Skip to content
GitLab
Explore
Projects
Groups
Snippets
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_msc_sim
Commits
4d79505a
Commit
4d79505a
authored
9 months ago
by
Zhang Xin
Browse files
Options
Download
Email Patches
Plain Diff
pep8
parent
dc74ba7f
release_v3.0
develop
master
v3.3.0
v3.2.1
v3.2.0
1 merge request
!33
Release version v3.2.0
Pipeline
#7120
failed with stage
in 0 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
observation_sim/mock_objects/SpecDisperser/SpecDisperser.py
+21
-21
observation_sim/mock_objects/SpecDisperser/SpecDisperser.py
with
21 additions
and
21 deletions
+21
-21
observation_sim/mock_objects/SpecDisperser/SpecDisperser.py
+
21
-
21
View file @
4d79505a
...
...
@@ -495,36 +495,36 @@ class aXeConf:
return
a
def
evaluate_dp
(
self
,
dx
,
dydx
):
"""Evalate arc length along the trace given trace polynomial coefficients
#
"""Evalate arc length along the trace given trace polynomial coefficients
Parameters
----------
dx : array-like
x pixel to evaluate
#
Parameters
#
----------
#
dx : array-like
#
x pixel to evaluate
dydx : array-like
Coefficients of the trace polynomial
#
dydx : array-like
#
Coefficients of the trace polynomial
Returns
-------
dp : array-like
Arc length along the trace at position `dx`.
#
Returns
#
-------
#
dp : array-like
#
Arc length along the trace at position `dx`.
For `dydx` polynomial orders 0, 1 or 2, integrate analytically.
Higher orders must be integrated numerically.
#
For `dydx` polynomial orders 0, 1 or 2, integrate analytically.
#
Higher orders must be integrated numerically.
**Constant:**
.. math:: dp = dx
#
**Constant:**
#
.. math:: dp = dx
**Linear:**
.. math:: dp = \sqrt{1+\mathrm{DYDX}[1]}\cdot dx
#
**Linear:**
#
.. math:: dp = \sqrt{1+\mathrm{DYDX}[1]}\cdot dx
**Quadratic:**
.. math:: u = \mathrm{DYDX}[1] + 2\ \mathrm{DYDX}[2]\cdot dx
#
**Quadratic:**
#
.. math:: u = \mathrm{DYDX}[1] + 2\ \mathrm{DYDX}[2]\cdot dx
.. math:: dp = (u \sqrt{1+u^2} + \mathrm{arcsinh}\ u) / (4\cdot \mathrm{DYDX}[2])
#
.. math:: dp = (u \sqrt{1+u^2} + \mathrm{arcsinh}\ u) / (4\cdot \mathrm{DYDX}[2])
"""
#
"""
# dp is the arc length along the trace
# $\lambda = dldp_0 + dldp_1 dp + dldp_2 dp^2$ ...
...
...
This diff is collapsed.
Click to expand it.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment
Menu
Explore
Projects
Groups
Snippets