Commit 2fb27ea2 authored by Zhang Xin's avatar Zhang Xin
Browse files

add led flat to image and sls; add brighter source psf for sls

parent 4574f13f
Pipeline #7624 failed with stage
in 0 seconds
...@@ -470,6 +470,7 @@ class Catalog(CatalogBase): ...@@ -470,6 +470,7 @@ class Catalog(CatalogBase):
self.objs.append(obj) self.objs.append(obj)
def free_mem(self, **kward): def free_mem(self, **kward):
if not self.config["catalog_options"]["galaxy_only"]:
self.starDDL.freeGlobeData() self.starDDL.freeGlobeData()
del self.starDDL del self.starDDL
......
...@@ -62,6 +62,8 @@ class Observation(object): ...@@ -62,6 +62,8 @@ class Observation(object):
# Get flat, shutter, and PRNU images # Get flat, shutter, and PRNU images
chip.flat_img, _ = chip_utils.get_flat( chip.flat_img, _ = chip_utils.get_flat(
img=chip.img, seed=int(self.config["random_seeds"]["seed_flat"])) img=chip.img, seed=int(self.config["random_seeds"]["seed_flat"]))
if chip.chipID <= 30:
chip.flat_img = chip.flat_img*chip_utils.get_innerflat(chip = chip)
if chip.chipID > 30: if chip.chipID > 30:
chip.shutter_img = np.ones_like(chip.img.array) chip.shutter_img = np.ones_like(chip.img.array)
else: else:
......
...@@ -172,6 +172,12 @@ def get_flat(img, seed): ...@@ -172,6 +172,12 @@ def get_flat(img, seed):
flat_normal = flat_img / np.mean(flat_img.array) flat_normal = flat_img / np.mean(flat_img.array)
return flat_img, flat_normal return flat_img, flat_normal
def get_innerflat(chip = None, filt = None):
from observation_sim.mock_objects import FlatLED
led_obj = FlatLED(chip, filt)
flat_img = led_obj.getInnerFlat()
return flat_img
def add_cosmic_rays(img, chip, exptime=150, seed=0): def add_cosmic_rays(img, chip, exptime=150, seed=0):
cr_map, cr_event_num = effects.produceCR_Map( cr_map, cr_event_num = effects.produceCR_Map(
......
...@@ -50,6 +50,8 @@ fluxLED = {'LED1': 15, 'LED2': 15, 'LED3': 12.5, 'LED4': 9, 'LED5': 9, ...@@ -50,6 +50,8 @@ fluxLED = {'LED1': 15, 'LED2': 15, 'LED3': 12.5, 'LED4': 9, 'LED5': 9,
# 'LED14': 10} # 'LED14': 10}
mirro_eff = {'GU': 0.61, 'GV': 0.8, 'GI': 0.8} mirro_eff = {'GU': 0.61, 'GV': 0.8, 'GI': 0.8}
bandtoLed = {'NUV':['LED1','LED2'], 'u':['LED13','LED14'], 'g':['LED3','LED4','LED5'], 'r':['LED6','LED7'], 'i':['LED8'], 'z':['LED9','LED10'], 'y':['LED10'], 'GU':['LED1','LED2','LED13','LED14'], 'GV':['LED3','LED4','LED5','LED6'], 'GI':['LED7','LED8','LED9','LED10']}
# mirro_eff = {'GU':1, 'GV':1, 'GI':1} # mirro_eff = {'GU':1, 'GV':1, 'GI':1}
...@@ -69,10 +71,19 @@ class FlatLED(MockObject): ...@@ -69,10 +71,19 @@ class FlatLED(MockObject):
with pkg_resources.path('observation_sim.mock_objects.data.led', "") as ledDir: with pkg_resources.path('observation_sim.mock_objects.data.led', "") as ledDir:
self.flatDir = ledDir.as_posix() self.flatDir = ledDir.as_posix()
def getInnerFlat(self):
ledflats = bandtoLed[self.chip.filter_type]
iFlat = np.zeros([self.chip.npix_y, self.chip.npix_x])
for nled in ledflats:
iFlat = iFlat + self.getLEDImage(led_type=nled, LED_Img_flag =False)
iFlat = iFlat / len(ledflats)
return iFlat
### ###
# return LED flat, e/s # return LED flat, e/s
### ###
def getLEDImage(self, led_type='LED1'): def getLEDImage(self, led_type='LED1', LED_Img_flag =True):
# cwave = cwaves[led_type] # cwave = cwaves[led_type]
flat = fits.open(os.path.join(self.flatDir, 'model_' + flat = fits.open(os.path.join(self.flatDir, 'model_' +
cwaves_name[led_type] + 'nm.fits')) cwaves_name[led_type] + 'nm.fits'))
...@@ -102,7 +113,10 @@ class FlatLED(MockObject): ...@@ -102,7 +113,10 @@ class FlatLED(MockObject):
N[self.chip.npix_y * i:self.chip.npix_y * (i + 1), self.chip.npix_x * j:self.chip.npix_x * (j + 1)]), N[self.chip.npix_y * i:self.chip.npix_y * (i + 1), self.chip.npix_x * j:self.chip.npix_x * (j + 1)]),
method='linear') method='linear')
U = U/np.mean(U) U = U/np.mean(U)
flatImage = U*fluxLED[led_type]*1000
flatImage = U
if LED_Img_flag:
flatImage = flatImage*fluxLED[led_type]*1000
gc.collect() gc.collect()
return flatImage return flatImage
......
