testCat_fits.py 9.26 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import galsim
import random
import numpy as np
import h5py as h5
import healpy as hp
import astropy.constants as cons
import traceback
from astropy.coordinates import spherical_to_cartesian
from astropy.table import Table
from scipy import interpolate
from datetime import datetime

from observation_sim.mock_objects import CatalogBase, Star, Galaxy, Quasar, Stamp
from observation_sim.mock_objects._util import tag_sed, getObservedSED, getABMAG, integrate_sed_bandpass, comoving_dist
from observation_sim.astrometry.Astrometry_util import on_orbit_obs_position

import astropy.io.fits as fitsio
from observation_sim.mock_objects._util import seds, sed_assign, extAv

# (TEST)
from astropy.cosmology import FlatLambdaCDM
from astropy import constants
from astropy import units as U

try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources

NSIDE = 128


class Catalog(CatalogBase):
    def __init__(self, config, chip, pointing, chip_output, filt, **kwargs):
        super().__init__()
        self.cat_dir = config["catalog_options"]["input_path"]["cat_dir"]
        self.seed_Av = 121212  # config["catalog_options"]["seed_Av"]

        # (TEST)
        self.cosmo = FlatLambdaCDM(H0=67.66, Om0=0.3111)

        self.chip_output = chip_output
        self.filt = filt
        self.logger = chip_output.logger

        with pkg_resources.path('catalog.data', 'SLOAN_SDSS.g.fits') as filter_path:
            self.normF_star = Table.read(str(filter_path))
        with pkg_resources.path('catalog.data', 'lsst_throuput_g.fits') as filter_path:
            self.normF_galaxy = Table.read(str(filter_path))

        self.config = config
        self.chip = chip
        self.pointing = pointing

        self.max_size = 0.

        if "stamp_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["stamp_cat"] and config["catalog_options"]["stamp_yes"]:
            stamp_file = config["catalog_options"]["input_path"]["stamp_cat"]
            self.stamp_path = os.path.join(self.cat_dir, stamp_file)
            # self.stamp_SED_path = os.path.join(config["data_dir"], config["SED_templates_path"]["stamp_SED"]) ###shoule be stamp-SED
            # self._load_SED_lib_stamps() ###shoule be stamp-SED
            self.tempSed_gal, self.tempRed_gal = seds(
                "galaxy.list", seddir="/public/home/chengliang/CSSOSDataProductsSims/testCats/Templates/Galaxy/")  # only for test

        self._add_output_columns_header()
        self._get_healpix_list()
        self._load()

    def _add_output_columns_header(self):
        self.add_hdr = " model_tag teff logg feh"
        self.add_hdr += " bulgemass diskmass detA e1 e2 kappa g1 g2 size galType veldisp "

        self.add_fmt = " %10s %8.4f %8.4f %8.4f"
        self.add_fmt += " %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %4d %8.4f "
        self.chip_output.update_output_header(
            additional_column_names=self.add_hdr)

    def _get_healpix_list(self):
        self.sky_coverage = self.chip.getSkyCoverageEnlarged(
            self.chip.img.wcs, margin=0.2)
        ra_min, ra_max, dec_min, dec_max = self.sky_coverage.xmin, self.sky_coverage.xmax, self.sky_coverage.ymin, self.sky_coverage.ymax
        ra = np.deg2rad(np.array([ra_min, ra_max, ra_max, ra_min]))
        dec = np.deg2rad(np.array([dec_max, dec_max, dec_min, dec_min]))
        # vertices = spherical_to_cartesian(1., dec, ra)
        self.pix_list = hp.query_polygon(
            NSIDE,
            hp.ang2vec(np.radians(90.) - dec, ra),
            inclusive=True
        )
        # self.pix_list = hp.query_polygon(NSIDE, np.array(vertices).T, inclusive=True)
        if self.logger is not None:
            msg = str(("HEALPix List: ", self.pix_list))
            self.logger.info(msg)
        else:
            print("HEALPix List: ", self.pix_list)

    def load_norm_filt(self, obj):
        if obj.type == "stamp":
            return self.normF_galaxy  # normalize_filter for stamp
        else:
            return None

    def _load_stamps(self, stamps, pix_id=None):
        print("debug:: load_stamps")
        nstamps = len(stamps['filename'])
        self.rng_sedGal = random.Random()
        # Use healpix index as the random seed
        self.rng_sedGal.seed(float(pix_id))
        self.ud = galsim.UniformDeviate(pix_id)

        for istamp in range(nstamps):
            print("debug::", istamp)
            fitsfile = os.path.join(
                self.cat_dir, "stampCats/"+stamps['filename'][istamp].decode('utf-8'))
            print("debug::", istamp, fitsfile)
            hdu = fitsio.open(fitsfile)

            param = self.initialize_param()
            param['id'] = hdu[0].header['index']  # istamp
            param['star'] = 3      # Stamp type in .cat file
            param['ra'] = hdu[0].header['ra']
            param['dec'] = hdu[0].header['dec']
            param['pixScale'] = hdu[0].header['pixScale']
            # param['srcGalaxyID'] = hdu[0].header['srcGID']
            # param['mu']= hdu[0].header['mu']
            # param['PA']= hdu[0].header['PA']
            # param['bfrac']= hdu[0].header['bfrac']
            # param['z']= hdu[0].header['z']
            # gals['mag_true_g_lsst']
            param['mag_use_normal'] = hdu[0].header['mag_g']

            # Apply astrometric modeling
            # in C3 case only aberration
            param['ra_orig'] = param['ra']
            param['dec_orig'] = param['dec']
            if self.config["obs_setting"]["enable_astrometric_model"]:
                ra_list = [param['ra']]  # ra_arr.tolist()
                dec_list = [param['dec']]  # dec_arr.tolist()
                pmra_list = np.zeros(1).tolist()
                pmdec_list = np.zeros(1).tolist()
                rv_list = np.zeros(1).tolist()
                parallax_list = [1e-9] * 1
                dt = datetime.fromtimestamp(self.pointing.timestamp)
                date_str = dt.date().isoformat()
                time_str = dt.time().isoformat()
                ra_arr, dec_arr = on_orbit_obs_position(
                    input_ra_list=ra_list,
                    input_dec_list=dec_list,
                    input_pmra_list=pmra_list,
                    input_pmdec_list=pmdec_list,
                    input_rv_list=rv_list,
                    input_parallax_list=parallax_list,
                    input_nstars=1,
                    input_x=self.pointing.sat_x,
                    input_y=self.pointing.sat_y,
                    input_z=self.pointing.sat_z,
                    input_vx=self.pointing.sat_vx,
                    input_vy=self.pointing.sat_vy,
                    input_vz=self.pointing.sat_vz,
                    input_epoch="J2015.5",
                    input_date_str=date_str,
                    input_time_str=time_str
                )
                param['ra'] = ra_arr[0]
                param['dec'] = dec_arr[0]

            # Assign each galaxy a template SED
            param['sed_type'] = sed_assign(
                phz=param['z'], btt=param['bfrac'], rng=self.rng_sedGal)
            param['redden'] = self.tempRed_gal[param['sed_type']]
            param['av'] = 0.0
            param['redden'] = 0
            param['mu'] = 1

            # param["CSSTmag"]= True
            # param["mag_r"] = 20.
            # param['']
Wei Chengliang's avatar
Wei Chengliang committed
180
            # more keywords for stamp#
Fang Yuedong's avatar
Fang Yuedong committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
            param['image'] = hdu[0].data
            param['image'] = param['image']/(np.sum(param['image']))
            obj = Stamp(param)
            self.objs.append(obj)

    def _load(self, **kwargs):
        self.objs = []
        self.ids = 0

        if "stamp_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["stamp_cat"] and self.config["catalog_options"]["stamp_yes"]:
            stamps_cat = h5.File(self.stamp_path, 'r')['Stamps']
            print("debug::", stamps_cat.keys())

            for pix in self.pix_list:
                try:
                    stamps = stamps_cat[str(pix)]
                    print("debug::", stamps.keys())
                    self._load_stamps(stamps, pix_id=pix)
                    del stamps
                except Exception as e:
                    self.logger.error(str(e))
                    print(e)

        if self.logger is not None:
            self.logger.info("maximum galaxy size: %.4f" % (self.max_size))
            self.logger.info("number of objects in catalog: %d" %
                             (len(self.objs)))
        else:
            print("number of objects in catalog: ", len(self.objs))

    def load_sed(self, obj, **kwargs):
        if obj.type == 'stamp':
            sed_data = getObservedSED(
                sedCat=self.tempSed_gal[obj.sed_type],
                redshift=obj.z,
                av=obj.param["av"],
                redden=obj.param["redden"]
            )
            wave, flux = sed_data[0], sed_data[1]
        else:
            raise ValueError("Object type not known")
        speci = interpolate.interp1d(wave, flux)
        lamb = np.arange(2000, 11001+0.5, 0.5)
        y = speci(lamb)
        # erg/s/cm2/A --> photon/s/m2/A
        all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
        sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))

        del wave
        del flux
        return sed