An error occurred while loading the file. Please try again.
-
Fang Yuedong authored931e5956
import unittest
import sys,os,math
from itertools import islice
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.use('Agg')
import yaml
from ObservationSim.Config import Config
from ObservationSim.Config.Config import config_dir
from ObservationSim.Instrument import Chip
from ObservationSim.PSF.PSFInterp import PSFInterp
def defineCCD(iccd, config_file):
with open(config_file, "r") as stream:
try:
config = yaml.safe_load(stream)
#for key, value in config.items():
# print (key + " : " + str(value))
except yaml.YAMLError as exc:
print(exc)
path_dict = config_dir(config=config, work_dir=config['work_dir'], data_dir=config['data_dir'])
chip = Chip(chipID=iccd, config=config)
#chip = Chip(chipID=iccd, ccdEffCurve_dir=path_dict["ccd_dir"], CRdata_dir=path_dict["CRdata_dir"], normalize_dir=path_dict["normalize_dir"], sls_dir=path_dict['sls_dir'], config=config)
return chip
def psfSecondMoments(psfMat, cenX, cenY, pixSize=1):
apr = 0.5 #arcsec, 0.5角秒内测量
fl = 28. #meters
pxs = 2.5 #microns
apr = np.deg2rad(apr/3600.)*fl*1e6
apr = apr/pxs
apr = np.int(np.ceil(apr))
I = psfMat
ncol = I.shape[1]
nrow = I.shape[0]
w = 0.0
w11 = 0.0
w12 = 0.0
w22 = 0.0
for icol in range(ncol):
for jrow in range(nrow):
x = icol*pixSize - cenX
y = jrow*pixSize - cenY
rr = np.sqrt(x*x + y*y)
wgt= 0.0
if rr <= apr:
wgt = 1.0
w += I[jrow, icol]*wgt
w11 += x*x*I[jrow, icol]*wgt
w12 += x*y*I[jrow, icol]*wgt
w22 += y*y*I[jrow, icol]*wgt
w11 /= w
w12 /= w
w22 /= w
sz = w11 + w22
e1 = (w11 - w22)/sz
e2 = 2.0*w12/sz
return sz, e1, e2
def test_psfEll(iccd, iwave, psfMat):
psfMat_iwave = psfMat.psfMat[iwave-1, :,:,:]
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
npsf = np.shape(psfMat_iwave)[0]
imx = np.zeros(npsf)
imy = np.zeros(npsf)
psf_e1 = np.zeros(npsf)
psf_e2 = np.zeros(npsf)
psf_sz = np.zeros(npsf)
for ipsf in range(1, npsf+1):
print('ipsf-{:}'.format(ipsf), end='\r')
imx[ipsf-1] = psfMat.cen_col[iwave-1, ipsf-1]
imy[ipsf-1] = psfMat.cen_row[iwave-1, ipsf-1]
psfMat_iwave_ipsf = psfMat_iwave[ipsf-1, :, :]
cenX = 256
cenY = 256
sz, e1, e2 = psfSecondMoments(psfMat_iwave_ipsf, cenX, cenY, pixSize=1)
psf_e1[ipsf-1] = e1
psf_e2[ipsf-1] = e2
psf_sz[ipsf-1] = sz
#print('ell======', ipsf, np.sqrt(e1**2 + e2**2))
#######
arr = [imx, imy, psf_e1, psf_e2, psf_sz]
np.save('data/psfEll{:}_{:}_{:}'.format(int(np.sqrt(npsf)),iccd, iwave), arr)
def test_psfEllPlot(OVERPLOT=False):
#if ThisTask == 0:
if True:
prefix = 'psfEll30'
iccd = 1
iwave= 1
data = np.load('data/'+prefix+'_1_1.npy')
imx= data[0]
imy= data[1]
psf_e1 = data[2]
psf_e2 = data[3]
print(np.shape(imx))
npsf = np.shape(imx)[0]
#######
plt.cla()
plt.close("all")
fig = plt.figure(figsize=(12, 12))
plt.subplots_adjust(wspace=0.1, hspace=0.1)
ax = plt.subplot(1, 1, 1)
for ipsf in range(npsf):
plt.plot(imx[ipsf], imy[ipsf], 'r.')
ang = np.arctan2(psf_e2[ipsf], psf_e1[ipsf])/2
ell = np.sqrt(psf_e1[ipsf]**2 + psf_e2[ipsf]**2)
ell *= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[ipsf]-lcos, imx[ipsf]+lcos],[imy[ipsf]-lsin, imy[ipsf]+lsin],'r', lw=2)
###########
ang = 0.
ell = 0.05
ell*= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[898]-lcos, imx[898]+lcos],[imy[898]+5.-lsin, imy[898]+5.+lsin],'k', lw=2)
plt.annotate('{:}'.format(ell/15), (imx[898]-2., imy[898]+6.), xycoords='data', fontsize=10)
plt.xlabel('CCD X (mm)')
plt.ylabel('CCD Y (mm)')
if OVERPLOT == True:
prefix = 'psfEll20'
data = np.load('data/'+prefix+'_1_1.npy')
imx= data[0]
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
imy= data[1]
psf_e1 = data[2]
psf_e2 = data[3]
npsf = np.shape(imx)[0]
for ipsf in range(npsf):
plt.plot(imx[ipsf], imy[ipsf], 'b.')
ang = np.arctan2(psf_e2[ipsf], psf_e1[ipsf])/2
ell = np.sqrt(psf_e1[ipsf]**2 + psf_e2[ipsf]**2)
ell *= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[ipsf]-lcos, imx[ipsf]+lcos],[imy[ipsf]-lsin, imy[ipsf]+lsin],'b', lw=2)
plt.gca().set_aspect(1)
if OVERPLOT == True:
prefix = 'psfEllOP'
plt.savefig('figs/'+prefix+'_iccd{:}.pdf'.format(iccd))
def test_psfIDW(iccd, iwave, psfMatA, chip, psfMatB):
bandpass = iwave-1
class pos_img():
def __init__(self,x, y):
self.x = x*1e3/10. #in unit of pixels
self.y = y*1e3/10.
psfMat_iwave = psfMatA.psfMat[iwave-1, :,:,:]
npsf = np.shape(psfMat_iwave)[0]
psf_e1 = np.zeros(npsf)
psf_e2 = np.zeros(npsf)
psf_sz = np.zeros(npsf)
for ipsf in range(1, npsf+1):
print('ipsf:', ipsf, end='\r', flush=True)
tpos_img = pos_img(psfMatA.cen_col[iwave-1, ipsf-1], psfMatA.cen_row[iwave-1, ipsf-1])
psfIDW = psfMatB.get_PSF(chip, tpos_img, bandpass, galsimGSObject=False, findNeighMode='treeFind')
np.save('figs/psfIDW/psfIDW_{:}_{:}_{:}'.format(iccd, iwave, ipsf), psfIDW)
cenX = 256
cenY = 256
sz, e1, e2 = psfSecondMoments(psfIDW, cenX, cenY, pixSize=1)
psf_e1[ipsf-1] = e1
psf_e2[ipsf-1] = e2
psf_sz[ipsf-1] = sz
arr = [psf_e1, psf_e2, psf_sz]
np.save('data/psfEll20IDW_{:}_{:}'.format(iccd, iwave), arr)
def test_psfResidualPlot(iccd, iwave, ipsf, psfMatA):
psfMat_iwave = psfMatA.psfMat[iwave-1, :,:,:]
psfMatORG = psfMat_iwave[ipsf-1, :, :]
psfMatIDW = np.load('figs/psfIDW/psfIDW_{:}_{:}_{:}.npy'.format(iccd, iwave, ipsf))
npix = psfMatORG.shape[0]
pixCutEdge= int(npix/2-15)
img0 = psfMatORG[pixCutEdge:npix-pixCutEdge, pixCutEdge:npix-pixCutEdge]
img1 = psfMatIDW[pixCutEdge:npix-pixCutEdge, pixCutEdge:npix-pixCutEdge]
imgX = (img1 - img0)/img0
img0 = np.log10(img0)
img1 = np.log10(img1)
imgX = np.log10(np.abs(imgX))
fig = plt.figure(figsize=(18,4))
ax = plt.subplot(1,3,1)
plt.imshow(img0, origin='lower', vmin=-7, vmax=-1.3)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
plt.plot([npix/2-pixCutEdge, npix/2-pixCutEdge],[0, (npix/2-pixCutEdge)*2-1],'w--')
plt.plot([0, (npix/2-pixCutEdge)*2-1],[npix/2-pixCutEdge, npix/2-pixCutEdge],'w--')
plt.annotate('ORG', [0,(npix/2-pixCutEdge)*2-5], c='w', size=15)
cticks=[-7, -6, -5, -4, -3, -2, -1]
cbar = plt.colorbar(ticks=cticks)
cbar.ax.set_yticklabels(['$10^{-7}$', '$10^{-6}$', '$10^{-5}$','$10^{-4}$','$10^{-3}$','$10^{-2}$', '$10^{-1}$'])
print(img0.min(), img0.max())
ax = plt.subplot(1,3,2)
plt.imshow(img1, origin='lower', vmin=-7, vmax=-1.3)
plt.plot([npix/2-pixCutEdge, npix/2-pixCutEdge],[0, (npix/2-pixCutEdge)*2-1],'w--')
plt.plot([0, (npix/2-pixCutEdge)*2-1],[npix/2-pixCutEdge, npix/2-pixCutEdge],'w--')
plt.annotate('IDW', [0,(npix/2-pixCutEdge)*2-5], c='w', size=15)
cticks=[-7, -6, -5, -4, -3, -2, -1]
cbar = plt.colorbar(ticks=cticks)
cbar.ax.set_yticklabels(['$10^{-7}$', '$10^{-6}$', '$10^{-5}$','$10^{-4}$','$10^{-3}$','$10^{-2}$', '$10^{-1}$'])
print(img1.min(), img1.max())
ax = plt.subplot(1,3,3)
plt.imshow(imgX, origin='lower', vmin =-3, vmax =np.log10(3e-1))
plt.plot([npix/2-pixCutEdge, npix/2-pixCutEdge],[0, (npix/2-pixCutEdge)*2-1],'w--')
plt.plot([0, (npix/2-pixCutEdge)*2-1],[npix/2-pixCutEdge, npix/2-pixCutEdge],'w--')
#plt.annotate('(IDW-ORG)/ORG', [0,(npix/2-pixCutEdge)*2-5], c='w', size=15)
cticks=[-5, -4, -3, -2, -1]
cbar = plt.colorbar(ticks=cticks)
cbar.ax.set_yticklabels(['$10^{-5}$','$10^{-4}$','$10^{-3}$','$10^{-2}$', '$10^{-1}$'])
print(np.max((psfMatORG-psfMatIDW)))
plt.savefig('figs/psfResidual_iccd{:}.pdf'.format(iccd))
def test_psfEllIDWPlot(OVERPLOT=False):
#if ThisTask == 0:
if True:
prefix = 'psfEll20'
iccd = 1
iwave= 1
data = np.load('data/'+prefix+'_1_1.npy')
imx= data[0]
imy= data[1]
psf_e1 = data[2]
psf_e2 = data[3]
print(np.shape(imx))
npsf = np.shape(imx)[0]
#######
plt.cla()
plt.close("all")
fig = plt.figure(figsize=(12, 12))
plt.subplots_adjust(wspace=0.1, hspace=0.1)
ax = plt.subplot(1, 1, 1)
for ipsf in range(npsf):
plt.plot(imx[ipsf], imy[ipsf], 'b.')
ang = np.arctan2(psf_e2[ipsf], psf_e1[ipsf])/2
ell = np.sqrt(psf_e1[ipsf]**2 + psf_e2[ipsf]**2)
ell *= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[ipsf]-lcos, imx[ipsf]+lcos],[imy[ipsf]-lsin, imy[ipsf]+lsin],'b', lw=2)
###########
ang = 0.
ell = 0.05
ell*= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
#plt.plot([imx[898]-lcos, imx[898]+lcos],[imy[898]+5.-lsin, imy[898]+5.+lsin],'k', lw=2)
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#plt.annotate('{:}'.format(ell/15), (imx[898]-2., imy[898]+6.), xycoords='data', fontsize=10)
plt.xlabel('CCD X (mm)')
plt.ylabel('CCD Y (mm)')
if OVERPLOT == True:
prefix = 'psfEll20IDW'
data = np.load('data/'+prefix+'_1_1.npy')
#imx= data[0]
#imy= data[1]
psf_e1 = data[0]
psf_e2 = data[1]
npsf = np.shape(imx)[0]
for ipsf in range(npsf):
#plt.plot(imx[ipsf], imy[ipsf], 'r.')
ang = np.arctan2(psf_e2[ipsf], psf_e1[ipsf])/2
ell = np.sqrt(psf_e1[ipsf]**2 + psf_e2[ipsf]**2)
ell *= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[ipsf]-lcos, imx[ipsf]+lcos],[imy[ipsf]-lsin, imy[ipsf]+lsin],'r', lw=1)
plt.gca().set_aspect(1)
if OVERPLOT == True:
prefix = 'psfEllOPIDW'
plt.savefig('figs/'+prefix+'_iccd{:}.pdf'.format(iccd))
def test_psfdEllabsPlot(iccd):
#if ThisTask == 0:
if True:
prefix = 'psfEll20'
#iccd = 1
#iwave= 1
data = np.load('data/'+prefix+'_{:}_1.npy'.format(iccd))
imx= data[0]
imy= data[1]
psf_e1 = data[2]
psf_e2 = data[3]
psf_sz = data[4]
print(np.shape(imx))
npsf = np.shape(imx)[0]
ellX = np.sqrt(psf_e1**2 + psf_e2**2)
angX = np.arctan2(psf_e2, psf_e1)/2
angX = np.rad2deg(angX)
szX = psf_sz
##############################
prefix = 'psfEll20IDW'
data = np.load('data/'+prefix+'_{:}_1.npy'.format(iccd))
#imx= data[0]
#imy= data[1]
psf_e1 = data[0]
psf_e2 = data[1]
psf_sz = data[2]
ellY = np.sqrt(psf_e1**2 + psf_e2**2)
angY = np.arctan2(psf_e2, psf_e1)/2
angY = np.rad2deg(angY)
szY = psf_sz
##############################
fig=plt.figure(figsize=(6, 5))
grid = plt.GridSpec(3,1,left=0.15, right=0.95, wspace=None, hspace=0.02)
#plt.subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=None,hspace=0.02)
ax = plt.subplot(grid[0:2,0])
plt.plot([0.01,0.1],[0.01,0.1], 'k--', lw=1. )
plt.scatter(ellX, ellY, color='b', alpha=1., s=3., edgecolors='None')
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#plt.xlim([0.015, 0.085])
#plt.ylim([0.015, 0.085])
plt.ylabel('$\epsilon_{\\rm IDW}$')
plt.gca().axes.get_xaxis().set_visible(False)
ax = plt.subplot(grid[2,0])
plt.plot([0.015,0.085],[0.,0.], 'k--', lw=1. )
plt.scatter(ellX, (ellY-ellX), color='b', s=3., edgecolors='None')
#plt.xlim([0.015, 0.085])
#plt.ylim([-0.0018, 0.0018])
plt.xlabel('$\epsilon_{\\rm ORG}$')
plt.ylabel('$\Delta$')
plt.savefig('figs/psfEllOPIDWPDF_{:}.pdf'.format(iccd))
fig=plt.figure(figsize=(6, 6))
plt.hist((szY-szX)/szX, bins=20, color='r', alpha=0.5)
plt.xlabel('$(R_{\\rm IDW}-R_{\\rm ORG})/R_{\\rm ORG}$')
plt.ylabel('PDF')
plt.savefig('figs/psfEllOPIDWPDF_dsz_{:}.pdf'.format(iccd))
class PSFInterpModule_coverage(unittest.TestCase):
def test_psfEll_(self):
iccd = 1
iwave= 1
config_file = "/public/home/weichengliang/CSST_git/newVersion/CSST/config/config_C3.yaml"
chip = defineCCD(iccd, config_file)
print(chip.chipID)
print(chip.cen_pix_x, chip.cen_pix_y)
ipath = '/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/psfCubeTest'
psfMatA = PSFInterp(chip, npsf=400, PSF_data_file=ipath, PSF_data_prefix="S20x20_")
psfMatB = PSFInterp(chip, npsf=900, PSF_data_file=ipath, PSF_data_prefix="S30x30_")
test_psfEll(iccd, iwave, psfMatA)
test_psfEll(iccd, iwave, psfMatB)
test_psfEllPlot(OVERPLOT=True)
test_psfIDW(iccd, iwave, psfMatA, chip, psfMatB)
ipsf = 1
test_psfResidualPlot(iccd, iwave, ipsf, psfMatA)
test_psfEllIDWPlot(OVERPLOT=True)
test_psfdEllabsPlot(iccd)
if __name__ == '__main__':
unittest.main()
print('#####haha#####')