Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_msc_sim
Commits
2fb27ea2
Commit
2fb27ea2
authored
Dec 30, 2024
by
Zhang Xin
Browse files
add led flat to image and sls; add brighter source psf for sls
parent
4574f13f
Pipeline
#7624
failed with stage
in 0 seconds
Changes
8
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
catalog/C9_Catalog.py
View file @
2fb27ea2
...
@@ -470,8 +470,9 @@ class Catalog(CatalogBase):
...
@@ -470,8 +470,9 @@ class Catalog(CatalogBase):
self
.
objs
.
append
(
obj
)
self
.
objs
.
append
(
obj
)
def
free_mem
(
self
,
**
kward
):
def
free_mem
(
self
,
**
kward
):
self
.
starDDL
.
freeGlobeData
()
if
not
self
.
config
[
"catalog_options"
][
"galaxy_only"
]:
del
self
.
starDDL
self
.
starDDL
.
freeGlobeData
()
del
self
.
starDDL
def
_load
(
self
,
**
kwargs
):
def
_load
(
self
,
**
kwargs
):
self
.
objs
=
[]
self
.
objs
=
[]
...
...
observation_sim/ObservationSim.py
View file @
2fb27ea2
...
@@ -62,6 +62,8 @@ class Observation(object):
...
@@ -62,6 +62,8 @@ class Observation(object):
# Get flat, shutter, and PRNU images
# Get flat, shutter, and PRNU images
chip
.
flat_img
,
_
=
chip_utils
.
get_flat
(
chip
.
flat_img
,
_
=
chip_utils
.
get_flat
(
img
=
chip
.
img
,
seed
=
int
(
self
.
config
[
"random_seeds"
][
"seed_flat"
]))
img
=
chip
.
img
,
seed
=
int
(
self
.
config
[
"random_seeds"
][
"seed_flat"
]))
if
chip
.
chipID
<=
30
:
chip
.
flat_img
=
chip
.
flat_img
*
chip_utils
.
get_innerflat
(
chip
=
chip
)
if
chip
.
chipID
>
30
:
if
chip
.
chipID
>
30
:
chip
.
shutter_img
=
np
.
ones_like
(
chip
.
img
.
array
)
chip
.
shutter_img
=
np
.
ones_like
(
chip
.
img
.
array
)
else
:
else
:
...
...
observation_sim/instruments/chip/chip_utils.py
View file @
2fb27ea2
...
@@ -172,6 +172,12 @@ def get_flat(img, seed):
...
@@ -172,6 +172,12 @@ def get_flat(img, seed):
flat_normal
=
flat_img
/
np
.
mean
(
flat_img
.
array
)
flat_normal
=
flat_img
/
np
.
mean
(
flat_img
.
array
)
return
flat_img
,
flat_normal
return
flat_img
,
flat_normal
def
get_innerflat
(
chip
=
None
,
filt
=
None
):
from
observation_sim.mock_objects
import
FlatLED
led_obj
=
FlatLED
(
chip
,
filt
)
flat_img
=
led_obj
.
getInnerFlat
()
return
flat_img
def
add_cosmic_rays
(
img
,
chip
,
exptime
=
150
,
seed
=
0
):
def
add_cosmic_rays
(
img
,
chip
,
exptime
=
150
,
seed
=
0
):
cr_map
,
cr_event_num
=
effects
.
produceCR_Map
(
cr_map
,
cr_event_num
=
effects
.
produceCR_Map
(
...
...
observation_sim/mock_objects/FlatLED.py
View file @
2fb27ea2
...
@@ -50,6 +50,8 @@ fluxLED = {'LED1': 15, 'LED2': 15, 'LED3': 12.5, 'LED4': 9, 'LED5': 9,
...