...@@ -335,18 +335,21 @@ class Galaxy(MockObject): ...@@ -335,18 +335,21 @@ class Galaxy(MockObject):
pos_img_local[1] = pos_img.y - y_start pos_img_local[1] = pos_img.y - y_start
nnx = 0 nnx = 0
nny = 0 nny = 0
for order in ["A", "B"]: for order in ["B", "A"]:
EXTRA = False
if self.getMagFilter(filt) <= filt.mag_saturation-2.:
EXTRA = True
psf, pos_shear = psf_model.get_PSF( psf, pos_shear = psf_model.get_PSF(
chip, pos_img_local=pos_img_local, bandNo=i+1, galsimGSObject=True, g_order=order, grating_split_pos=grating_split_pos) chip, pos_img_local=pos_img_local, bandNo=i+1, galsimGSObject=True, g_order=order, grating_split_pos=grating_split_pos, extrapolate = EXTRA, ngg=3072)
star_p = galsim.Convolve(psf, gal) star_p = galsim.Convolve(psf, gal)
if nnx == 0: if nnx == 0:
galImg = star_p.drawImage( galImg = star_p.drawImage(
wcs=chip_wcs_local, offset=offset) wcs=chip_wcs_local, offset=offset, method='no_pixel')
nnx = galImg.xmax - galImg.xmin + 1 nnx = galImg.xmax - galImg.xmin + 1
nny = galImg.ymax - galImg.ymin + 1 nny = galImg.ymax - galImg.ymin + 1
else: else:
galImg = star_p.drawImage( galImg = star_p.drawImage(
nx=nnx, ny=nny, wcs=chip_wcs_local, offset=offset) nx=nnx, ny=nny, wcs=chip_wcs_local, offset=offset, method='no_pixel')
galImg.setOrigin(0, 0) galImg.setOrigin(0, 0)
# n1 = np.sum(np.isinf(galImg.array)) # n1 = np.sum(np.isinf(galImg.array))
# n2 = np.sum(np.isnan(galImg.array)) # n2 = np.sum(np.isnan(galImg.array))
......
...@@ -386,7 +386,7 @@ class MockObject(object): ...@@ -386,7 +386,7 @@ class MockObject(object):
sedNormFactor = 1. sedNormFactor = 1.
if self.getMagFilter(filt) <= 15: if self.getMagFilter(filt) <= 15:
folding_threshold = 5.e-4 folding_threshold = 5.e-8
else: else:
folding_threshold = 5.e-3 folding_threshold = 5.e-3
gsp = galsim.GSParams(folding_threshold=folding_threshold) gsp = galsim.GSParams(folding_threshold=folding_threshold)
...@@ -445,19 +445,24 @@ class MockObject(object): ...@@ -445,19 +445,24 @@ class MockObject(object):
pos_img_local[1] = pos_img.y - y_start pos_img_local[1] = pos_img.y - y_start
nnx = 0 nnx = 0
nny = 0 nny = 0
for order in ["A", "B"]: for order in ["B", "A"]:
EXTRA = False
if self.getMagFilter(filt) <= filt.mag_saturation-2.:
EXTRA = True
nnx = 2048
nny = 2048
psf, pos_shear = psf_model.get_PSF( psf, pos_shear = psf_model.get_PSF(
chip, pos_img_local=pos_img_local, bandNo=i+1, galsimGSObject=True, g_order=order, grating_split_pos=grating_split_pos) chip, pos_img_local=pos_img_local, bandNo=i+1, galsimGSObject=True, g_order=order, grating_split_pos=grating_split_pos, extrapolate=EXTRA, ngg=3072)
# star_p = galsim.Convolve(psf, star) # star_p = galsim.Convolve(psf, star)
star_p = psf.withFlux(tel.pupil_area * exptime) star_p = psf.withFlux(tel.pupil_area * exptime)
if nnx == 0: if nnx == 0:
starImg = star_p.drawImage( starImg = star_p.drawImage(
wcs=chip_wcs_local, offset=offset) wcs=chip_wcs_local, offset=offset, method='no_pixel')
nnx = starImg.xmax - starImg.xmin + 1 nnx = starImg.xmax - starImg.xmin + 1
nny = starImg.ymax - starImg.ymin + 1 nny = starImg.ymax - starImg.ymin + 1
else: else:
starImg = star_p.drawImage( starImg = star_p.drawImage(
nx=nnx, ny=nny, wcs=chip_wcs_local, offset=offset) nx=nnx, ny=nny, wcs=chip_wcs_local, offset=offset, method='no_pixel')
# n1 = np.sum(np.isinf(starImg.array)) # n1 = np.sum(np.isinf(starImg.array))
# n2 = np.sum(np.isnan(starImg.array)) # n2 = np.sum(np.isnan(starImg.array))
# if n1>0 or n2 > 0: # if n1>0 or n2 > 0:
...@@ -470,7 +475,7 @@ class MockObject(object): ...@@ -470,7 +475,7 @@ class MockObject(object):
psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img) psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img)
# star_p = galsim.Convolve(psf, star) # star_p = galsim.Convolve(psf, star)
star_p = psf.withFlux(tel.pupil_area * exptime) star_p = psf.withFlux(tel.pupil_area * exptime)
starImg = star_p.drawImage(wcs=chip_wcs_local, offset=offset) starImg = star_p.drawImage(wcs=chip_wcs_local, offset=offset, method='no_pixel')
starImg.setOrigin(0, 0) starImg.setOrigin(0, 0)
for order in ["A", "B", "C", "D", "E"]: for order in ["A", "B", "C", "D", "E"]:
starImg_List.append(starImg) starImg_List.append(starImg)
......
...@@ -23,6 +23,9 @@ from astropy.modeling.models import Gaussian2D ...@@ -23,6 +23,9 @@ from astropy.modeling.models import Gaussian2D
from scipy import signal, interpolate from scipy import signal, interpolate
import datetime import datetime
import gc import gc
from astropy.io import fits
from observation_sim.psf._util import psf_extrapolate, psf_extrapolate1
# from jax import numpy as jnp # from jax import numpy as jnp
LOG_DEBUG = False # ***# LOG_DEBUG = False # ***#
...@@ -354,7 +357,7 @@ class PSFInterpSLS(PSFModel): ...@@ -354,7 +357,7 @@ class PSFInterpSLS(PSFModel):
convImg = convImg/np.sum(convImg) convImg = convImg/np.sum(convImg)
return convImg return convImg
def get_PSF(self, chip, pos_img_local=[1000, 1000], bandNo=1, galsimGSObject=True, folding_threshold=5.e-3, g_order='A', grating_split_pos=3685): def get_PSF(self, chip, pos_img_local=[1000, 1000], bandNo=1, galsimGSObject=True, folding_threshold=5.e-3, g_order='A', grating_split_pos=3685, extrapolate=False, ngg=2048):
""" """
Get the PSF at a given image position Get the PSF at a given image position
...@@ -435,6 +438,9 @@ class PSFInterpSLS(PSFModel): ...@@ -435,6 +438,9 @@ class PSFInterpSLS(PSFModel):
# PSF_int_trans[ids_szero] = 0 # PSF_int_trans[ids_szero] = 0
# print(PSF_int_trans[ids_szero].shape[0],PSF_int_trans.shape) # print(PSF_int_trans[ids_szero].shape[0],PSF_int_trans.shape)
PSF_int_trans = PSF_int_trans/np.sum(PSF_int_trans) PSF_int_trans = PSF_int_trans/np.sum(PSF_int_trans)
PSF_int_trans = PSF_int_trans-np.min(PSF_int_trans)
PSF_int_trans = PSF_int_trans/np.sum(PSF_int_trans)
# fits.writeto('/home/zhangxin/CSST_SIM/CSST_sim_develop/psf_test/psf.fits',PSF_int_trans)
# DEBGU # DEBGU
ids_szero = PSF_int_trans < 0 ids_szero = PSF_int_trans < 0
n01 = PSF_int_trans[ids_szero].shape[0] n01 = PSF_int_trans[ids_szero].shape[0]
...@@ -444,6 +450,15 @@ class PSFInterpSLS(PSFModel): ...@@ -444,6 +450,15 @@ class PSFInterpSLS(PSFModel):
if n1 > 0 or n2 > 0: if n1 > 0 or n2 > 0:
print("DEBUG: PSFInterpSLS, inf:%d, nan:%d, 0 num:%d" % print("DEBUG: PSFInterpSLS, inf:%d, nan:%d, 0 num:%d" %
(n1, n2, n01)) (n1, n2, n01))
if extrapolate is True:
# for rep_i in np.arange(0, 2, 1):
# PSF_int_trans[rep_i,:] = 1e9*pow(10,rep_i)
# PSF_int_trans[-1-rep_i,:] = 1e9*pow(10,rep_i)
# PSF_int_trans[:,rep_i] = 1e9*pow(10,rep_i)
# PSF_int_trans[:,-1-rep_i] = 1e9*pow(10,rep_i)
PSF_int_trans = psf_extrapolate1(PSF_int_trans, ngg=ngg)
# fits.writeto('/home/zhangxin/CSST_SIM/CSST_sim_develop/psf_test/psf_large.fits',PSF_int_trans)
#### ####
# from astropy.io import fits # from astropy.io import fits
......
...@@ -63,3 +63,58 @@ def psf_extrapolate(psf, rr_trim=64, ngg=256): ...@@ -63,3 +63,58 @@ def psf_extrapolate(psf, rr_trim=64, ngg=256):
imPSF = psf # binningPSF(psf, int(ngg/2)) imPSF = psf # binningPSF(psf, int(ngg/2))
imPSF = imPSF/np.nansum(imPSF) imPSF = imPSF/np.nansum(imPSF)
return imPSF return imPSF
def psf_extrapolate1(psf, rr_trim=64, ngg=256):
# ngg = 256
# extrapolate PSF
if True:
psf_enlar = np.zeros([ngg, ngg])
psf_enlar[int(ngg/2-128):int(ngg/2+128), int(ngg/2-128):int(ngg/2+128)] = psf
xim = np.arange(ngg)-ngg/2
xim, yim = np.meshgrid(xim, xim)
rim = np.sqrt(xim**2 + yim**2)
psf_temp = psf_enlar
# psf_temp[rim >= rr_trim] = 0
psf_temp[rim >= ngg/2-2] = np.finfo(float).eps
radii, means = radial_average_at_pixel(psf_temp, ngg/2, ngg/2, dr=2)
radii_log = np.log(radii[1:])
# radii_log = radii[1:]
means_log = np.log(means[1:])
# xim = np.arange(256)-128
# xim, yim = np.meshgrid(xim, xim)
# rim = np.sqrt(xim**2 + yim**2)
# # rr_trim = 96
# psf_temp = psf
# psf_temp[rim > rr_trim] = 0
# radii, means = radial_average_at_pixel(psf_temp, 128, 128, dr=4)
# radii_log = np.log10(radii[1:])
# # radii_log = radii[1:]
# means_log = np.log10(means[1:])
finite_mask = np.isfinite(means_log)
f_interp = interp1d(radii_log[finite_mask][:-1], means_log[finite_mask][:-1], kind='linear', fill_value="extrapolate")
# ngg = 1024
# xim = np.arange(ngg)-int(ngg/2)
# xim, yim = np.meshgrid(xim, xim)
# rim = np.sqrt(xim**2 + yim**2)
# rim[int(ngg/2), int(ngg/2)] = np.finfo(float).eps # 1e-7
rim_log = np.log(rim)
y_new = f_interp(rim_log)
arr = np.zeros([ngg, ngg])
arr[int(ngg/2-128):int(ngg/2+128), int(ngg/2-128):int(ngg/2+128)] = np.log(psf + np.finfo(float).eps)
arr[rim > 128-2] = 0
arr[arr == 0] = y_new[arr == 0]
psf_n = np.exp(arr)
# psf_n[int(ngg/2-128):int(ngg/2+128), int(ngg/2-128):int(ngg/2+128)] = psf
# psf[rim > int(ngg/2)] = 0
imPSF = psf_n # binningPSF(psf, int(ngg/2))
# imPSF = imPSF/np.nansum(imPSF)
return imPSF
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment