An error occurred while loading the file. Please try again.
-
xin authored
fix spec error type error; modify header include primary and extention according the doc KSC-00-JK-0001-02.01
5f61cfd0
"""
generate image header
"""
import numpy as np
from astropy.io import fits
import astropy.wcs as pywcs
from collections import OrderedDict
# from scipy import math
import random
import os
import sys
import astropy.coordinates as coord
from astropy.time import Time
def chara2digit(char):
""" Function to judge and convert characters to digitals
Parameters
----------
"""
try:
float(char) # for int, long and float
except ValueError:
pass
return char
else:
data = float(char)
return data
def read_header_parameter(filename='global_header.param'):
""" Function to read the header parameters
Parameters
----------
"""
name = []
value = []
description = []
for line in open(filename):
line = line.strip("\n")
arr = line.split('|')
# csvReader = csv.reader(csvDataFile)
# for arr in csvReader:
name.append(arr[0])
# print(arr[0],arr[1])
value.append(chara2digit(arr[1]))
description.append(arr[2])
# print(value)
return name, value, description
def rotate_CD_matrix(cd, pa_aper):
"""Rotate CD matrix
Parameters
----------
cd: (2,2) array
CD matrix
pa_aper: float
Position angle, in degrees E from N, of y axis of the detector
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
Returns
-------
cd_rot: (2,2) array
Rotated CD matrix
Comments
--------
`astropy.wcs.WCS.rotateCD` doesn't work for non-square pixels in that it
doesn't preserve the pixel scale! The bug seems to come from the fact
that `rotateCD` assumes a transposed version of its own CD matrix.
"""
rad = np.deg2rad(-pa_aper)
mat = np.zeros((2,2))
mat[0,:] = np.array([np.cos(rad),-np.sin(rad)])
mat[1,:] = np.array([np.sin(rad),np.cos(rad)])
cd_rot = np.dot(mat, cd)
return cd_rot
def calcaluteSLSRotSkyCoor(pix_xy = None,rot_angle = 1, xlen = 9216, ylen = 9232, w = None):
rad = np.deg2rad(rot_angle)
mat = np.zeros((2,2))
mat[0,:] = np.array([np.cos(rad),-np.sin(rad)])
mat[1,:] = np.array([np.sin(rad),np.cos(rad)])
center = np.array([xlen/2, ylen/2])
rot_pix = np.dot(mat, pix_xy-center) + center
skyCoor = w.wcs_pix2world(np.array([rot_pix]), 1)
return skyCoor
# def Header_extention(xlen = 9216, ylen = 9232, gain = 1.0, readout = 5.0, dark = 0.02,saturation=90000, row_num = 1, col_num = 1):
#
# """ Creat an image frame for CCST with multiple extensions
#
# Parameters
# ----------
#
# """
#
# flag_ltm_x = [0,1,-1,1,-1]
# flag_ltm_y = [0,1,1,-1,-1]
# flag_ltv_x = [0,0,1,0,1]
# flag_ltv_y = [0,0,0,1,1]
#
# detector_size_x = int(xlen)
# detector_size_y = int(ylen)
#
# data_x = str(int(detector_size_x))
# data_y = str(int(detector_size_y))
#
# data_sec = '[1:'+data_x+',1:'+data_y+']'
# e_header_fn = os.path.split(os.path.realpath(__file__))[0] + '/extension_header.param'
# name, value, description = read_header_parameter(e_header_fn)
# f = open(os.path.split(os.path.realpath(__file__))[0] + '/filter.lst')
# s = f.readline()
# s = s.strip("\n")
# filters = s.split(' ')
# s = f.readline()
# s = s.strip("\n")
# filterID = s.split()
#
# s = f.readline()
# s = s.strip("\n")
# CCDID = s.split()
#
# k = (row_num-1)*6+col_num
#
# h_iter = 0
# for n1,v1,d1 in zip(name, value, description):
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# if n1=='EXTNAME':
# value[h_iter] = 'RAW,'+CCDID[k-1].rjust(2,'0')
# if n1=='CCDNAME':
# value[h_iter] = 'ccd' + CCDID[k-1].rjust(2,'0')
# if n1=='AMPNAME':
# value[h_iter] = 'ccd' + CCDID[k-1].rjust(2,'0') + ':A'
# if n1=='GAIN':
# value[h_iter] = gain
# if n1=='RDNOISE':
# value[h_iter] = readout
# if n1=='SATURATE':
# value[h_iter] = saturation
# if n1=='CCDCHIP':
# value[h_iter] = 'ccd' + CCDID[k-1].rjust(2,'0')
# if n1=='CCDLABEL':
# value[h_iter] = filters[k-1] + '-' + filterID[k-1]
# if n1=='DATASEC':
# value[h_iter] = data_sec
#
# h_iter = h_iter + 1
#
#
# return name, value, description
##9232 9216 898 534 1309 60 -40 -23.4333
def WCS_def(xlen = 9216, ylen = 9232, gapy = 898.0, gapx1 = 534, gapx2 = 1309, ra = 60, dec = -40, pa = -23.433,psize = 0.074, row_num = 1, col_num = 1, filter = 'GI'):
""" Creat a wcs frame for CCST with multiple extensions
Parameters
----------
"""
flag_x = [0, 1, -1, 1, -1]
flag_y = [0, 1, 1, -1, -1]
flag_ext_x = [0,-1,1,-1,1]
flag_ext_y = [0,-1,-1,1,1]
x_num = 6
y_num = 5
detector_num = x_num*y_num
detector_size_x = xlen
detector_size_y = ylen
gap_y = gapy
gap_x = [gapx1,gapx2]
ra_ref = ra
dec_ref = dec
pa_aper = pa
pixel_size = psize
gap_x1_num = 3
gap_x2_num = 2
y_center = (detector_size_y*y_num+gap_y*(y_num-1))/2
x_center = (detector_size_x*x_num+gap_x[0]*gap_x1_num+gap_x[1]*gap_x2_num)/2
gap_x_map = np.array([[0,0,0,0,0],[gap_x[0],gap_x[1],gap_x[1],gap_x[1],gap_x[1]],[gap_x[1],gap_x[0],gap_x[0],gap_x[0],gap_x[0]],[gap_x[0],gap_x[0],gap_x[0],gap_x[0],gap_x[0]],[gap_x[0],gap_x[0],gap_x[0],gap_x[0],gap_x[1]],[gap_x[1],gap_x[1],gap_x[1],gap_x[1],gap_x[0]]])
# frame_array = np.empty((5,6),dtype=np.float64)
# print(x_center,y_center)
j = row_num
i = col_num
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# ccdnum = str((j-1)*5+i)
x_ref, y_ref = detector_size_x*i + sum(gap_x_map[0:i,j-1]) - detector_size_x/2. , (detector_size_y+gap_y)*j-gap_y-detector_size_y/2
# print(i,j,x_ref,y_ref,ra_ref,dec_ref)
r_dat = OrderedDict()
# name = []
# value = []
# description = []
for k in range(1,2):
cd = np.array([[ pixel_size, 0], [0, pixel_size]])/3600.*flag_x[k]
cd_rot = rotate_CD_matrix(cd, pa_aper)
# f = open("CCD"+ccdnum.rjust(2,'0')+"_extension"+str(k)+"_wcs.param","w")
r_dat['EQUINOX'] = 2000.0
r_dat['WCSDIM'] = 2.0
r_dat['CTYPE1'] = 'RA---TAN'
r_dat['CTYPE2'] = 'DEC--TAN'
r_dat['CRVAL1'] = ra_ref
r_dat['CRVAL2'] = dec_ref
r_dat['CRPIX1'] = flag_ext_x[k]*((x_ref+flag_ext_x[k]*detector_size_x/2)-x_center)
r_dat['CRPIX2'] = flag_ext_y[k]*((y_ref+flag_ext_y[k]*detector_size_y/2)-y_center)
r_dat['CD1_1'] = cd_rot[0,0]
r_dat['CD1_2'] = cd_rot[0,1]
r_dat['CD2_1'] = cd_rot[1,0]
r_dat['CD2_2'] = cd_rot[1,1]
if filter in ['GU', 'GV', 'GI']:
from astropy import wcs
w = wcs.WCS(naxis=2)
w.wcs.crpix = [r_dat['CRPIX1'], r_dat['CRPIX2']]
w.wcs.cd = cd_rot
w.wcs.crval = [ra_ref, dec_ref]
w.wcs.ctype = [r_dat['CTYPE1'], r_dat['CTYPE2']]
# test_center_o = w.wcs_pix2world(np.array([[xlen / 2, ylen / 2]]), 1)
sls_rot = 1
if i > 2:
sls_rot = -sls_rot
sn_x = 30
sn_y = 30
x_pixs = np.zeros(sn_y * sn_x)
y_pixs = np.zeros(sn_y * sn_x)
xpixs_line = np.linspace(1, xlen, sn_x)
ypixs_line = np.linspace(1, ylen, sn_y)
sky_coors = []
for n1, y in enumerate(ypixs_line):
for n2, x in enumerate(xpixs_line):
i_pix = n1 * sn_x + n2
x_pixs[i_pix] = x
y_pixs[i_pix] = y
pix_coor = np.array([x, y])
sc1 = calcaluteSLSRotSkyCoor(pix_xy=pix_coor, rot_angle=sls_rot, w=w)
# print(sc1[0,0],sc1[0,1])
sky_coors.append((sc1[0, 0], sc1[0, 1]))
from astropy.coordinates import SkyCoord
from astropy.wcs.utils import fit_wcs_from_points
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
wcs_new = fit_wcs_from_points(xy=np.array([x_pixs, y_pixs]),
world_coords=SkyCoord(sky_coors, frame="icrs", unit="deg"), projection='TAN')
# print(wcs_new)
# test_center = wcs_new.wcs_pix2world(np.array([[xlen / 2, ylen / 2]]), 1)
#
# print(test_center - test_center_o)
r_dat['CD1_1'] = wcs_new.wcs.cd[0, 0]
r_dat['CD1_2'] = wcs_new.wcs.cd[0, 1]
r_dat['CD2_1'] = wcs_new.wcs.cd[1, 0]
r_dat['CD2_2'] = wcs_new.wcs.cd[1, 1]
r_dat['CRPIX1'] = wcs_new.wcs.crpix[0]
r_dat['CRPIX2'] = wcs_new.wcs.crpix[1]
r_dat['CRVAL1'] = wcs_new.wcs.crval[0]
r_dat['CRVAL2'] = wcs_new.wcs.crval[1]
return r_dat
#TODO project_cycle is temporary, is not in header defined, delete in future
def generatePrimaryHeader(xlen = 9216, ylen = 9232, pointNum = '1', ra = 60, dec = -40, psize = 0.074, row_num = 1, col_num = 1, date='200930', time_obs='120000', im_type = 'MS', exptime=150., sat_pos = [0.,0.,0.], sat_vel = [0., 0., 0.], project_cycle=6):
# array_size1, array_size2, flux, sigma = int(argv[1]), int(argv[2]), 1000.0, 5.0
k = (row_num-1)*6+col_num
# ccdnum = str(k)
g_header_fn = os.path.split(os.path.realpath(__file__))[0] + '/global_header.header'
f = open(os.path.split(os.path.realpath(__file__))[0] + '/filter.lst')
s = f.readline()
s = s.strip("\n")
filters = s.split(' ')
s = f.readline()
s = s.strip("\n")
filterID = s.split()
s = f.readline()
s = s.strip("\n")
CCDID = s.split()
h_prim = fits.Header()
h_prim = fits.Header.fromfile(g_header_fn)
# h_prim['PIXSIZE1'] = xlen
# h_prim['PIXSIZE2'] = ylen
h_prim['DATE'] = '20'+date[0:2]+'-' + date[2:4]+'-'+date[4:6] + 'T' + time_obs[0:2]+':'+time_obs[2:4]+':'+time_obs[4:6]
# h_prim['TIME'] = time_obs[0:2]+':'+time_obs[2:4]+':'+time_obs[4:6]
h_prim['DATE-OBS'] = '20'+date[0:2]+'-' + date[2:4]+'-'+date[4:6] + 'T' + time_obs[0:2]+':'+time_obs[2:4]+':'+time_obs[4:6]
# h_prim['TIME-OBS'] = time_obs[0:2]+':'+time_obs[2:4]+':'+time_obs[4:6]
# h_prim['DETECTOR'] = 'CHIP'+CCDID[k-1].rjust(2,'0')
h_prim['OBJ_RA'] = ra
h_prim['OBJ_DEC'] = dec
h_prim['OBJECT'] = '1'+ str(int(project_cycle)) + pointNum.rjust(7,'0')
h_prim['OBSID'] = '1'+ str(int(project_cycle)) + pointNum.rjust(7,'0')
# h_prim['TELFOCUS'] = 'f/14'
h_prim['EXPTIME'] = exptime
# Define file types
file_type = {'SCI':'sci', 'BIAS':'bias', 'DARK':'dark', 'FLAT':'flat', 'CRS':'cosmic_ray', 'CRD':'cosmic_ray'}
h_prim['OBSTYPE'] = file_type[im_type]
# co = coord.SkyCoord(ra, dec, unit='deg')
#
# ra_hms = format(co.ra.hms.h, '02.0f') + ':' + format(co.ra.hms.m, '02.0f') + ':' + format(co.ra.hms.s, '05.2f')
# dec_hms = format(co.dec.dms.d, '02.0f') + ':' + format(abs(co.dec.dms.m), '02.0f') + ':' + format(abs(co.dec.dms.s),
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# '05.2f')
#
# h_prim['RA_NOM'] = ra_hms
# h_prim['DEC_NOM'] = dec_hms
h_prim['RA_PNT0'] = ra
h_prim['DEC_PNT0'] = dec
h_prim['RA_PNT1'] = ra
h_prim['DEC_PNT1'] = dec
# h_prim['PIXSCAL1'] = psize
# h_prim['PIXSCAL2'] = psize
ttt = h_prim['DATE']
tstart = Time(ttt)
h_prim['EXPSTART'] = round(tstart.mjd, 5)
h_prim['CABSTART'] = h_prim['EXPSTART']
# tend = Time(tstart.cxcsec + h_prim['EXPTIME'], format="cxcsec")
tend = Time(tstart.mjd + h_prim['EXPTIME']/86400., format="mjd")
h_prim['EXPEND'] = round(tend.mjd, 5)
h_prim['CABEND'] = h_prim['EXPEND']
file_start_time = '20' + date[0:6] + time_obs[0:6]
end_time_str = str(tend.datetime)
file_end_time = end_time_str[0:4] + end_time_str[5:7]+end_time_str[8:10] + end_time_str[11:13] + end_time_str[14:16] + end_time_str[17:19]
h_prim['FILENAME'] = 'CSST_MSC_MS_' + im_type + '_' + file_start_time + '_' + file_end_time + '_1' + pointNum.rjust(8, '0') + '_' + CCDID[
k - 1].rjust(2, '0') + '_L0_1'
h_prim['POSI0_X'] = sat_pos[0]
h_prim['POSI0_Y'] = sat_pos[1]
h_prim['POSI0_Z'] = sat_pos[2]
h_prim['VELO0_X'] = sat_vel[0]
h_prim['VELO0_Y'] = sat_vel[1]
h_prim['VELO0_Z'] = sat_vel[2]
# h_prim['RA_PNT0'] = ra_hms
# h_prim['DEC_PNT0'] = dec_hms
# Get version of CSSTSim Package
from pkg_resources import get_distribution
# h_prim['SIM_VER'] = (get_distribution("CSSTSim").version, "Version of CSST MSC simulation software")
h_prim['FITSCREA'] = get_distribution("CSSTSim").version
return h_prim
def generateExtensionHeader(xlen = 9216, ylen = 9232,ra = 60, dec = -40, pa = -23.433, gain = 1.0, readout = 5.0, dark = 0.02, saturation=90000, psize = 0.074, row_num = 1, col_num = 1, extName='SCI'):
e_header_fn = os.path.split(os.path.realpath(__file__))[0] + '/extension_header.header'
f = open(os.path.split(os.path.realpath(__file__))[0] + '/filter.lst')
s = f.readline()
s = s.strip("\n")
filters = s.split(' ')
s = f.readline()
s = s.strip("\n")
filterID = s.split()
s = f.readline()
s = s.strip("\n")
CCDID = s.split()
k = (row_num - 1) * 6 + col_num
h_ext = fits.Header.fromfile(e_header_fn)
h_ext['CCDCHIP'] = CCDID[k - 1].rjust(2, '0')
h_ext['CCDLABEL'] = filters[k-1] + '-' + filterID[k-1]
h_ext['FILTER'] = filters[k-1]
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
h_ext['NAXIS1'] = xlen
h_ext['NAXIS2'] = ylen
h_ext['EXTNAME'] = extName
h_ext['GAIN1'] = gain
h_ext['GAIN2'] = gain
h_ext['GAIN3'] = gain
h_ext['GAIN4'] = gain
h_ext['GAIN5'] = gain
h_ext['GAIN6'] = gain
h_ext['GAIN7'] = gain
h_ext['GAIN8'] = gain
h_ext['GAIN9'] = gain
h_ext['GAIN10'] = gain
h_ext['GAIN11'] = gain
h_ext['GAIN12'] = gain
h_ext['GAIN13'] = gain
h_ext['GAIN14'] = gain
h_ext['GAIN15'] = gain
h_ext['GAIN16'] = gain
h_ext['RDNOIS1'] = readout
h_ext['RDNOIS2'] = readout
h_ext['RDNOIS3'] = readout
h_ext['RDNOIS4'] = readout
h_ext['RDNOIS5'] = readout
h_ext['RDNOIS6'] = readout
h_ext['RDNOIS7'] = readout
h_ext['RDNOIS8'] = readout
h_ext['RDNOIS9'] = readout
h_ext['RDNOIS10'] = readout
h_ext['RDNOIS11'] = readout
h_ext['RDNOIS12'] = readout
h_ext['RDNOIS13'] = readout
h_ext['RDNOIS14'] = readout
h_ext['RDNOIS15'] = readout
h_ext['RDNOIS16'] = readout
h_ext['PIXSCAL1'] = psize
h_ext['PIXSCAL2'] = psize
# h_ext['POS_ANG'] = pa
header_wcs = WCS_def(xlen=xlen, ylen=ylen, gapy=898.0, gapx1=534, gapx2=1309, ra=ra, dec=dec, pa=pa, psize=psize,
row_num=row_num, col_num=col_num, filter = h_ext['FILTER'])
h_ext['CRPIX1'] = header_wcs['CRPIX1']
h_ext['CRPIX2'] = header_wcs['CRPIX2']
h_ext['CRVAL1'] = header_wcs['CRVAL1']
h_ext['CRVAL2'] = header_wcs['CRVAL2']
h_ext['CD1_1'] = header_wcs['CD1_1']
h_ext['CD1_2'] = header_wcs['CD1_2']
h_ext['CD2_1'] = header_wcs['CD2_1']
h_ext['CD2_2'] = header_wcs['CD2_2']
h_ext['EQUINOX'] = header_wcs['EQUINOX']
h_ext['WCSDIM'] = header_wcs['WCSDIM']
h_ext['CTYPE1'] = header_wcs['CTYPE1']
h_ext['CTYPE2'] = header_wcs['CTYPE2']
return h_ext
def main(argv):
xlen = int(argv[1])
ylen = int(argv[2])
pointingNum = argv[3]
ra = float(argv[4])
dec = float(argv[5])
pSize = float(argv[6])
ccd_row_num = int(argv[7])
ccd_col_num = int(argv[8])
pa_aper = float(argv[9])
gain = float(argv[10])
readout = float(argv[11])
dark = float(argv[12])
fw = float(argv[13])
h_prim = generatePrimaryHeader(xlen = xlen, ylen = ylen,ra = ra, dec = dec, psize = pSize, row_num = ccd_row_num, col_num = ccd_col_num, pointNum = pointingNum)
h_ext = generateExtensionHeader(xlen = xlen, ylen = ylen,ra = ra, dec = dec, pa = pa_aper, gain = gain, readout = readout, dark = dark, saturation=fw, psize = pSize, row_num = ccd_row_num, col_num = ccd_col_num)
hdu1 = fits.PrimaryHDU(header=h_prim)
hdu2 = fits.ImageHDU(np.zeros([ylen,xlen]),header = h_ext)
hdul = fits.HDUList([hdu1,hdu2])
hdul.writeto(h_prim['FILENAME']+'.fits',output_verify='ignore')
# if __name__ == "__main__":
# main(sys.argv)