@@ -50,6 +50,8 @@ fluxLED = {'LED1': 15, 'LED2': 15, 'LED3': 12.5, 'LED4': 9, 'LED5': 9,
# 'LED14': 10}
# 'LED14': 10}
mirro_eff
=
{
'GU'
:
0.61
,
'GV'
:
0.8
,
'GI'
:
0.8
}
mirro_eff
=
{
'GU'
:
0.61
,
'GV'
:
0.8
,
'GI'
:
0.8
}
bandtoLed
=
{
'NUV'
:[
'LED1'
,
'LED2'
],
'u'
:[
'LED13'
,
'LED14'
],
'g'
:[
'LED3'
,
'LED4'
,
'LED5'
],
'r'
:[
'LED6'
,
'LED7'
],
'i'
:[
'LED8'
],
'z'
:[
'LED9'
,
'LED10'
],
'y'
:[
'LED10'
],
'GU'
:[
'LED1'
,
'LED2'
,
'LED13'
,
'LED14'
],
'GV'
:[
'LED3'
,
'LED4'
,
'LED5'
,
'LED6'
],
'GI'
:[
'LED7'
,
'LED8'
,
'LED9'
,
'LED10'
]}
# mirro_eff = {'GU':1, 'GV':1, 'GI':1}
# mirro_eff = {'GU':1, 'GV':1, 'GI':1}
...
@@ -69,10 +71,19 @@ class FlatLED(MockObject):
...
@@ -69,10 +71,19 @@ class FlatLED(MockObject):
with
pkg_resources
.
path
(
'observation_sim.mock_objects.data.led'
,
""
)
as
ledDir
:
with
pkg_resources
.
path
(
'observation_sim.mock_objects.data.led'
,
""
)
as
ledDir
:
self
.
flatDir
=
ledDir
.
as_posix
()
self
.
flatDir
=
ledDir
.
as_posix
()
def
getInnerFlat
(
self
):
ledflats
=
bandtoLed
[
self
.
chip
.
filter_type
]
iFlat
=
np
.
zeros
([
self
.
chip
.
npix_y
,
self
.
chip
.
npix_x
])
for
nled
in
ledflats
:
iFlat
=
iFlat
+
self
.
getLEDImage
(
led_type
=
nled
,
LED_Img_flag
=
False
)
iFlat
=
iFlat
/
len
(
ledflats
)
return
iFlat
###
###
# return LED flat, e/s
# return LED flat, e/s
###
###
def
getLEDImage
(
self
,
led_type
=
'LED1'
):
def
getLEDImage
(
self
,
led_type
=
'LED1'
,
LED_Img_flag
=
True
):
# cwave = cwaves[led_type]
# cwave = cwaves[led_type]
flat
=
fits
.
open
(
os
.
path
.
join
(
self
.
flatDir
,
'model_'
+
flat
=
fits
.
open
(
os
.
path
.
join
(
self
.
flatDir
,
'model_'
+
cwaves_name
[
led_type
]
+
'nm.fits'
))
cwaves_name
[
led_type
]
+
'nm.fits'
))
...
@@ -102,7 +113,10 @@ class FlatLED(MockObject):
...
@@ -102,7 +113,10 @@ class FlatLED(MockObject):
N
[
self
.
chip
.
npix_y
*
i
:
self
.
chip
.
npix_y
*
(
i
+
1
),
self
.
chip
.
npix_x
*
j
:
self
.
chip
.
npix_x
*
(
j
+
1
)]),
N
[
self
.
chip
.
npix_y
*
i
:
self
.
chip
.
npix_y
*
(
i
+
1
),
self
.
chip
.
npix_x
*
j
:
self
.
chip
.
npix_x
*
(
j
+
1
)]),
method
=
'linear'
)
method
=
'linear'
)
U
=
U
/
np
.
mean
(
U
)
U
=
U
/
np
.
mean
(
U
)
flatImage
=
U
*
fluxLED
[
led_type
]
*
1000
flatImage
=
U
if
LED_Img_flag
:
flatImage
=
flatImage
*
fluxLED
[
led_type
]
*
1000
gc
.
collect
()
gc
.
collect
()
return
flatImage
return
flatImage
...
...
observation_sim/mock_objects/Galaxy.py
View file @
2fb27ea2
...
@@ -335,18 +335,21 @@ class Galaxy(MockObject):
...
