[0.1]):
        if len(led_type_list) != len(exp_t_list):
            return np.ones([self.chip.npix_y,self.chip.npix_x])

        ledFlat = np.zeros([self.chip.npix_y,self.chip.npix_x])
        for i in np.arange(len(led_type_list)):
            led_type = led_type_list[i]
            exp_t = exp_t_list[i]
            unitFlatImg = self.getLEDImage(led_type=led_type)
            ledFlat_ = unitFlatImg*exp_t
            ledFlat_ = ledFlat_ / mirro_eff[self.filt.filter_type]
            ledFlat_.astype(np.float32)
            led_wave = cwaves[led_type]
            led_fwhm = cwaves_fwhm[led_type]
            led_spec = self.gaussian1d_profile_led(led_wave, led_fwhm)
154
            # print("DEBUG1:---------------",np.mean(ledFlat_))
Zhang Xin's avatar
Zhang Xin committed
155
156
157
158
159
160
161
162
163
164
            ledspec_map = self.calculateLEDSpec(
                skyMap=ledFlat_,
                blueLimit=self.filt.blue_limit,
                redLimit=self.filt.red_limit,
                conf=self.chip.sls_conf,
                pixelSize=self.chip.pix_scale,
                isAlongY=0,
                flat_cube=self.chip.flat_cube, led_spec=led_spec)

            ledFlat = ledFlat + ledspec_map
165
166
167
            ledStat = ledStat[0:int(led_type[3:])-1]+nledStat+ledStat[int(led_type[3:]):]
            ledTimes[int(led_type[3:])-1] = exp_t * 1000
        return ledFlat, ledStat, ledTimes
Zhang Xin's avatar
Zhang Xin committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    def drawObj_LEDFlat(self, led_type_list=['LED1'], exp_t_list=[0.1]):
        if self.chip.survey_type == "photometric":
            return self.drawObj_LEDFlat_img(led_type_list=led_type_list, exp_t_list=exp_t_list)
        elif self.chip.survey_type == "spectroscopic":
            return self.drawObj_LEDFlat_slitless(led_type_list=led_type_list, exp_t_list=exp_t_list)


    def gaussian1d_profile_led(self, xc=5050, fwhm=300):
        sigma = fwhm/2.355
        x_radii = int(5*sigma + 1)
        xlist = np.arange(xc-x_radii, xc+x_radii, 0.5)
        xlist_ = np.zeros(len(xlist) + 2)
        xlist_[1:-1] = xlist
182
183
184
185
        xlist_[0] = 2000
        xlist_[-1] = 18000
        ids1 = xlist>xc-fwhm
        ids2 = xlist[ids1]<xc+fwhm
Zhang Xin's avatar
Zhang Xin committed
186
        data = np.exp((-(xlist-xc)*(xlist-xc))/(2*sigma*sigma))/(np.sqrt(2*math.pi)*sigma)
187
        scale = 1/np.trapz(data[ids1][ids2], xlist[ids1][ids2])
Zhang Xin's avatar
Zhang Xin committed
188
        data_ = np.zeros(len(xlist) + 2)
189
190
        data_[1:-1] = data*scale
        # print("DEBUG:-------------------------------",np.sum(data_), scale)
Zhang Xin's avatar
Zhang Xin committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        return Table(np.array([xlist_.astype(np.float32), data_.astype(np.float32)]).T, names=('WAVELENGTH', 'FLUX'))

    def calculateLEDSpec(self, skyMap=None, blueLimit=4200, redLimit=6500,
                                conf=[''], pixelSize=0.074, isAlongY=0,
                                split_pos=3685, flat_cube=None, led_spec=None):

        conf1 = conf[0]
        conf2 = conf[0]
        if np.size(conf) == 2:
            conf2 = conf[1]

        skyImg = galsim.Image(skyMap, xmin=0, ymin=0)

        tbstart = blueLimit
        tbend = redLimit

        fimg = np.zeros_like(skyMap)

        fImg = galsim.Image(fimg)

        spec = led_spec
        if isAlongY == 0:
            directParm = 0
        if isAlongY == 1:
            directParm = 1

        if split_pos >= skyImg.array.shape[directParm]:
            skyImg1 = galsim.Image(skyImg.array)
            origin1 = [0, 0]
            # sdp = specDisperser.specDisperser(orig_img=skyImg1, xcenter=skyImg1.center.x, ycenter=skyImg1.center.y,
            #                                   full_img=fimg, tar_spec=spec, band_start=tbstart, band_end=tbend,
            #                                   origin=origin1,
            #                                   conf=conf1)
            # sdp.compute_spec_orders()

            y_len = skyMap.shape[0]
            x_len = skyMap.shape[1]
            delt_x = 100
            delt_y = 100

            sub_y_start_arr = np.arange(0, y_len, delt_y)
            sub_y_end_arr = sub_y_start_arr + delt_y
            sub_y_end_arr[-1] = min(sub_y_end_arr[-1], y_len)

            sub_x_start_arr = np.arange(0, x_len, delt_x)
            sub_x_end_arr = sub_x_start_arr + delt_x
            sub_x_end_arr[-1] = min(sub_x_end_arr[-1], x_len)

            for i, k1 in enumerate(sub_y_start_arr):
                sub_y_s = k1
                sub_y_e = sub_y_end_arr[i]

                sub_y_center = (sub_y_s + sub_y_e) / 2.

                for j, k2 in enumerate(sub_x_start_arr):
                    sub_x_s = k2
                    sub_x_e = sub_x_end_arr[j]

                    skyImg_sub = galsim.Image(skyImg.array[sub_y_s:sub_y_e, sub_x_s:sub_x_e])
                    origin_sub = [sub_y_s, sub_x_s]
                    sub_x_center = (sub_x_s + sub_x_e) / 2.

                    sdp = SpecDisperser(orig_img=skyImg_sub, xcenter=sub_x_center, ycenter=sub_y_center,
                                        origin=origin_sub,
                                        tar_spec=spec,
                                        band_start=tbstart, band_end=tbend,
                                        conf=conf2,
258
                                        flat_cube=flat_cube)
Zhang Xin's avatar
Zhang Xin committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

                    spec_orders = sdp.compute_spec_orders()

                    for k, v in spec_orders.items():
                        img_s = v[0]
                        origin_order_x = v[1]
                        origin_order_y = v[2]
                        ssImg = galsim.ImageF(img_s)
                        ssImg.setOrigin(origin_order_x, origin_order_y)
                        bounds = ssImg.bounds & fImg.bounds
                        if bounds.area() == 0:
                            continue
                        fImg[bounds] = fImg[bounds] + ssImg[bounds]



        else:


            # sdp.compute_spec_orders()
            y_len = skyMap.shape[0]
            x_len = skyMap.shape[1]
            delt_x = 500
            delt_y = y_len

            sub_y_start_arr = np.arange(0, y_len, delt_y)
            sub_y_end_arr = sub_y_start_arr + delt_y
            sub_y_end_arr[-1] = min(sub_y_end_arr[-1], y_len)

            delt_x = split_pos - 0
            sub_x_start_arr = np.arange(0, split_pos, delt_x)
            sub_x_end_arr = sub_x_start_arr + delt_x
            sub_x_end_arr[-1] = min(sub_x_end_arr[-1], split_pos)

            for i, k1 in enumerate(sub_y_start_arr):
                sub_y_s = k1
                sub_y_e = sub_y_end_arr[i]

                sub_y_center = (sub_y_s + sub_y_e) / 2.

                for j, k2 in enumerate(sub_x_start_arr):
                    sub_x_s = k2
                    sub_x_e = sub_x_end_arr[j]
                    # print(i,j,sub_y_s, sub_y_e,sub_x_s,sub_x_e)
                    T1 = time.time()
                    skyImg_sub = galsim.Image(skyImg.array[sub_y_s:sub_y_e, sub_x_s:sub_x_e])
                    origin_sub = [sub_y_s, sub_x_s]
                    sub_x_center = (sub_x_s + sub_x_e) / 2.

                    sdp = SpecDisperser(orig_img=skyImg_sub, xcenter=sub_x_center, ycenter=sub_y_center,
                                        origin=origin_sub,
                                        tar_spec=spec,
                                        band_start=tbstart, band_end=tbend,
                                        conf=conf1,
                                        flat_cube=flat_cube)

                    spec_orders = sdp.compute_spec_orders()

                    for k, v in spec_orders.items():
                        img_s = v[0]
                        origin_order_x = v[1]
                        origin_order_y = v[2]
                        ssImg = galsim.ImageF(img_s)
                        ssImg.setOrigin(origin_order_x, origin_order_y)
                        bounds = ssImg.bounds & fImg.bounds
                        if bounds.area() == 0:
                            continue
                        fImg[bounds] = fImg[bounds] + ssImg[bounds]

                    T2 = time.time()

                    print('time: %s ms' % ((T2 - T1) * 1000))

            delt_x = x_len - split_pos
            sub_x_start_arr = np.arange(split_pos, x_len, delt_x)
            sub_x_end_arr = sub_x_start_arr + delt_x
            sub_x_end_arr[-1] = min(sub_x_end_arr[-1], x_len)

            for i, k1 in enumerate(sub_y_start_arr):
                sub_y_s = k1
                sub_y_e = sub_y_end_arr[i]

                sub_y_center = (sub_y_s + sub_y_e) / 2.

                for j, k2 in enumerate(sub_x_start_arr):
                    sub_x_s = k2
                    sub_x_e = sub_x_end_arr[j]
                    # print(i,j,sub_y_s, sub_y_e,sub_x_s,sub_x_e)

                    T1 = time.time()

                    skyImg_sub = galsim.Image(skyImg.array[sub_y_s:sub_y_e, sub_x_s:sub_x_e])
                    origin_sub = [sub_y_s, sub_x_s]
                    sub_x_center = (sub_x_s + sub_x_e) / 2.

                    sdp = SpecDisperser(orig_img=skyImg_sub, xcenter=sub_x_center, ycenter=sub_y_center,
                                        origin=origin_sub,
                                        tar_spec=spec,
                                        band_start=tbstart, band_end=tbend,
                                        conf=conf2,
                                        flat_cube=flat_cube)

                    spec_orders = sdp.compute_spec_orders()

                    for k, v in spec_orders.items():
                        img_s = v[0]
                        origin_order_x = v[1]
                        origin_order_y = v[2]
                        ssImg = galsim.ImageF(img_s)
                        ssImg.setOrigin(origin_order_x, origin_order_y)
                        bounds = ssImg.bounds & fImg.bounds
                        if bounds.area() == 0:
                            continue
                        fImg[bounds] = fImg[bounds] + ssImg[bounds]
                    T2 = time.time()

                    print('time: %s ms' % ((T2 - T1) * 1000))

        if isAlongY == 1:
            fimg, tmx, tmy = rotate90(array_orig=fImg.array, xc=0, yc=0, isClockwise=0)
        else:
            fimg = fImg.array

382
        # fimg = fimg * pixelSize * pixelSize
Zhang Xin's avatar
Zhang Xin committed
383
384
385
386
387
388

        return fimg