An error occurred while loading the file. Please try again.
-
Fang Yuedong authoreda8ad6d38
import numpy as np
import galsim
import gc
import os, sys
import astropy.constants as cons
from astropy.table import Table
from scipy import interpolate
from ObservationSim.MockObject._util import eObs, integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, getABMAG,convolveGaussXorders
from ObservationSim.MockObject.SpecDisperser import SpecDisperser
from ObservationSim.MockObject.MockObject import MockObject
# import tracemalloc
class Galaxy(MockObject):
def __init__(self, param, rotation=None, logger=None):
super().__init__(param, logger=logger)
# self.thetaR = self.param["theta"]
# self.bfrac = self.param["bfrac"]
# self.hlr_disk = self.param["hlr_disk"]
# self.hlr_bulge = self.param["hlr_bulge"]
# Extract ellipticity components
# self.e_disk = galsim.Shear(g=self.param["ell_disk"], beta=self.thetaR*galsim.degrees)
# self.e_bulge = galsim.Shear(g=self.param["ell_bulge"], beta=self.thetaR*galsim.degrees)
# self.e_total = galsim.Shear(g=self.param["ell_tot"], beta=self.thetaR*galsim.degrees)
# self.e1_disk, self.e2_disk = self.e_disk.g1, self.e_disk.g2
# self.e1_bulge, self.e2_bulge = self.e_bulge.g1, self.e_bulge.g2
# self.e1_total, self.e2_total = self.e_total.g1, self.e_total.g2
if rotation is not None:
self.rotateEllipticity(rotation)
def unload_SED(self):
"""(Test) free up SED memory
"""
del self.sed
def getGSObj_multiband(self, tel, psf_list, bandpass_list, filt, nphotons_tot=None, g1=0, g2=0, exptime=150.):
if len(psf_list) != len(bandpass_list):
raise ValueError("!!!The number of PSF profiles and the number of bandpasses must be equal.")
objs = []
if nphotons_tot == None:
nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
# print("nphotons_tot = ", nphotons_tot)
try:
full = integrate_sed_bandpass(sed=self.sed, bandpass=filt.bandpass_full)
except Exception as e:
print(e)
self.logger.error(e)
return -1
for i in range(len(bandpass_list)):
bandpass = bandpass_list[i]
try:
sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
except Exception as e:
print(e)
self.logger.error(e)
return -1
ratio = sub/full
if not (ratio == -1 or (ratio != ratio)):
nphotons = ratio * nphotons_tot
else:
return -1
psf = psf_list[i]
disk = galsim.Sersic(n=1.0, half_light_radius=self.hlr_disk, flux=1.0)
disk_shape = galsim.Shear(g1=self.e1_disk, g2=self.e2_disk)
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
disk = disk.shear(disk_shape)
bulge = galsim.Sersic(n=4.0, half_light_radius=self.hlr_bulge, flux=1.0)
bulge_shape = galsim.Shear(g1=self.e1_bulge, g2=self.e2_bulge)
bulge = bulge.shear(bulge_shape)
gal = self.bfrac * bulge + (1.0 - self.bfrac) * disk
gal = gal.withFlux(nphotons)
gal_shear = galsim.Shear(g1=g1, g2=g2)
gal = gal.shear(gal_shear)
gal = galsim.Convolve(psf, gal)
objs.append(gal)
final = galsim.Sum(objs)
return final
def drawObj_multiband(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0, exptime=150.):
if nphotons_tot == None:
nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
# print("nphotons_tot = ", nphotons_tot)
try:
full = integrate_sed_bandpass(sed=self.sed, bandpass=filt.bandpass_full)
except Exception as e:
print(e)
self.logger.error(e)
return False
nphotons_sum = 0
photons_list = []
xmax, ymax = 0, 0
# # [C6 TEST]
# print('hlr_disk = %.4f, hlr_bulge = %.4f'%(self.hlr_disk, self.hlr_bulge))
# tracemalloc.start()
big_galaxy = False
if self.hlr_disk > 3.0 or self.hlr_bulge > 3.0: # Very big galaxy
big_galaxy = True
# (TEST) Galsim Parameters
if self.getMagFilter(filt) <= 15 and (not big_galaxy):
folding_threshold = 5.e-4
else:
folding_threshold = 5.e-3
gsp = galsim.GSParams(folding_threshold=folding_threshold)
self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
img_real_wcs=self.real_wcs)
x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
x_nominal = int(np.floor(x + 0.5))
y_nominal = int(np.floor(y + 0.5))
dx = x - x_nominal
dy = y - y_nominal
offset = galsim.PositionD(dx, dy)
real_wcs_local = self.real_wcs.local(self.real_pos)
for i in range(len(bandpass_list)):
bandpass = bandpass_list[i]
try:
sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
except Exception as e:
print(e)
self.logger.error(e)
# return False
continue
ratio = sub/full
if not (ratio == -1 or (ratio != ratio)):
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
nphotons = ratio * nphotons_tot
else:
# return False
continue
nphotons_sum += nphotons
# # [C6 TEST]
# print("nphotons_sub-band_%d = %.2f"%(i, nphotons))
psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold)
disk = galsim.Sersic(n=1.0, half_light_radius=self.hlr_disk, flux=1.0, gsparams=gsp)
disk_shape = galsim.Shear(g1=self.e1_disk, g2=self.e2_disk)
disk = disk.shear(disk_shape)
bulge = galsim.Sersic(n=4.0, half_light_radius=self.hlr_bulge, flux=1.0, gsparams=gsp)
bulge_shape = galsim.Shear(g1=self.e1_bulge, g2=self.e2_bulge)
bulge = bulge.shear(bulge_shape)
gal = self.bfrac * bulge + (1.0 - self.bfrac) * disk
# (TEST) Random knots
# knots = galsim.RandomKnots(npoints=100, profile=disk)
# kfrac = np.random.random()*(1.0 - self.bfrac)
# gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots
gal = gal.withFlux(nphotons)
gal_shear = galsim.Shear(g1=g1, g2=g2)
gal = gal.shear(gal_shear)
if self.hlr_disk < 10.0: # Not apply PSF for very big galaxy
gal = galsim.Convolve(psf, gal)
# Use (explicit) stamps to draw
# stamp = gal.drawImage(wcs=self.localWCS, method='phot', offset=self.offset, save_photons=True)
# xmax = max(xmax, stamp.xmax)
# ymax = max(ymax, stamp.ymax)
# photons = stamp.photons
# photons.x += self.x_nominal
# photons.y += self.y_nominal
# photons_list.append(photons)
stamp = gal.drawImage(wcs=real_wcs_local, method='phot', offset=offset, save_photons=True)
xmax = max(xmax, stamp.xmax - stamp.xmin)
ymax = max(ymax, stamp.ymax - stamp.ymin)
photons = stamp.photons
photons.x += x_nominal
photons.y += y_nominal
photons_list.append(photons)
del gal
# # [C6 TEST]
# print('xmax = %d, ymax = %d '%(xmax, ymax))
# # Output memory usage
# snapshot = tracemalloc.take_snapshot()
# top_stats = snapshot.statistics('lineno')
# for stat in top_stats[:10]:
# print(stat)
stamp = galsim.ImageF(int(xmax * 1.1), int(ymax * 1.1))
stamp.wcs = real_wcs_local
stamp.setCenter(x_nominal, y_nominal)
bounds = stamp.bounds & galsim.BoundsI(0, chip.npix_x - 1, 0, chip.npix_y - 1)
if bounds.area() > 0:
chip.img.setOrigin(0, 0)
stamp[bounds] = chip.img[bounds]
if not big_galaxy:
for i in range(len(photons_list)):
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
if i == 0:
chip.sensor.accumulate(photons_list[i], stamp)
else:
chip.sensor.accumulate(photons_list[i], stamp, resume=True)
else:
sensor = galsim.Sensor()
for i in range(len(photons_list)):
if i == 0:
sensor.accumulate(photons_list[i], stamp)
else:
sensor.accumulate(photons_list[i], stamp, resume=True)
del sensor
chip.img[bounds] = stamp[bounds]
chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
# stamp = galsim.ImageF(int(xmax*1.1), int(ymax*1.1))
# stamp.wcs = self.localWCS
# stamp.setCenter(self.x_nominal, self.y_nominal)
# bounds = stamp.bounds & chip.img.bounds
# stamp[bounds] = chip.img[bounds]
#
# if not big_galaxy:
# for i in range(len(photons_list)):
# if i == 0:
# chip.sensor.accumulate(photons_list[i], stamp)
# else:
# chip.sensor.accumulate(photons_list[i], stamp, resume=True)
# else:
# sensor = galsim.Sensor()
# for i in range(len(photons_list)):
# if i == 0:
# sensor.accumulate(photons_list[i], stamp)
# else:
# sensor.accumulate(photons_list[i], stamp, resume=True)
#
# # print(stamp.array.sum())
# # chip.img[bounds] += stamp[bounds]
# chip.img[bounds] = stamp[bounds]
# # [C6 TEST]
# print("nphotons_sum = ", nphotons_sum)
del photons_list
del stamp
gc.collect()
return True, pos_shear
def drawObj_slitless(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
exptime=150., normFilter=None, grating_split_pos=3685):
if normFilter is not None:
norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'], spectrum=self.sed,
norm_thr=normFilter,
sWave=np.floor(normFilter[norm_thr_rang_ids][0][0]),
eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
if sedNormFactor == 0:
return False
else:
sedNormFactor = 1.
normalSED = Table(np.array([self.sed['WAVELENGTH'], self.sed['FLUX'] * sedNormFactor]).T,
names=('WAVELENGTH', 'FLUX'))
self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
img_real_wcs=self.real_wcs)
x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
x_nominal = int(np.floor(x + 0.5))
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
y_nominal = int(np.floor(y + 0.5))
dx = x - x_nominal
dy = y - y_nominal
offset = galsim.PositionD(dx, dy)
real_wcs_local = self.real_wcs.local(self.real_pos)
big_galaxy = False
if self.hlr_disk > 3.0: # Very big galaxy
big_galaxy = True
if self.getMagFilter(filt) <= 15 and (not big_galaxy):
folding_threshold = 5.e-4
else:
folding_threshold = 5.e-3
gsp = galsim.GSParams(folding_threshold=folding_threshold)
# nphotons_sum = 0
flat_cube = chip.flat_cube
xOrderSigPlus = {'A':1.3909419820029296,'B':1.4760376591236062,'C':4.035447379743442,'D':5.5684364343742825,'E':16.260021029735388}
grating_split_pos_chip = 0 + grating_split_pos
for i in range(len(bandpass_list)):
bandpass = bandpass_list[i]
psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold)
disk = galsim.Sersic(n=1.0, half_light_radius=self.hlr_disk, flux=1.0, gsparams=gsp)
disk_shape = galsim.Shear(g1=self.e1_disk, g2=self.e2_disk)
disk = disk.shear(disk_shape)
bulge = galsim.Sersic(n=4.0, half_light_radius=self.hlr_bulge, flux=1.0, gsparams=gsp)
bulge_shape = galsim.Shear(g1=self.e1_bulge, g2=self.e2_bulge)
bulge = bulge.shear(bulge_shape)
gal = self.bfrac * bulge + (1.0 - self.bfrac) * disk
# (TEST) Random knots
# knots = galsim.RandomKnots(npoints=100, profile=disk)
# kfrac = np.random.random()*(1.0 - self.bfrac)
# gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots
gal = gal.withFlux(tel.pupil_area * exptime)
gal_shear = galsim.Shear(g1=g1, g2=g2)
gal = gal.shear(gal_shear)
gal = galsim.Convolve(psf, gal)
starImg = gal.drawImage(wcs=real_wcs_local, offset=offset)
origin_star = [y_nominal - (starImg.center.y - starImg.ymin),
x_nominal - (starImg.center.x - starImg.xmin)]
starImg.setOrigin(0, 0)
gal_origin = [origin_star[0], origin_star[1]]
gal_end = [origin_star[0] + starImg.array.shape[0] - 1, origin_star[1] + starImg.array.shape[1] - 1]
if gal_origin[1] < grating_split_pos_chip < gal_end[1]:
subSlitPos = int(grating_split_pos_chip - gal_origin[1] + 1)
## part img disperse
subImg_p1 = starImg.array[:, 0:subSlitPos]
star_p1 = galsim.Image(subImg_p1)
star_p1.setOrigin(0, 0)
origin_p1 = origin_star
xcenter_p1 = min(x_nominal,grating_split_pos_chip-1) - 0
ycenter_p1 = y_nominal-0
sdp_p1 = SpecDisperser(orig_img=star_p1, xcenter=xcenter_p1,
ycenter=ycenter_p1, origin=origin_p1,
tar_spec=normalSED,
band_start=bandpass.blue_limit * 10, band_end=bandpass.red_limit * 10,
conf=chip.sls_conf[0],
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
isAlongY=0,
flat_cube=flat_cube)
self.addSLStoChipImage(sdp=sdp_p1, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=real_wcs_local)
subImg_p2 = starImg.array[:, subSlitPos+1:starImg.array.shape[1]]
star_p2 = galsim.Image(subImg_p2)
star_p2.setOrigin(0, 0)
origin_p2 = [origin_star[0], grating_split_pos_chip]
xcenter_p2 = max(x_nominal, grating_split_pos_chip - 1) - 0
ycenter_p2 = y_nominal - 0
sdp_p2 = SpecDisperser(orig_img=star_p2, xcenter=xcenter_p2,
ycenter=ycenter_p2, origin=origin_p2,
tar_spec=normalSED,
band_start=bandpass.blue_limit * 10, band_end=bandpass.red_limit * 10,
conf=chip.sls_conf[1],
isAlongY=0,
flat_cube=flat_cube)
self.addSLStoChipImage(sdp=sdp_p2, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=real_wcs_local)
del sdp_p1
del sdp_p2
elif grating_split_pos_chip<=gal_origin[1]:
sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0,
ycenter=y_nominal - 0, origin=origin_star,
tar_spec=normalSED,
band_start=bandpass.blue_limit * 10, band_end=bandpass.red_limit * 10,
conf=chip.sls_conf[1],
isAlongY=0,
flat_cube=flat_cube)
self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=real_wcs_local)
del sdp
elif grating_split_pos_chip>=gal_end[1]:
sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0,
ycenter=y_nominal - 0, origin=origin_star,
tar_spec=normalSED,
band_start=bandpass.blue_limit * 10, band_end=bandpass.red_limit * 10,
conf=chip.sls_conf[0],
isAlongY=0,
flat_cube=flat_cube)
self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=real_wcs_local)
del sdp
# print(self.y_nominal, starImg.center.y, starImg.ymin)
del psf
return True, pos_shear
def getGSObj(self, psf, g1=0, g2=0, flux=None, filt=None, tel=None, exptime=150.):
if flux == None:
flux = self.getElectronFluxFilt(filt, tel, exptime)
disk = galsim.Sersic(n=1.0, half_light_radius=self.hlr_disk, flux=1.0)
disk_shape = galsim.Shear(g1=self.e1_disk, g2=self.e2_disk)
disk = disk.shear(disk_shape)
bulge = galsim.Sersic(n=4.0, half_light_radius=self.hlr_bulge, flux=1.0)
bulge_shape = galsim.Shear(g1=self.e1_bulge, g2=self.e2_bulge)
bulge = bulge.shear(bulge_shape)
gal = self.bfrac * bulge + (1.0 - self.bfrac) * disk
gal = gal.withFlux(flux)
gal_shear = galsim.Shear(g1=g1, g2=g2)
gal = gal.shear(gal_shear)
final = galsim.Convolve(psf, gal)
return final
def rotateEllipticity(self, rotation):
if rotation == 1:
self.e1_disk, self.e2_disk, self.e1_bulge, self.e2_bulge, self.e1_total, self.e2_total = -self.e2_disk, self.e1_disk, -self.e2_bulge, self.e1_bulge, -self.e2_total, self.e1_total
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
if rotation == 2:
self.e1_disk, self.e2_disk, self.e1_bulge, self.e2_bulge, self.e1_total, self.e2_total = -self.e1_disk, -self.e2_disk, -self.e1_bulge, -self.e2_bulge, -self.e1_total, -self.e2_total
if rotation == 3:
self.e1_disk, self.e2_disk, self.e1_bulge, self.e2_bulge, self.e1_total, self.e2_total = self.e2_disk, -self.e1_disk, self.e2_bulge, -self.e1_bulge, self.e2_total, -self.e1_total
def drawObject(self, img, final, noise_level=0.0, flux=None, filt=None, tel=None, exptime=150.):
""" Override the method in parent class
Need to constrain the size of image stamp for extended objects
"""
isUpdated = True
if flux == None:
flux = self.getElectronFluxFilt(filt, tel, exptime)
stamp = final.drawImage(wcs=self.localWCS, offset=self.offset)
stamp_arr = stamp.array
mask = (stamp_arr >= 0.001*noise_level) # why 0.001?
err = int(np.sqrt(mask.sum()))
if np.mod(err, 2) == 1:
err += 1
# if err == 1:
if err == 0:
subSize = 16 # why 16?
else:
subSize = max([err, 16])
fluxRatio = flux / stamp_arr[mask].sum()
final = final.withScaledFlux(fluxRatio)
imgSub = galsim.ImageF(subSize, subSize)
# Draw with FFT
# stamp = final.drawImage(image=imgSub, wcs=self.localWCS, offset=self.offset)
# Draw with Photon Shoot
stamp = final.drawImage(image=imgSub, wcs=self.localWCS, method='phot', offset=self.offset)
stamp.setCenter(self.x_nominal, self.y_nominal)
if np.sum(np.isnan(stamp.array)) >= 1:
stamp.setZero()
bounds = stamp.bounds & img.bounds
if bounds.area() == 0:
isUpdated = False
else:
img[bounds] += stamp[bounds]
return img, stamp, isUpdated
def getObservedEll(self, g1=0, g2=0):
e1_obs, e2_obs, e_obs, theta = eObs(self.e1_total, self.e2_total, g1, g2)
return self.e1_total, self.e2_total, g1, g2, e1_obs, e2_obs