@@ -335,18 +335,21 @@ class Galaxy(MockObject):
pos_img_local
[
1
]
=
pos_img
.
y
-
y_start
pos_img_local
[
1
]
=
pos_img
.
y
-
y_start
nnx
=
0
nnx
=
0
nny
=
0
nny
=
0
for
order
in
[
"A"
,
"B"
]:
for
order
in
[
"B"
,
"A"
]:
EXTRA
=
False
if
self
.
getMagFilter
(
filt
)
<=
filt
.
mag_saturation
-
2.
:
EXTRA
=
True
psf
,
pos_shear
=
psf_model
.
get_PSF
(
psf
,
pos_shear
=
psf_model
.
get_PSF
(
chip
,
pos_img_local
=
pos_img_local
,
bandNo
=
i
+
1
,
galsimGSObject
=
True
,
g_order
=
order
,
grating_split_pos
=
grating_split_pos
)
chip
,
pos_img_local
=
pos_img_local
,
bandNo
=
i
+
1
,
galsimGSObject
=
True
,
g_order
=
order
,
grating_split_pos
=
grating_split_pos
,
extrapolate
=
EXTRA
,
ngg
=
3072
)
star_p
=
galsim
.
Convolve
(
psf
,
gal
)
star_p
=
galsim
.
Convolve
(
psf
,
gal
)
if
nnx
==
0
:
if
nnx
==
0
:
galImg
=
star_p
.
drawImage
(
galImg
=
star_p
.
drawImage
(
wcs
=
chip_wcs_local
,
offset
=
offset
)
wcs
=
chip_wcs_local
,
offset
=
offset
,
method
=
'no_pixel'
)
nnx
=
galImg
.
xmax
-
galImg
.
xmin
+
1
nnx
=
galImg
.
xmax
-
galImg
.
xmin
+
1
nny
=
galImg
.
ymax
-
galImg
.
ymin
+
1
nny
=
galImg
.
ymax
-
galImg
.
ymin
+
1
else
:
else
:
galImg
=
star_p
.
drawImage
(
galImg
=
star_p
.
drawImage
(
nx
=
nnx
,
ny
=
nny
,
wcs
=
chip_wcs_local
,
offset
=
offset
)
nx
=
nnx
,
ny
=
nny
,
wcs
=
chip_wcs_local
,
offset
=
offset
,
method
=
'no_pixel'
)
galImg
.
setOrigin
(
0
,
0
)
galImg
.
setOrigin
(
0
,
0
)
# n1 = np.sum(np.isinf(galImg.array))
# n1 = np.sum(np.isinf(galImg.array))
# n2 = np.sum(np.isnan(galImg.array))
# n2 = np.sum(np.isnan(galImg.array))
...
...
observation_sim/mock_objects/MockObject.py
View file @
2fb27ea2
...
@@ -386,7 +386,7 @@ class MockObject(object):
...
@@ -386,7 +386,7 @@ class MockObject(object):
sedNormFactor
=
1.
sedNormFactor
=
1.
if
self
.
getMagFilter
(
filt
)
<=
15
:
if
self
.
getMagFilter
(
filt
)
<=
15
:
folding_threshold
=
5.e-
4
folding_threshold
=
5.e-
8
else
:
else
:
folding_threshold
=
5.e-3
folding_threshold
=
5.e-3
gsp
=
galsim
.
GSParams
(
folding_threshold
=
folding_threshold
)
gsp
=
galsim
.
GSParams
(
folding_threshold
=
folding_threshold
)
...
@@ -445,19 +445,24 @@ class MockObject(object):
...
@@ -445,19 +445,24 @@ class MockObject(object):
pos_img_local
[
1
]
=
pos_img
.
y
-
y_start
pos_img_local
[
1
]
=
pos_img
.
y
-
y_start
nnx
=
0
nnx
=
0
nny
=
0
nny
=
0
for
order
in
[
"A"
,
"B"
]:
for
order
in
[
"B"
,
"A"
]:
EXTRA
=
False
if
self
.
getMagFilter
(
filt
)
<=
filt
.
mag_saturation
-
2.
:
EXTRA
=
True
nnx
=
2048
nny
=
2048
psf
,
pos_shear
=
psf_model
.
get_PSF
(
psf
,
pos_shear
=
psf_model
.
get_PSF
(
chip
,
pos_img_local
=
pos_img_local
,
bandNo
=
i
+
1
,
galsimGSObject
=
True
,
g_order
=
order
,
grating_split_pos
=
grating_split_pos
)
chip
,
pos_img_local
=
pos_img_local
,
bandNo
=
i
+
1
,
galsimGSObject
=
True
,
g_order
=
order
,
grating_split_pos
=
grating_split_pos
,
extrapolate
=
EXTRA
,
ngg
=
3072
)
# star_p = galsim.Convolve(psf, star)
# star_p = galsim.Convolve(psf, star)
star_p
=
psf
.
withFlux
(
tel
.
pupil_area
*
exptime
)
star_p
=
psf
.
withFlux
(
tel
.
pupil_area
*
exptime
)
if
nnx
==
0
:
if
nnx
==
0
:
starImg
=
star_p
.
drawImage
(
starImg
=
star_p
.
drawImage
(
wcs
=
chip_wcs_local
,
offset
=
offset
)
wcs
=
chip_wcs_local
,
offset
=
offset
,
method
=
'no_pixel'
)
nnx
=
starImg
.
xmax
-
starImg
.
xmin
+
1
nnx
=
starImg
.
xmax
-
starImg
.
xmin
+
1
nny
=
starImg
.
ymax
-
starImg
.
ymin
+
1
nny
=
starImg
.
ymax
-
starImg
.
ymin
+
1
else
:
else
:
starImg
=
star_p
.
drawImage
(
starImg
=
star_p
.
drawImage
(
nx
=
nnx
,
ny
=
nny
,
wcs
=
chip_wcs_local
,
offset
=
offset
)
nx
=
nnx
,
ny
=
nny
,
wcs
=
chip_wcs_local
,
offset
=
offset
,
method
=
'no_pixel'
)
# n1 = np.sum(np.isinf(starImg.array))
# n1 = np.sum(np.isinf(starImg.array))
# n2 = np.sum(np.isnan(starImg.array))
# n2 = np.sum(np.isnan(starImg.array))
# if n1>0 or n2 > 0:
# if n1>0 or n2 > 0:
...
@@ -470,7 +475,7 @@ class MockObject(object):
...
@@ -470,7 +475,7 @@ class MockObject(object):
psf
,
pos_shear
=
psf_model
.
get_PSF
(
chip
=
chip
,
pos_img
=
pos_img
)
psf
,
pos_shear
=
psf_model
.
get_PSF
(
chip
=
chip
,
pos_img
=
pos_img
)
# star_p = galsim.Convolve(psf, star)
# star_p = galsim.Convolve(psf, star)
star_p
=
psf
.
withFlux
(
tel
.
pupil_area
*
exptime
)
star_p
=
psf
.
withFlux
(
tel
.
pupil_area
*
exptime
)
starImg
=
star_p
.
drawImage
(
wcs
=
chip_wcs_local
,
offset
=
offset
)
starImg
=
star_p
.
drawImage
(
wcs
=
chip_wcs_local
,
offset
=
offset
,
method
=
'no_pixel'
)
starImg
.
setOrigin
(
0
,
0
)
starImg
.
setOrigin
(
0
,
0
)
for
order
in
[
"A"
,
"B"
,
"C"
,
"D"
,
"E"
]:
for
order
in
[
"A"
,
"B"
,
"C"
,
"D"
,
"E"
]:
starImg_List
.
append
(
starImg
)
starImg_List
.
append
(
starImg
)
...
...
observation_sim/psf/PSFInterpSLS.py
View file @
2fb27ea2
...
@@ -23,6 +23,9 @@ from astropy.modeling.models import Gaussian2D
...
@@ -23,6 +23,9 @@ from astropy.modeling.models import Gaussian2D
from
scipy
import
signal
,
interpolate
from
scipy
import
signal
,
interpolate
import
datetime
import
datetime
import
gc
import
gc
from
astropy.io
import
fits
from
observation_sim.psf._util
import
psf_extrapolate
,
psf_extrapolate1
# from jax import numpy as jnp
# from jax import numpy as jnp
LOG_DEBUG
=
False
# ***#
LOG_DEBUG
=
False
# ***#
...
@@ -354,7 +357,7 @@ class PSFInterpSLS(PSFModel):
...
@@ -354,7 +357,7 @@ class PSFInterpSLS(PSFModel):
convImg
=
convImg
/
np
.
sum
(
convImg
)
convImg
=
convImg
/
np
.
sum
(
convImg
)
return
convImg
return
convImg
def
get_PSF
(
self
,
chip
,
pos_img_local
=
[
1000
,
1000
],
bandNo
=
1
,
galsimGSObject
=
True
,
folding_threshold
=
5.e-3
,
g_order
=
'A'
,
grating_split_pos
=
3685
):
def
get_PSF
(
self
,
chip
,
pos_img_local
=
[
1000
,
1000
],
bandNo
=
1
,
galsimGSObject
=
True
,
folding_threshold
=
5.e-3
,
g_order
=
'A'
,
grating_split_pos
=
3685
,
extrapolate
=
False
,
ngg
=
2048
):
"""
"""
Get the PSF at a given image position
Get the PSF at a given image position
...
@@ -435,6 +438,9 @@ class PSFInterpSLS(PSFModel):
...
@@ -435,6 +438,9 @@ class PSFInterpSLS(PSFModel):
# PSF_int_trans[ids_szero] = 0
# PSF_int_trans[ids_szero] = 0
# print(PSF_int_trans[ids_szero].shape[0],PSF_int_trans.shape)
# print(PSF_int_trans[ids_szero].shape[0],PSF_int_trans.shape)
PSF_int_trans
=
PSF_int_trans
/
np
.
sum
(
PSF_int_trans
)
PSF_int_trans
=
PSF_int_trans
/
np
.
sum
(
PSF_int_trans
)
PSF_int_trans
=
PSF_int_trans
-
np
.
min
(
PSF_int_trans
)
PSF_int_trans
=
PSF_int_trans
/
np
.
sum
(
PSF_int_trans
)
# fits.writeto('/home/zhangxin/CSST_SIM/CSST_sim_develop/psf_test/psf.fits',PSF_int_trans)
# DEBGU
# DEBGU
ids_szero
=
PSF_int_trans
<
0
ids_szero
=
PSF_int_trans
<
0
n01
=
PSF_int_trans
[
ids_szero
].
shape
[
0
]
n01
=
PSF_int_trans
[
ids_szero
].
shape
[
0
]
...
@@ -444,7 +450,16 @@ class PSFInterpSLS(PSFModel):
...
@@ -444,7 +450,16 @@ class PSFInterpSLS(PSFModel):
if
n1
>
0
or
n2
>
0
:
if
n1
>
0
or
n2
>
0
:
print
(
"DEBUG: PSFInterpSLS, inf:%d, nan:%d, 0 num:%d"
%
print
(
"DEBUG: PSFInterpSLS, inf:%d, nan:%d, 0 num:%d"
%
(
n1
,
n2
,
n01
))
(
n1
,
n2
,
n01
))
if
extrapolate
is
True
:
# for rep_i in np.arange(0, 2, 1):
# PSF_int_trans[rep_i,:] = 1e9*pow(10,rep_i)
# PSF_int_trans[-1-rep_i,:] = 1e9*pow(10,rep_i)
# PSF_int_trans[:,rep_i] = 1e9*pow(10,rep_i)
# PSF_int_trans[:,-1-rep_i] = 1e9*pow(10,rep_i)
PSF_int_trans
=
psf_extrapolate1
(
PSF_int_trans
,
ngg
=
ngg
)
# fits.writeto('/home/zhangxin/CSST_SIM/CSST_sim_develop/psf_test/psf_large.fits',PSF_int_trans)
####
####
# from astropy.io import fits
# from astropy.io import fits
# fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans)
# fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans)
...
...
observation_sim/psf/_util.py
View file @
2fb27ea2
...
@@ -63,3 +63,58 @@ def psf_extrapolate(psf, rr_trim=64, ngg=256):
...
@@ -63,3 +63,58 @@ def psf_extrapolate(psf, rr_trim=64, ngg=256):
imPSF
=
psf
# binningPSF(psf, int(ngg/2))
imPSF
=
psf
# binningPSF(psf, int(ngg/2))
imPSF
=
imPSF
/
np
.
nansum
(
imPSF
)
imPSF
=
imPSF
/
np
.
nansum
(
imPSF
)
return
imPSF
return
imPSF
def
psf_extrapolate1
(
psf
,
rr_trim
=
64
,
ngg
=
256
):
# ngg = 256
# extrapolate PSF
if
True
:
psf_enlar
=
np
.
zeros
([
ngg
,
ngg
])
psf_enlar
[
int
(
ngg
/
2
-
128
):
int
(
ngg
/
2
+
128
),
int
(
ngg
/
2
-
128
):
int
(
ngg
/
2
+
128
)]
=
psf
xim
=
np
.
arange
(
ngg
)
-
ngg
/
2
xim
,
yim
=
np
.
meshgrid
(
xim
,
xim
)
rim
=
np
.
sqrt
(
xim
**
2
+
yim
**
2
)
psf_temp
=
psf_enlar
# psf_temp[rim >= rr_trim] = 0
psf_temp
[
rim
>=
ngg
/
2
-
2
]
=
np
.
finfo
(
float
).
eps
radii
,
means
=
radial_average_at_pixel
(
psf_temp
,
ngg
/
2
,
ngg
/
2
,
dr
=
2
)
radii_log
=
np
.
log
(
radii
[
1
:])
# radii_log = radii[1:]
means_log
=
np
.
log
(
means
[
1
:])
# xim = np.arange(256)-128
# xim, yim = np.meshgrid(xim, xim)
# rim = np.sqrt(xim**2 + yim**2)
# # rr_trim = 96
# psf_temp = psf
# psf_temp[rim > rr_trim] = 0
# radii, means = radial_average_at_pixel(psf_temp, 128, 128, dr=4)
# radii_log = np.log10(radii[1:])
# # radii_log = radii[1:]
# means_log = np.log10(means[1:])
finite_mask
=
np
.
isfinite
(
means_log
)
f_interp
=
interp1d
(
radii_log
[
finite_mask
][:
-
1
],
means_log
[
finite_mask
][:
-
1
],
kind
=
'linear'
,
fill_value
=
"extrapolate"
)
# ngg = 1024
# xim = np.arange(ngg)-int(ngg/2)
# xim, yim = np.meshgrid(xim, xim)
# rim = np.sqrt(xim**2 + yim**2)
# rim[int(ngg/2), int(ngg/2)] = np.finfo(float).eps # 1e-7
rim_log
=
np
.
log
(
rim
)
y_new
=
f_interp
(
rim_log
)
arr
=
np
.
zeros
([
ngg
,
ngg
])
arr
[
int
(
ngg
/
2
-
128
):
int
(
ngg
/
2
+
128
),
int
(
ngg
/
2
-
128
):
int
(
ngg
/
2
+
128
)]
=
np
.
log
(
psf
+
np
.
finfo
(
float
).
eps
)
arr
[
rim
>
128
-
2
]
=
0
arr
[
arr
==
0
]
=
y_new
[
arr
==
0
]
psf_n
=
np
.
exp
(
arr
)
# psf_n[int(ngg/2-128):int(ngg/2+128), int(ngg/2-128):int(ngg/2+128)] = psf
# psf[rim > int(ngg/2)] = 0
imPSF
=
psf_n
# binningPSF(psf, int(ngg/2))
# imPSF = imPSF/np.nansum(imPSF)
return
imPSF
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment