Commit 931e5956 authored by Fang Yuedong's avatar Fang Yuedong
Browse files

update output catalog, apply astrometry module to galaxy catalog, add new PSF tests

parent a5d541c9
Pipeline #2 failed with stages
in 0 seconds
...@@ -84,10 +84,46 @@ class C3Catalog(CatalogBase): ...@@ -84,10 +84,46 @@ class C3Catalog(CatalogBase):
self.rng_sedGal = random.Random() self.rng_sedGal = random.Random()
self.rng_sedGal.seed(pix_id) # Use healpix index as the random seed self.rng_sedGal.seed(pix_id) # Use healpix index as the random seed
self.ud = galsim.UniformDeviate(pix_id) self.ud = galsim.UniformDeviate(pix_id)
# Apply astrometric modeling
# in C3 case only aberration
ra_arr = gals['ra_true'][:]
dec_arr = gals['dec_true'][:]
if self.config["obs_setting"]["enable_astrometric_model"]:
ra_list = ra_arr.tolist()
dec_list = dec_arr.tolist()
pmra_list = np.zeros(ngals).tolist()
pmdec_list = np.zeros(ngals).tolist()
rv_list = np.zeros(ngals).tolist()
parallax_list = [1e-9] * ngals
dt = datetime.fromtimestamp(self.pointing.timestamp)
date_str = dt.date().isoformat()
time_str = dt.time().isoformat()
ra_arr, dec_arr = on_orbit_obs_position(
input_ra_list=ra_list,
input_dec_list=dec_list,
input_pmra_list=pmra_list,
input_pmdec_list=pmdec_list,
input_rv_list=rv_list,
input_parallax_list=parallax_list,
input_nstars=ngals,
input_x=self.pointing.sat_x,
input_y=self.pointing.sat_y,
input_z=self.pointing.sat_z,
input_vx=self.pointing.sat_vx,
input_vy=self.pointing.sat_vy,
input_vz=self.pointing.sat_vz,
input_epoch="J2015.5",
input_date_str=date_str,
input_time_str=time_str
)
for igals in range(ngals): for igals in range(ngals):
param = self.initialize_param() param = self.initialize_param()
param['ra'] = gals['ra_true'][igals] param['ra'] = ra_arr[igals]
param['dec'] = gals['dec_true'][igals] param['dec'] = dec_arr[igals]
param['ra_orig'] = gals['ra_true'][igals]
param['dec_orig'] = gals['dec_true'][igals]
if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200): if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
continue continue
param['mag_use_normal'] = gals['mag_true_g_lsst'][igals] param['mag_use_normal'] = gals['mag_true_g_lsst'][igals]
...@@ -129,7 +165,8 @@ class C3Catalog(CatalogBase): ...@@ -129,7 +165,8 @@ class C3Catalog(CatalogBase):
param['star'] = 2 # Quasar param['star'] = 2 # Quasar
self.ids += 1 self.ids += 1
param['id'] = self.ids # param['id'] = self.ids
param['id'] = gals['galaxyID'][igals]
if param['star'] == 0: if param['star'] == 0:
obj = Galaxy(param, self.rotation) obj = Galaxy(param, self.rotation)
...@@ -141,9 +178,9 @@ class C3Catalog(CatalogBase): ...@@ -141,9 +178,9 @@ class C3Catalog(CatalogBase):
def _load_stars(self, stars, pix_id=None): def _load_stars(self, stars, pix_id=None):
nstars = len(stars['sourceID']) nstars = len(stars['sourceID'])
# Apply astrometric modeling # Apply astrometric modeling
# in C3 case only aberration
ra_arr = stars["RA"][:] ra_arr = stars["RA"][:]
dec_arr = stars["Dec"][:] dec_arr = stars["Dec"][:]
# if "astrometric_lib" in self.config["obs_setting"] and self.config["obs_setting"]["enable_astrometric_model"]:
if self.config["obs_setting"]["enable_astrometric_model"]: if self.config["obs_setting"]["enable_astrometric_model"]:
ra_list = ra_arr.tolist() ra_list = ra_arr.tolist()
dec_list = dec_arr.tolist() dec_list = dec_arr.tolist()
...@@ -170,20 +207,22 @@ class C3Catalog(CatalogBase): ...@@ -170,20 +207,22 @@ class C3Catalog(CatalogBase):
input_vz=self.pointing.sat_vz, input_vz=self.pointing.sat_vz,
input_epoch="J2015.5", input_epoch="J2015.5",
input_date_str=date_str, input_date_str=date_str,
input_time_str=time_str, input_time_str=time_str
# lib_path=lib_path
) )
for istars in range(nstars): for istars in range(nstars):
param = self.initialize_param() param = self.initialize_param()
param['ra'] = ra_arr[istars] param['ra'] = ra_arr[istars]
param['dec'] = dec_arr[istars] param['dec'] = dec_arr[istars]
param['ra_orig'] = stars["RA"][istars]
param['dec_orig'] = stars["Dec"][istars]
if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200): if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
continue continue
param['mag_use_normal'] = stars['app_sdss_g'][istars] param['mag_use_normal'] = stars['app_sdss_g'][istars]
if param['mag_use_normal'] >= 26.5: if param['mag_use_normal'] >= 26.5:
continue continue
self.ids += 1 self.ids += 1
param['id'] = self.ids # param['id'] = self.ids
param['id'] = stars['sourceID'][istars]
param['sed_type'] = stars['sourceID'][istars] param['sed_type'] = stars['sourceID'][istars]
param['model_tag'] = stars['model_tag'][istars] param['model_tag'] = stars['model_tag'][istars]
param['teff'] = stars['teff'][istars] param['teff'] = stars['teff'][istars]
......
...@@ -23,73 +23,81 @@ class ChipOutput(object): ...@@ -23,73 +23,81 @@ class ChipOutput(object):
self.cat_name = 'MSC_' + config["obs_setting"]["date_obs"] + config["obs_setting"]["time_obs"] + "_" + str(pointing_ID).rjust(7, '0') + "_" + self.chipLabel.rjust(2,'0') + ".cat" self.cat_name = 'MSC_' + config["obs_setting"]["date_obs"] + config["obs_setting"]["time_obs"] + "_" + str(pointing_ID).rjust(7, '0') + "_" + self.chipLabel.rjust(2,'0') + ".cat"
self.subdir = subdir self.subdir = subdir
# hdr1 = "#ID ID_chip filter xImage yImage ra dec z mag flag SNR " hdr1 = "obj_ID ID_chip filter xImage yImage ra dec ra_orig dec_orig z mag obj_type "
hdr1 = "#ID ID_chip filter xImage yImage ra dec z mag flag " hdr2 = "thetaR bfrac hlr_disk hlr_bulge e1_disk e2_disk e1_bulge e2_bulge g1 g2 "
hdr2 = "thetaR bfrac hlr_disk hlr_bulge e1_disk e2_disk e1_bulge e2_bulge " hdr3 = "sed_type av redden "
hdr3 = "e1PSF e2PSF e1 e2 g1 g2 e1OBS e2OBS " hdr4 = "pm_ra pm_dec RV parallax\n"
hdr4 = "sed_type av redden "
hdr5 = "star_model teff logg feh\n" fmt1 = "%10d %4d %5s %10.3f %10.3f %15.8f %15.8f %15.8f %15.8f %7.4f %8.4f %15s "
# fmt1 = "%10d %4d %5s %10.3f %10.3f %15.6f %15.6f %7.4f %8.4f %2d %9.2f " fmt2 = "%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f "
fmt1 = "%10d %4d %5s %10.3f %10.3f %15.6f %15.6f %7.4f %8.4f %2d " fmt3 = "%2d %8.4f %8.4f "
fmt2 = "%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f " fmt4 = "%15.8f %15.8f %15.8f %15.8f\n"
fmt3 = "%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f "
fmt4 = "%2d %8.4f %8.4f " self.hdr = hdr1 + hdr2 + hdr3 + hdr4
fmt5 = "%10s %8.4f %8.4f %8.4f\n" self.fmt = fmt1 + fmt2 + fmt3 + fmt4
self.hdr = hdr1 + hdr2 + hdr3 + hdr4 + hdr5
self.fmt = fmt1 + fmt2 + fmt3 + fmt4 + fmt5
print("pointing_type = %s\n"%(pointing_type)) print("pointing_type = %s\n"%(pointing_type))
if pointing_type == 'MS': if pointing_type == 'MS':
self.cat = open(os.path.join(self.subdir, self.cat_name), "w") self.cat = open(os.path.join(self.subdir, self.cat_name), "w")
print("Creating catalog file %s ...\n"%(os.path.join(self.subdir, self.cat_name))) print("Creating catalog file %s ...\n"%(os.path.join(self.subdir, self.cat_name)))
self.cat.write(self.hdr) self.cat.write(self.hdr)
def updateHDR(self, hdr): # def updateHDR(self, hdr):
hdrNew = [{"name":"RDNOISE", "value":self.chip.read_noise, "comment":"read noise in e-/pixel"}, # hdrNew = [{"name":"RDNOISE", "value":self.chip.read_noise, "comment":"read noise in e-/pixel"},
{"name":"DARK", "value":self.chip.dark_noise, "comment":"Dark noise (e-/pixel/s)"}, # {"name":"DARK", "value":self.chip.dark_noise, "comment":"Dark noise (e-/pixel/s)"},
{"name":"EXPTIME", "value":self.exptime, "comment":"exposure time in second"}, # {"name":"EXPTIME", "value":self.exptime, "comment":"exposure time in second"},
{"name":"GAIN", "value":self.chip.gain, "comment":"CCD gain in e-/ADU"}, # {"name":"GAIN", "value":self.chip.gain, "comment":"CCD gain in e-/ADU"},
{"name":"SATURATE","value":65535.0, "comment":"saturation level"}, # {"name":"SATURATE","value":65535.0, "comment":"saturation level"},
{"name":"CCDCHIP", "value":int(self.chipLabel), "comment":"chip ID in the CCD mosaic"}, # {"name":"CCDCHIP", "value":int(self.chipLabel), "comment":"chip ID in the CCD mosaic"},
{"name":"FILTER", "value":self.filt.filter_type, "comment":"filter name"}, # {"name":"FILTER", "value":self.filt.filter_type, "comment":"filter name"},
{"name":"MJD-OBS", "value":self.mjdTime, "comment":"Modified Julian Date (MJD) of observation"}, # {"name":"MJD-OBS", "value":self.mjdTime, "comment":"Modified Julian Date (MJD) of observation"},
{"name":"DATE-OBS","value":self.imgKey1, "comment":"Date of observation"}, # {"name":"DATE-OBS","value":self.imgKey1, "comment":"Date of observation"},
{"name":"EQUINOX", "value":2000.0}, # {"name":"EQUINOX", "value":2000.0},
{"name":"RADECSYS","value":"ICRS"}, # {"name":"RADECSYS","value":"ICRS"},
{"name":"RA", "value":self.ra_cen, "comment":"telescope pointing center"}, # {"name":"RA", "value":self.ra_cen, "comment":"telescope pointing center"},
{"name":"DEC", "value":self.dec_cen, "comment":"telescope pointing center"}, # {"name":"DEC", "value":self.dec_cen, "comment":"telescope pointing center"},
{"name":"OBJECT", "value":"CSS-OS"}, # {"name":"OBJECT", "value":"CSS-OS"},
{"name":"WCSDIM", "value":2.0, "comment":"WCS Dimensionality"}, # {"name":"WCSDIM", "value":2.0, "comment":"WCS Dimensionality"},
{"name":"EXTNAME", "value":"IM1", "comment":"Extension name"}, # {"name":"EXTNAME", "value":"IM1", "comment":"Extension name"},
{"name":"BSCALE", "value":1.0}, # {"name":"BSCALE", "value":1.0},
{"name":"BZERO", "value":0.0}, # {"name":"BZERO", "value":0.0},
{"name":"OBSID", "value":self.imgKey0, "comment":"Observation ID"}, # {"name":"OBSID", "value":self.imgKey0, "comment":"Observation ID"},
{"name":"CCDNAME", "value":"ccd"+self.chipLabel,"comment":"CCD name"}, # {"name":"CCDNAME", "value":"ccd"+self.chipLabel,"comment":"CCD name"},
{"name":"RSPEED", "value":10.0, "comment":"Read speed"}, # {"name":"RSPEED", "value":10.0, "comment":"Read speed"},
{"name":"CHIPTEMP","value":-100.0, "comment":"Chip temperature"}, # {"name":"CHIPTEMP","value":-100.0, "comment":"Chip temperature"},
{"name":"DATASEC", "value":"1:%d,1:%d"%(self.chip.npix_x,self.chip.npix_y), "comment":"Data section"}, # {"name":"DATASEC", "value":"1:%d,1:%d"%(self.chip.npix_x,self.chip.npix_y), "comment":"Data section"},
{"name":"CCDSUM", "value":self.chip.npix_x*self.chip.npix_y, "comment":"CCD pixel summing"}, # {"name":"CCDSUM", "value":self.chip.npix_x*self.chip.npix_y, "comment":"CCD pixel summing"},
{"name":"NSUM", "value":self.chip.npix_x*self.chip.npix_y, "comment":"CCD pixel summing"}, # {"name":"NSUM", "value":self.chip.npix_x*self.chip.npix_y, "comment":"CCD pixel summing"},
{"name":"AUTHOR", "value":"CSST-Sim Group"}, # {"name":"AUTHOR", "value":"CSST-Sim Group"},
{"name":"GROUP", "value":"Weak Lensing Working Group for CSST"}] # {"name":"GROUP", "value":"Weak Lensing Working Group for CSST"}]
for item in hdrNew: # for item in hdrNew:
hdr.add_record(item) # hdr.add_record(item)
return hdr # return hdr
# def cat_add_obj(self, obj, pos_img, snr, pos_shear, g1, g2): # def cat_add_obj(self, obj, pos_img, snr, pos_shear, g1, g2):
def cat_add_obj(self, obj, pos_img, pos_shear, g1, g2): def cat_add_obj(self, obj, pos_img, pos_shear):
ximg = pos_img.x - self.chip.bound.xmin + 1.0 ximg = pos_img.x - self.chip.bound.xmin + 1.0
yimg = pos_img.y - self.chip.bound.ymin + 1.0 yimg = pos_img.y - self.chip.bound.ymin + 1.0
e1, e2, g1, g2, e1OBS, e2OBS = obj.getObservedEll(g1, g2) # if obj.type == 'galaxy':
if obj.type == 'galaxy': # line = self.fmt%(obj.id, int(self.chipLabel), self.filt.filter_type, ximg, yimg, obj.ra, obj.dec, obj.z, obj.getMagFilter(self.filt), obj.param["star"], obj.thetaR, obj.bfrac, obj.hlr_disk, obj.hlr_bulge,
line = self.fmt%(obj.id, int(self.chipLabel), self.filt.filter_type, ximg, yimg, obj.ra, obj.dec, obj.z, obj.getMagFilter(self.filt), obj.param["star"], obj.thetaR, obj.bfrac, obj.hlr_disk, obj.hlr_bulge, # obj.e1_disk, obj.e2_disk, obj.e1_bulge, obj.e2_bulge,
obj.e1_disk, obj.e2_disk, obj.e1_bulge, obj.e2_bulge, # pos_shear.g1, pos_shear.g2, e1, e2, g1, g2, e1OBS, e2OBS, obj.sed_type, obj.param['av'], obj.param['redden'], 'n', 0, 0, 0)
pos_shear.g1, pos_shear.g2, e1, e2, g1, g2, e1OBS, e2OBS, obj.sed_type, obj.param['av'], obj.param['redden'], 'n', 0, 0, 0) # elif obj.type == "quasar":
elif obj.type == "quasar": # line = self.fmt % (obj.id, int(self.chipLabel), self.filt.filter_type, ximg, yimg, obj.ra, obj.dec, obj.z,
line = self.fmt % (obj.id, int(self.chipLabel), self.filt.filter_type, ximg, yimg, obj.ra, obj.dec, obj.z, # obj.getMagFilter(self.filt), obj.param["star"], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
obj.getMagFilter(self.filt), obj.param["star"], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, # pos_shear.g1, pos_shear.g2, e1, e2, g1, g2, e1OBS, e2OBS, obj.sed_type, obj.param['av'], obj.param['redden'], 'n', 0.0, 0.0, 0.0)
pos_shear.g1, pos_shear.g2, e1, e2, g1, g2, e1OBS, e2OBS, obj.sed_type, obj.param['av'], obj.param['redden'], 'n', 0.0, 0.0, 0.0) # else:
else: # line = self.fmt%(obj.id, int(self.chipLabel), self.filt.filter_type, ximg, yimg, obj.ra, obj.dec, obj.z, obj.getMagFilter(self.filt), obj.param["star"], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
line = self.fmt%(obj.id, int(self.chipLabel), self.filt.filter_type, ximg, yimg, obj.ra, obj.dec, obj.z, obj.getMagFilter(self.filt), obj.param["star"], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, # pos_shear.g1, pos_shear.g2, e1, e2, g1, g2, e1OBS, e2OBS, 0, 0.0, 0.0, obj.param['model_tag'], obj.param['teff'], obj.param['logg'],obj.param['feh'])
pos_shear.g1, pos_shear.g2, e1, e2, g1, g2, e1OBS, e2OBS, 0, 0.0, 0.0, obj.param['model_tag'], obj.param['teff'], obj.param['logg'],obj.param['feh']) # print(
# line = self.fmt%(obj.id, int(self.chipLabel), self.filt.filter_type, ximg, yimg, obj.ra, obj.dec, obj.z, obj.getMagFilter(self.filt), obj.param["star"], pos_shear.g1, pos_shear.g2, e1, e2, g1, g2, e1OBS, e2OBS) # obj.id, int(self.chipLabel), self.filt.filter_type, ximg, yimg, obj.ra, obj.dec, obj.ra_orig, obj.dec_orig, obj.z, obj.getMagFilter(self.filt), obj.type,
# obj.thetaR, obj.bfrac, obj.hlr_disk, obj.hlr_bulge, obj.e1_disk, obj.e2_disk, obj.e1_bulge, obj.e2_bulge, obj.g1, obj.g2,
# obj.sed_type, obj.av, obj.redden,
# obj.pmra, obj.pmdec, obj.rv, obj.parallax)
line = self.fmt%(
obj.id, int(self.chipLabel), self.filt.filter_type, ximg, yimg, obj.ra, obj.dec, obj.ra_orig, obj.dec_orig, obj.z, obj.getMagFilter(self.filt), obj.type,
obj.thetaR, obj.bfrac, obj.hlr_disk, obj.hlr_bulge, obj.e1_disk, obj.e2_disk, obj.e1_bulge, obj.e2_bulge, obj.g1, obj.g2,
obj.sed_type, obj.av, obj.redden,
obj.pmra, obj.pmdec, obj.rv, obj.parallax)
self.cat.write(line) self.cat.write(line)
import os
import numpy as np
import random
import galsim
import h5py as h5
import healpy as hp
from astropy.table import Table
from astropy.coordinates import spherical_to_cartesian
from ObservationSim.MockObject.Star import Star
from ObservationSim.MockObject.Galaxy import Galaxy
from ObservationSim.MockObject.Quasar import Quasar
from ObservationSim.MockObject._util import seds, sed_assign, extAv
NSIDE = 128
class Catalog(object):
def __init__(self, config, chip, cat_dir=None, pRa=None, pDec=None, sed_dir=None, rotation=None):
if cat_dir is not None:
self.cat_dir = cat_dir
else:
self.cat_dir = os.path.join(config["data_dir"], config["input_path"]["cat_dir"])
self.sed_dir = sed_dir
self.chip = chip
self.seed_Av = config["random_seeds"]["seed_Av"]
if pRa is not None:
self.pRa = float('{:8.4f}'.format(pRa))
if pDec is not None:
self.pDec = float('{:8.4f}'.format(pDec))
# star_file = 'stars_ccd' + chip.getChipLabel(chip.chipID) + '_p_RA'+str(self.pRa) + '_DE' + str(self.pDec) + '.hdf5'
# galaxy_file = 'galaxies_ccd' + chip.getChipLabel(chip.chipID) + '_p_RA'+str(self.pRa) + '_DE' + str(self.pDec) + '.hdf5'
if "star_cat" in config["input_path"] and config["input_path"]["star_cat"]:
star_file = config["input_path"]["star_cat"]
star_SED_file = config["SED_templates_path"]["star_SED"]
self.star_path = os.path.join(self.cat_dir, star_file)
self.star_SED_path = os.path.join(config["data_dir"], star_SED_file)
self._load_SED_lib_star()
if "galaxy_cat" in config["input_path"] and config["input_path"]["galaxy_cat"]:
galaxy_file = config["input_path"]["galaxy_cat"]
self.galaxy_path = os.path.join(self.cat_dir, galaxy_file)
self.galaxy_SED_path = os.path.join(config["data_dir"], config["SED_templates_path"]["galaxy_SED"])
self._load_SED_lib_gals()
if "rotateEll" in config["shear_setting"]:
self.rotation = float(int(config["shear_setting"]["rotateEll"]/45.))
else:
self.rotation = 0.
# self._load_SED_info()
self._get_healpix_list()
self._load()
def _get_healpix_list(self):
self.sky_coverage = self.chip.getSkyCoverageEnlarged(self.chip.img.wcs, margin=0.2)
# self.sky_coverage_enlarged = self.chip.getSkyCoverageEnlarged(self.chip.img.wcs, margin=0.5)
ra_min, ra_max, dec_min, dec_max = self.sky_coverage.xmin, self.sky_coverage.xmax, self.sky_coverage.ymin, self.sky_coverage.ymax
ra = np.deg2rad(np.array([ra_min, ra_max, ra_max, ra_min]))
dec = np.deg2rad(np.array([dec_max, dec_max, dec_min, dec_min]))
# phi, theta = ra, np.pi/2. - dec
# vertices_pix = np.unique(hp.ang2pix(NSIDE, theta, phi))
# print(vertices_pix)
vertices = spherical_to_cartesian(1., dec, ra)
self.pix_list = hp.query_polygon(NSIDE, np.array(vertices).T, inclusive=True)
print("HEALPix List: ", self.pix_list)
def _load_SED_lib_star(self):
self.tempSED_star = h5.File(self.star_SED_path,'r')
def _load_SED_lib_gals(self):
# tempdir_gal = os.path.join(self.template_dir, "Galaxy/")
# tempdir_star = os.path.join(self.template_dir, "PicklesStars/")
# self.tempSed_star, self.tempRed_star = seds("star.list", seddir=tempdir_star)
self.tempSed_gal, self.tempRed_gal = seds("galaxy.list", seddir=self.galaxy_SED_path)
def _load_SED_info(self):
sed_info_file = os.path.join(self.sed_dir, "sed.info")
sed_info = Table.read(sed_info_file, format="ascii")
self.cosids = sed_info["IDCosmoDC2"]
self.objtypes = sed_info["objType"]
def _load_gals(self, gals, pix_id=None):
ngals = len(gals['galaxyID'])
self.rng_sedGal = random.Random()
self.rng_sedGal.seed(pix_id) # Use healpix index as the random seed
self.ud = galsim.UniformDeviate(pix_id)
for igals in range(ngals):
param = {}
param['ra'] = gals['ra_true'][igals]
param['dec'] = gals['dec_true'][igals]
param['z'] = gals['redshift_true'][igals]
param['model_tag'] = 'None'
param['gamma1'] = 0
param['gamma2'] = 0
param['kappa'] = 0
param['delta_ra'] = 0
param['delta_dec'] = 0
sersicB = gals['sersic_bulge'][igals]
hlrMajB = gals['size_bulge_true'][igals]
hlrMinB = gals['size_minor_bulge_true'][igals]
sersicD = gals['sersic_disk'][igals]
hlrMajD = gals['size_disk_true'][igals]
hlrMinD = gals['size_minor_disk_true'][igals]
aGal = gals['size_true'][igals]
bGal = gals['size_minor_true'][igals]
param['bfrac'] = gals['bulge_to_total_ratio_i'][igals]
param['theta'] = gals['position_angle_true'][igals]
param['hlr_bulge'] = np.sqrt(hlrMajB * hlrMinB)
param['hlr_disk'] = np.sqrt(hlrMajD * hlrMinD)
param['ell_bulge'] = (hlrMajB - hlrMinB)/(hlrMajB + hlrMinB)
param['ell_disk'] = (hlrMajD - hlrMinD)/(hlrMajD + hlrMinD)
param['ell_tot'] = (aGal - bGal) / (aGal + bGal)
# Assign each galaxy a template SED
param['sed_type'] = sed_assign(phz=param['z'], btt=param['bfrac'], rng=self.rng_sedGal)
param['redden'] = self.tempRed_gal[param['sed_type']]
param['av'] = self.avGal[int(self.ud()*self.nav)]
if param['sed_type'] <= 5:
param['av'] = 0.0
param['redden'] = 0
param['star'] = 0 # Galaxy
if param['sed_type'] >= 29:
param['av'] = 0.6 * param['av'] / 3.0 # for quasar, av=[0, 0.2], 3.0=av.max-av.im
param['star'] = 2 # Quasar
if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
continue
param['mag_use_normal'] = gals['mag_true_g_lsst'][igals]
if param['mag_use_normal'] >= 26.5:
continue
self.ids += 1
param['id'] = self.ids
if param['star'] == 0:
obj = Galaxy(param, self.rotation)
self.objs.append(obj)
if param['star'] == 2:
obj = Quasar(param)
self.objs.append(obj)
def _load_stars(self, stars, pix_id=None):
nstars = len(stars['sourceID'])
for istars in range(nstars):
param = {}
param['ra'] = stars['RA'][istars]
param['dec'] = stars['Dec'][istars]
if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
continue
param['mag_use_normal'] = stars['app_sdss_g'][istars]
if param['mag_use_normal'] >= 26.5:
continue
self.ids += 1
param['id'] = self.ids
param['sed_type'] = stars['sourceID'][istars]
param['model_tag'] = stars['model_tag'][istars]
param['teff'] = stars['teff'][istars]
param['logg'] = stars['grav'][istars]
param['feh'] = stars['feh'][istars]
param['z'] = 0.0
param['star'] = 1 # Star
obj = Star(param)
self.objs.append(obj)
def _load(self):
self.nav = 15005
self.avGal = extAv(self.nav, seed=self.seed_Av)
gals_cat = h5.File(self.galaxy_path, 'r')['galaxies']
star_cat = h5.File(self.star_path, 'r')['catalog']
self.objs = []
self.ids = 0
for pix in self.pix_list:
gals = gals_cat[str(pix)]
stars = star_cat[str(pix)]
self._load_gals(gals, pix_id=pix)
self._load_stars(stars, pix_id=pix)
print("number of objects in catalog: ", len(self.objs))
del self.avGal
\ No newline at end of file
...@@ -29,29 +29,33 @@ class CatalogBase(metaclass=ABCMeta): ...@@ -29,29 +29,33 @@ class CatalogBase(metaclass=ABCMeta):
"star":-1, "star":-1,
"id":-1, "id":-1,
"ra":0, "ra":0,
"dec":0, "dec":0.,
"z":0, "ra_orig":0.,
"dec_orig":0.,
"z":0.,
"sed_type":-1, "sed_type":-1,
"model_tag":"unknown", "model_tag":"unknown",
"mag_use_normal":100, "mag_use_normal":100.,
"theta":0, "theta":0.,
"kappa":0, "kappa":0.,
"gamma1":0, "gamma1":0.,
"gamma2":0, "gamma2":0.,
"bfrac":0, "bfrac":0.,
"hlr_bulge":0, "av":0.,
"hlr_disk":0, "redden":0.,
"ell_bulge":0, "hlr_bulge":0.,
"ell_disk":0, "hlr_disk":0.,
"ell_tot":0, "ell_bulge":0.,
"teff":0, "ell_disk":0.,
"logg":0, "ell_tot":0.,
"feh":0, "teff":0.,
"g1":0, "logg":0.,
"g2":0, "feh":0.,
"pmra":0, "g1":0.,
"pmdec":0, "g2":0.,
"rv":0, "pmra":0.,
"pmdec":0.,
"rv":0.,
"parallax":1e-9 "parallax":1e-9
} }
return param return param
......
...@@ -131,12 +131,12 @@ class Galaxy(MockObject): ...@@ -131,12 +131,12 @@ class Galaxy(MockObject):
bulge_shape = galsim.Shear(g1=self.e1_bulge, g2=self.e2_bulge) bulge_shape = galsim.Shear(g1=self.e1_bulge, g2=self.e2_bulge)
bulge = bulge.shear(bulge_shape) bulge = bulge.shear(bulge_shape)
# gal = self.bfrac * bulge + (1.0 - self.bfrac) * disk gal = self.bfrac * bulge + (1.0 - self.bfrac) * disk
# (TEST) Random knots # # (TEST) Random knots
knots = galsim.RandomKnots(npoints=100, profile=disk) # knots = galsim.RandomKnots(npoints=100, profile=disk)
kfrac = np.random.random()*(1.0 - self.bfrac) # kfrac = np.random.random()*(1.0 - self.bfrac)
gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots # gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots
gal = gal.withFlux(nphotons) gal = gal.withFlux(nphotons)
gal_shear = galsim.Shear(g1=g1, g2=g2) gal_shear = galsim.Shear(g1=g1, g2=g2)
...@@ -220,12 +220,12 @@ class Galaxy(MockObject): ...@@ -220,12 +220,12 @@ class Galaxy(MockObject):
bulge_shape = galsim.Shear(g1=self.e1_bulge, g2=self.e2_bulge) bulge_shape = galsim.Shear(g1=self.e1_bulge, g2=self.e2_bulge)
bulge = bulge.shear(bulge_shape) bulge = bulge.shear(bulge_shape)
# gal = self.bfrac * bulge + (1.0 - self.bfrac) * disk gal = self.bfrac * bulge + (1.0 - self.bfrac) * disk
# (TEST) Random knots # (TEST) Random knots
knots = galsim.RandomKnots(npoints=100, profile=disk) # knots = galsim.RandomKnots(npoints=100, profile=disk)
kfrac = np.random.random()*(1.0 - self.bfrac) # kfrac = np.random.random()*(1.0 - self.bfrac)
gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots # gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots
gal = gal.withFlux(tel.pupil_area * exptime) gal = gal.withFlux(tel.pupil_area * exptime)
gal_shear = galsim.Shear(g1=g1, g2=g2) gal_shear = galsim.Shear(g1=g1, g2=g2)
......
...@@ -17,15 +17,34 @@ class MockObject(object): ...@@ -17,15 +17,34 @@ class MockObject(object):
self.type = "star" self.type = "star"
elif self.param["star"] == 2: elif self.param["star"] == 2:
self.type = "quasar" self.type = "quasar"
self.id = self.param["id"] self.id = self.param["id"]
self.ra = self.param["ra"] self.ra = self.param["ra"]
self.dec = self.param["dec"] self.dec = self.param["dec"]
self.ra_orig = self.param["ra_orig"]
self.dec_orig = self.param["dec_orig"]
self.z = self.param["z"] self.z = self.param["z"]
self.sed_type = self.param["sed_type"] self.sed_type = self.param["sed_type"]
self.model_tag = self.param["model_tag"] self.model_tag = self.param["model_tag"]
self.mag_use_normal = self.param["mag_use_normal"] self.mag_use_normal = self.param["mag_use_normal"]
self.sed = None self.sed = None
# Place holder for outputs
self.av = self.param["av"]
self.redden = self.param["redden"]
self.pmra = self.param["pmra"]
self.pmdec = self.param["pmdec"]
self.rv = self.param["rv"]
self.parallax = self.param["parallax"]
self.g1 = self.param["g1"]
self.g2 = self.param["g2"]
self.thetaR = self.param["theta"]
self.bfrac = self.param["bfrac"]
self.hlr_disk = self.param["hlr_disk"]
self.hlr_bulge = self.param["hlr_bulge"]
self.e1_disk, self.e2_disk = 0., 0.
self.e1_bulge, self.e2_bulge = 0., 0.
def getMagFilter(self, filt): def getMagFilter(self, filt):
if filt.filter_type in ["GI", "GV", "GU"]: if filt.filter_type in ["GI", "GV", "GU"]:
return self.param["mag_use_normal"] return self.param["mag_use_normal"]
...@@ -304,5 +323,5 @@ class MockObject(object): ...@@ -304,5 +323,5 @@ class MockObject(object):
snr_obj = img_flux / sig_obj snr_obj = img_flux / sig_obj
return snr_obj return snr_obj
def getObservedEll(self, g1=0, g2=0): # def getObservedEll(self, g1=0, g2=0):
return 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 # return 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
...@@ -3,6 +3,5 @@ from .Galaxy import Galaxy ...@@ -3,6 +3,5 @@ from .Galaxy import Galaxy
from .CatalogBase import CatalogBase from .CatalogBase import CatalogBase
from .Quasar import Quasar from .Quasar import Quasar
from .Star import Star from .Star import Star
from .Catalog import Catalog
from .SkybackgroundMap import * from .SkybackgroundMap import *
# from .CosmicRay import CosmicRay # from .CosmicRay import CosmicRay
\ No newline at end of file
...@@ -19,10 +19,8 @@ class Observation(object): ...@@ -19,10 +19,8 @@ class Observation(object):
def __init__(self, config, Catalog, work_dir=None, data_dir=None): def __init__(self, config, Catalog, work_dir=None, data_dir=None):
self.path_dict = config_dir(config=config, work_dir=work_dir, data_dir=data_dir) self.path_dict = config_dir(config=config, work_dir=work_dir, data_dir=data_dir)
self.config = config self.config = config
# self.tel = Telescope(optEffCurve_path=self.path_dict["mirror_file"])
self.tel = Telescope() self.tel = Telescope()
self.focal_plane = FocalPlane(survey_type=self.config["obs_setting"]["survey_type"]) self.focal_plane = FocalPlane(survey_type=self.config["obs_setting"]["survey_type"])
# self.filter_param = FilterParam(filter_dir=self.path_dict["filter_dir"])
self.filter_param = FilterParam() self.filter_param = FilterParam()
self.chip_list = [] self.chip_list = []
self.filter_list = [] self.filter_list = []
...@@ -44,10 +42,6 @@ class Observation(object): ...@@ -44,10 +42,6 @@ class Observation(object):
# Make Chip & Filter lists # Make Chip & Filter lists
chip = Chip( chip = Chip(
chipID=chipID, chipID=chipID,
# ccdEffCurve_dir=self.path_dict["ccd_dir"],
# CRdata_dir=self.path_dict["CRdata_dir"],
# normalize_dir=self.path_dict["normalize_dir"],
# sls_dir=self.path_dict["sls_dir"],
config=self.config) config=self.config)
filter_id, filter_type = chip.getChipFilter() filter_id, filter_type = chip.getChipFilter()
filt = Filter(filter_id=filter_id, filt = Filter(filter_id=filter_id,
...@@ -114,7 +108,6 @@ class Observation(object): ...@@ -114,7 +108,6 @@ class Observation(object):
skyMap=flat_normal, skyMap=flat_normal,
blueLimit=filt.blue_limit, blueLimit=filt.blue_limit,
redLimit=filt.red_limit, redLimit=filt.red_limit,
# skyfn=self.path_dict["sky_file"],
conf=chip.sls_conf, conf=chip.sls_conf,
pixelSize=chip.pix_scale, pixelSize=chip.pix_scale,
isAlongY=0) isAlongY=0)
...@@ -130,7 +123,7 @@ class Observation(object): ...@@ -130,7 +123,7 @@ class Observation(object):
bright_obj = 0 bright_obj = 0
dim_obj = 0 dim_obj = 0
for j in range(self.nobj): for j in range(self.nobj):
# if j >= 100: # if j >= 10:
# break # break
obj = self.cat.objs[j] obj = self.cat.objs[j]
if obj.type == 'star' and self.config["run_option"]["galaxy_only"]: if obj.type == 'star' and self.config["run_option"]["galaxy_only"]:
...@@ -170,13 +163,13 @@ class Observation(object): ...@@ -170,13 +163,13 @@ class Observation(object):
if self.config["shear_setting"]["shear_type"] == "constant": if self.config["shear_setting"]["shear_type"] == "constant":
if obj.type == 'star': if obj.type == 'star':
obj.param["g1"], obj.param["g2"] = 0, 0 obj.g1, obj.g2 = 0., 0.
else: else:
obj.param["g1"], obj.param["g2"] = self.g1_field, self.g2_field obj.g1, obj.g2 = self.g1_field, self.g2_field
elif self.config["shear_setting"]["shear_type"] == "extra": elif self.config["shear_setting"]["shear_type"] == "extra":
try: try:
# TODO: every object with individual shear from input catalog(s) # TODO: every object with individual shear from input catalog(s)
obj.param["g1"], obj.param["g2"] = self.g1_field[j], self.g2_field[j] obj.g1, obj.g2 = self.g1_field[j], self.g2_field[j]
except: except:
print("failed to load external shear.") print("failed to load external shear.")
pass pass
...@@ -205,8 +198,8 @@ class Observation(object): ...@@ -205,8 +198,8 @@ class Observation(object):
bandpass_list=filt.bandpass_sub_list, bandpass_list=filt.bandpass_sub_list,
filt=filt, filt=filt,
chip=chip, chip=chip,
g1=obj.param["g1"], g1=obj.g1,
g2=obj.param["g2"], g2=obj.g2,
exptime=pointing.exp_time exptime=pointing.exp_time
) )
elif chip.survey_type == "spectroscopic" and not self.config["run_option"]["out_cat_only"]: elif chip.survey_type == "spectroscopic" and not self.config["run_option"]["out_cat_only"]:
...@@ -217,14 +210,15 @@ class Observation(object): ...@@ -217,14 +210,15 @@ class Observation(object):
bandpass_list=filt.bandpass_sub_list, bandpass_list=filt.bandpass_sub_list,
filt=filt, filt=filt,
chip=chip, chip=chip,
g1=obj.param["g1"], g1=obj.g1,
g2=obj.param["g2"], g2=obj.g2,
exptime=pointing.exp_time, exptime=pointing.exp_time,
normFilter=norm_filt, normFilter=norm_filt,
) )
if isUpdated: if isUpdated:
# TODO: add up stats # TODO: add up stats
chip_output.cat_add_obj(obj, pos_img, pos_shear, obj.param["g1"], obj.param["g2"]) # print("updating output catalog...")
chip_output.cat_add_obj(obj, pos_img, pos_shear)
pass pass
else: else:
# print("object omitted", flush=True) # print("object omitted", flush=True)
......
...@@ -67,7 +67,6 @@ obs_setting: ...@@ -67,7 +67,6 @@ obs_setting:
image_rot: -113.4333 image_rot: -113.4333
# Number of calibration pointings # Number of calibration pointings
# Note: only valid when a pointing list is specified
np_cal: 0 np_cal: 0
# Run specific pointing(s): # Run specific pointing(s):
...@@ -100,7 +99,6 @@ SED_templates_path: ...@@ -100,7 +99,6 @@ SED_templates_path:
star_SED: "Catalog_20210126/SpecLib.hdf5" star_SED: "Catalog_20210126/SpecLib.hdf5"
galaxy_SED: "Templates/Galaxy/" galaxy_SED: "Templates/Galaxy/"
############################################### ###############################################
# PSF setting # PSF setting
############################################### ###############################################
......
---
###############################################
#
# Configuration file for CSST simulation
# CSST-Sim Group, 2021/10/07, version 0.3
#
###############################################
# Base diretories and naming setup
# Can add some of the command-line arguments here as well;
# OK to pass either way or both, as long as they are consistent
# work_dir: "/public/home/fangyuedong/sim_code_release/CSST/test/"
work_dir: "/public/home/fangyuedong/temp/CSST/workplace/"
data_dir: "/data/simudata/CSSOSDataProductsSims/data/"
run_name: "NGP_20220327"
# (Optional) a file of point list
# if you just want to run default pointing:
# - pointing_dir: null
# - pointing_file: null
pointing_dir: null
pointing_file: null
# Whether to use MPI
run_option:
use_mpi: YES
# NOTE: "n_threads" paramters is currently not used in the backend
# simulation codes. It should be implemented later in the web frontend
# in order to config the number of threads to request from NAOC cluster
n_threads: 80
# Output catalog only?
# If yes, no imaging simulation will run
out_cat_only: NO
# Only simulate stars?
star_only: NO
# Only simulate galaxies?
galaxy_only: NO
###############################################
# Observation setting
###############################################
obs_setting:
# Options for survey types:
# "Photometric": simulate photometric chips only
# "Spectroscopic": simulate slitless spectroscopic chips only
# "All": simulate full focal plane
survey_type: "All"
# Exposure time [seconds]
exp_time: 150.
# Observation starting date & time
# (Subject to change)
date_obs: "210525" # [yymmdd]
time_obs: "120000" # [hhmmss]
# Default Pointing [degrees]
# Note: NOT valid when a pointing list file is specified
ra_center: 192.8595
dec_center: 27.1283
# Image rotation [degree]
image_rot: -113.4333
# Number of calibration pointings
np_cal: 0
# Run specific pointing(s):
# - give a list of indexes of pointings: [ip_1, ip_2...]
# - run all pointings: null
# Note: only valid when a pointing list is specified
run_pointings: null
# Run specific chip(s):
# - give a list of indexes of chips: [ip_1, ip_2...]
# - run all chips: null
# Note: for all pointings
run_chips: null
# Whether to enable astrometric modeling
# astrometric_lib: "libshao.so"
enable_astrometric_model: True
###############################################
# Input path setting
###############################################
# Default path settings for WIDE survey simulation
input_path:
cat_dir: "OnOrbitCalibration/CTargets20211231"
star_cat: "CT-NGP_V2.2.hdf5"
galaxy_cat: "galaxyCats_r_10.0_healpix_shift_192.859500_27.128300.hdf5"
SED_templates_path:
star_SED: "Catalog_20210126/SpecLib.hdf5"
galaxy_SED: "Templates/Galaxy/"
###############################################
# PSF setting
###############################################
psf_setting:
# Which PSF model to use:
# "Gauss": simple gaussian profile
# "Interp": Interpolated PSF from sampled ray-tracing data
psf_model: "Interp"
# PSF size [arcseconds]
# radius of 80% energy encircled
# NOTE: only valid for "Gauss" PSF
psf_rcont: 0.15
# path to PSF data
# NOTE: only valid for "Interp" PSF
psf_dir: "/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/psfCube"
# path to field-distortion model
# Note: only valid when ins_effects: field_dist is "ON"
fd_path: "FieldDistModelGlobal_v1.0.pickle"
# sigma_spin: 0.0 # psf spin?
###############################################
# Shear setting
###############################################
shear_setting:
# Options to generate mock shear field:
# "constant": all galaxies are assigned a constant reduced shear
# "catalog": from catalog (not available yet)
# "extra": from seprate file
shear_type: "constant"
# For constant shear filed
reduced_g1: 0.026
reduced_g2: 0.015
# Representation of the shear vector?
reShear: "E"
# rotate galaxy ellipticity
rotateEll: 0. # [degree]
# Extra shear catalog
# (currently not used)
# shear_cat: "mockShear.cat"
###############################################
# Instrumental effects setting
###############################################
ins_effects:
# switches
field_dist: ON # Whether to add field distortions
add_back: ON # Whether to add sky background
add_dark: ON # Whether to add dark noise
add_readout: ON # Whether to add read-out (Gaussian) noise
add_bias: ON # Whether to add bias-level to images
shutter_effect: ON # Whether to add shutter effect
flat_fielding: ON # Whether to add flat-fielding effect
prnu_effect: ON # Whether to add PRNU effect
non_linear: ON # Whether to add non-linearity
cosmic_ray: ON # Whether to add cosmic-ray
cray_differ: ON # Whether to generate different cosmic ray maps CAL and MS output
cte_trail: OFF # Whether to simulate CTE trails
saturbloom: ON # Whether to simulate Saturation & Blooming
add_badcolumns: ON # Whether to add bad columns
add_hotpixels: ON # Whether to add hot pixels
add_deadpixels: ON # Whether to add dead(dark) pixels
bright_fatter: ON # Whether to simulate Brighter-Fatter (also diffusion) effect
# values
dark_exptime: 300 # Exposure time for dark current frames [seconds]
flat_exptime: 150 # Exposure time for flat-fielding frames [seconds]
readout_time: 40 # The read-out time for each channel [seconds]
df_strength: 2.3 # Sillicon sensor diffusion strength
bias_level: 500 # bias level [e-/pixel]
gain: 1.1 # Gain
full_well: 90000 # Full well depth [e-]
NBias: 1 # Number of bias frames to be exported for each exposure
NDark: 1 # Number of dark frames to be exported for each exposure
NFlat: 1 # Number of flat frames to be exported for each exposure
###############################################
# Output options
###############################################
output_setting:
readout16: OFF # Whether to export as 16 channels (subimages) with pre- and over-scan
shutter_output: OFF # Whether to export shutter effect 16-bit image
bias_output: ON # Whether to export bias frames
dark_output: ON # Whether to export the combined dark current files
flat_output: ON # Whether to export the combined flat-fielding files
prnu_output: OFF # Whether to export the PRNU (pixel-to-pixel flat-fielding) files
###############################################
# Random seeds
###############################################
random_seeds:
seed_Av: 121212 # Seed for generating random intrinsic extinction
seed_poisson: 20210601 # Seed for Poisson noise
seed_CR: 20210317 # Seed for generating random cosmic ray maps
seed_flat: 20210101 # Seed for generating random flat fields
seed_prnu: 20210102 # Seed for photo-response non-uniformity
seed_gainNonUniform: 20210202 # Seed for gain nonuniformity
seed_biasNonUniform: 20210203 # Seed for bias nonuniformity
seed_rnNonUniform: 20210204 # Seed for readout-noise nonuniformity
seed_badcolumns: 20240309 # Seed for bad columns
seed_defective: 20210304 # Seed for defective (bad) pixels
seed_readout: 20210601 # Seed for read-out gaussian noise
...
\ No newline at end of file
#!/bin/bash
#PBS -N SIMS
##PBS -l walltime=70:00:00
##mpdallexit
##mpdboot -n 10 -f ./mpd.hosts
##PBS -j oe
#PBS -l nodes=comput110:ppn=80
#####PBS -q longq
#PBS -q batch
#PBS -u fangyuedong
NP=30
date
echo $NP
mpirun -np $NP python /public/home/fangyuedong/temp/CSST/run_sim.py config_NGP.yaml -c /public/home/fangyuedong/temp/CSST/config
import unittest
import sys,os,math
from itertools import islice
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.use('Agg')
import yaml
from ObservationSim.Config import Config
from ObservationSim.Config.Config import config_dir
from ObservationSim.Instrument import Chip
from ObservationSim.PSF.PSFInterp import PSFInterp
def defineCCD(iccd, config_file):
with open(config_file, "r") as stream:
try:
config = yaml.safe_load(stream)
#for key, value in config.items():
# print (key + " : " + str(value))
except yaml.YAMLError as exc:
print(exc)
path_dict = config_dir(config=config, work_dir=config['work_dir'], data_dir=config['data_dir'])
chip = Chip(chipID=iccd, config=config)
#chip = Chip(chipID=iccd, ccdEffCurve_dir=path_dict["ccd_dir"], CRdata_dir=path_dict["CRdata_dir"], normalize_dir=path_dict["normalize_dir"], sls_dir=path_dict['sls_dir'], config=config)
return chip
def psfSecondMoments(psfMat, cenX, cenY, pixSize=1):
apr = 0.5 #arcsec, 0.5角秒内测量
fl = 28. #meters
pxs = 2.5 #microns
apr = np.deg2rad(apr/3600.)*fl*1e6
apr = apr/pxs
apr = np.int(np.ceil(apr))
I = psfMat
ncol = I.shape[1]
nrow = I.shape[0]
w = 0.0
w11 = 0.0
w12 = 0.0
w22 = 0.0
for icol in range(ncol):
for jrow in range(nrow):
x = icol*pixSize - cenX
y = jrow*pixSize - cenY
rr = np.sqrt(x*x + y*y)
wgt= 0.0
if rr <= apr:
wgt = 1.0
w += I[jrow, icol]*wgt
w11 += x*x*I[jrow, icol]*wgt
w12 += x*y*I[jrow, icol]*wgt
w22 += y*y*I[jrow, icol]*wgt
w11 /= w
w12 /= w
w22 /= w
sz = w11 + w22
e1 = (w11 - w22)/sz
e2 = 2.0*w12/sz
return sz, e1, e2
def test_psfEll(iccd, iwave, psfMat):
psfMat_iwave = psfMat.psfMat[iwave-1, :,:,:]
npsf = np.shape(psfMat_iwave)[0]
imx = np.zeros(npsf)
imy = np.zeros(npsf)
psf_e1 = np.zeros(npsf)
psf_e2 = np.zeros(npsf)
psf_sz = np.zeros(npsf)
for ipsf in range(1, npsf+1):
print('ipsf-{:}'.format(ipsf), end='\r')
imx[ipsf-1] = psfMat.cen_col[iwave-1, ipsf-1]
imy[ipsf-1] = psfMat.cen_row[iwave-1, ipsf-1]
psfMat_iwave_ipsf = psfMat_iwave[ipsf-1, :, :]
cenX = 256
cenY = 256
sz, e1, e2 = psfSecondMoments(psfMat_iwave_ipsf, cenX, cenY, pixSize=1)
psf_e1[ipsf-1] = e1
psf_e2[ipsf-1] = e2
psf_sz[ipsf-1] = sz
#print('ell======', ipsf, np.sqrt(e1**2 + e2**2))
#######
arr = [imx, imy, psf_e1, psf_e2, psf_sz]
np.save('data/psfEll{:}_{:}_{:}'.format(int(np.sqrt(npsf)),iccd, iwave), arr)
def test_psfEllPlot(OVERPLOT=False):
#if ThisTask == 0:
if True:
prefix = 'psfEll30'
iccd = 1
iwave= 1
data = np.load('data/'+prefix+'_1_1.npy')
imx= data[0]
imy= data[1]
psf_e1 = data[2]
psf_e2 = data[3]
print(np.shape(imx))
npsf = np.shape(imx)[0]
#######
plt.cla()
plt.close("all")
fig = plt.figure(figsize=(12, 12))
plt.subplots_adjust(wspace=0.1, hspace=0.1)
ax = plt.subplot(1, 1, 1)
for ipsf in range(npsf):
plt.plot(imx[ipsf], imy[ipsf], 'r.')
ang = np.arctan2(psf_e2[ipsf], psf_e1[ipsf])/2
ell = np.sqrt(psf_e1[ipsf]**2 + psf_e2[ipsf]**2)
ell *= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[ipsf]-lcos, imx[ipsf]+lcos],[imy[ipsf]-lsin, imy[ipsf]+lsin],'r', lw=2)
###########
ang = 0.
ell = 0.05
ell*= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[898]-lcos, imx[898]+lcos],[imy[898]+5.-lsin, imy[898]+5.+lsin],'k', lw=2)
plt.annotate('{:}'.format(ell/15), (imx[898]-2., imy[898]+6.), xycoords='data', fontsize=10)
plt.xlabel('CCD X (mm)')
plt.ylabel('CCD Y (mm)')
if OVERPLOT == True:
prefix = 'psfEll20'
data = np.load('data/'+prefix+'_1_1.npy')
imx= data[0]
imy= data[1]
psf_e1 = data[2]
psf_e2 = data[3]
npsf = np.shape(imx)[0]
for ipsf in range(npsf):
plt.plot(imx[ipsf], imy[ipsf], 'b.')
ang = np.arctan2(psf_e2[ipsf], psf_e1[ipsf])/2
ell = np.sqrt(psf_e1[ipsf]**2 + psf_e2[ipsf]**2)
ell *= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[ipsf]-lcos, imx[ipsf]+lcos],[imy[ipsf]-lsin, imy[ipsf]+lsin],'b', lw=2)
plt.gca().set_aspect(1)
if OVERPLOT == True:
prefix = 'psfEllOP'
plt.savefig('figs/'+prefix+'_iccd{:}.pdf'.format(iccd))
def test_psfIDW(iccd, iwave, psfMatA, chip, psfMatB):
bandpass = iwave-1
class pos_img():
def __init__(self,x, y):
self.x = x*1e3/10. #in unit of pixels
self.y = y*1e3/10.
psfMat_iwave = psfMatA.psfMat[iwave-1, :,:,:]
npsf = np.shape(psfMat_iwave)[0]
psf_e1 = np.zeros(npsf)
psf_e2 = np.zeros(npsf)
psf_sz = np.zeros(npsf)
for ipsf in range(1, npsf+1):
print('ipsf:', ipsf, end='\r', flush=True)
tpos_img = pos_img(psfMatA.cen_col[iwave-1, ipsf-1], psfMatA.cen_row[iwave-1, ipsf-1])
psfIDW = psfMatB.get_PSF(chip, tpos_img, bandpass, galsimGSObject=False, findNeighMode='treeFind')
np.save('figs/psfIDW/psfIDW_{:}_{:}_{:}'.format(iccd, iwave, ipsf), psfIDW)
cenX = 256
cenY = 256
sz, e1, e2 = psfSecondMoments(psfIDW, cenX, cenY, pixSize=1)
psf_e1[ipsf-1] = e1
psf_e2[ipsf-1] = e2
psf_sz[ipsf-1] = sz
arr = [psf_e1, psf_e2, psf_sz]
np.save('data/psfEll20IDW_{:}_{:}'.format(iccd, iwave), arr)
def test_psfResidualPlot(iccd, iwave, ipsf, psfMatA):
psfMat_iwave = psfMatA.psfMat[iwave-1, :,:,:]
psfMatORG = psfMat_iwave[ipsf-1, :, :]
psfMatIDW = np.load('figs/psfIDW/psfIDW_{:}_{:}_{:}.npy'.format(iccd, iwave, ipsf))
npix = psfMatORG.shape[0]
pixCutEdge= int(npix/2-15)
img0 = psfMatORG[pixCutEdge:npix-pixCutEdge, pixCutEdge:npix-pixCutEdge]
img1 = psfMatIDW[pixCutEdge:npix-pixCutEdge, pixCutEdge:npix-pixCutEdge]
imgX = (img1 - img0)/img0
img0 = np.log10(img0)
img1 = np.log10(img1)
imgX = np.log10(np.abs(imgX))
fig = plt.figure(figsize=(18,4))
ax = plt.subplot(1,3,1)
plt.imshow(img0, origin='lower', vmin=-7, vmax=-1.3)
plt.plot([npix/2-pixCutEdge, npix/2-pixCutEdge],[0, (npix/2-pixCutEdge)*2-1],'w--')
plt.plot([0, (npix/2-pixCutEdge)*2-1],[npix/2-pixCutEdge, npix/2-pixCutEdge],'w--')
plt.annotate('ORG', [0,(npix/2-pixCutEdge)*2-5], c='w', size=15)
cticks=[-7, -6, -5, -4, -3, -2, -1]
cbar = plt.colorbar(ticks=cticks)
cbar.ax.set_yticklabels(['$10^{-7}$', '$10^{-6}$', '$10^{-5}$','$10^{-4}$','$10^{-3}$','$10^{-2}$', '$10^{-1}$'])
print(img0.min(), img0.max())
ax = plt.subplot(1,3,2)
plt.imshow(img1, origin='lower', vmin=-7, vmax=-1.3)
plt.plot([npix/2-pixCutEdge, npix/2-pixCutEdge],[0, (npix/2-pixCutEdge)*2-1],'w--')
plt.plot([0, (npix/2-pixCutEdge)*2-1],[npix/2-pixCutEdge, npix/2-pixCutEdge],'w--')
plt.annotate('IDW', [0,(npix/2-pixCutEdge)*2-5], c='w', size=15)
cticks=[-7, -6, -5, -4, -3, -2, -1]
cbar = plt.colorbar(ticks=cticks)
cbar.ax.set_yticklabels(['$10^{-7}$', '$10^{-6}$', '$10^{-5}$','$10^{-4}$','$10^{-3}$','$10^{-2}$', '$10^{-1}$'])
print(img1.min(), img1.max())
ax = plt.subplot(1,3,3)
plt.imshow(imgX, origin='lower', vmin =-3, vmax =np.log10(3e-1))
plt.plot([npix/2-pixCutEdge, npix/2-pixCutEdge],[0, (npix/2-pixCutEdge)*2-1],'w--')
plt.plot([0, (npix/2-pixCutEdge)*2-1],[npix/2-pixCutEdge, npix/2-pixCutEdge],'w--')
#plt.annotate('(IDW-ORG)/ORG', [0,(npix/2-pixCutEdge)*2-5], c='w', size=15)
cticks=[-5, -4, -3, -2, -1]
cbar = plt.colorbar(ticks=cticks)
cbar.ax.set_yticklabels(['$10^{-5}$','$10^{-4}$','$10^{-3}$','$10^{-2}$', '$10^{-1}$'])
print(np.max((psfMatORG-psfMatIDW)))
plt.savefig('figs/psfResidual_iccd{:}.pdf'.format(iccd))
def test_psfEllIDWPlot(OVERPLOT=False):
#if ThisTask == 0:
if True:
prefix = 'psfEll20'
iccd = 1
iwave= 1
data = np.load('data/'+prefix+'_1_1.npy')
imx= data[0]
imy= data[1]
psf_e1 = data[2]
psf_e2 = data[3]
print(np.shape(imx))
npsf = np.shape(imx)[0]
#######
plt.cla()
plt.close("all")
fig = plt.figure(figsize=(12, 12))
plt.subplots_adjust(wspace=0.1, hspace=0.1)
ax = plt.subplot(1, 1, 1)
for ipsf in range(npsf):
plt.plot(imx[ipsf], imy[ipsf], 'b.')
ang = np.arctan2(psf_e2[ipsf], psf_e1[ipsf])/2
ell = np.sqrt(psf_e1[ipsf]**2 + psf_e2[ipsf]**2)
ell *= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[ipsf]-lcos, imx[ipsf]+lcos],[imy[ipsf]-lsin, imy[ipsf]+lsin],'b', lw=2)
###########
ang = 0.
ell = 0.05
ell*= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
#plt.plot([imx[898]-lcos, imx[898]+lcos],[imy[898]+5.-lsin, imy[898]+5.+lsin],'k', lw=2)
#plt.annotate('{:}'.format(ell/15), (imx[898]-2., imy[898]+6.), xycoords='data', fontsize=10)
plt.xlabel('CCD X (mm)')
plt.ylabel('CCD Y (mm)')
if OVERPLOT == True:
prefix = 'psfEll20IDW'
data = np.load('data/'+prefix+'_1_1.npy')
#imx= data[0]
#imy= data[1]
psf_e1 = data[0]
psf_e2 = data[1]
npsf = np.shape(imx)[0]
for ipsf in range(npsf):
#plt.plot(imx[ipsf], imy[ipsf], 'r.')
ang = np.arctan2(psf_e2[ipsf], psf_e1[ipsf])/2
ell = np.sqrt(psf_e1[ipsf]**2 + psf_e2[ipsf]**2)
ell *= 15
lcos = ell*np.cos(ang)
lsin = ell*np.sin(ang)
plt.plot([imx[ipsf]-lcos, imx[ipsf]+lcos],[imy[ipsf]-lsin, imy[ipsf]+lsin],'r', lw=1)
plt.gca().set_aspect(1)
if OVERPLOT == True:
prefix = 'psfEllOPIDW'
plt.savefig('figs/'+prefix+'_iccd{:}.pdf'.format(iccd))
def test_psfdEllabsPlot(iccd):
#if ThisTask == 0:
if True:
prefix = 'psfEll20'
#iccd = 1
#iwave= 1
data = np.load('data/'+prefix+'_{:}_1.npy'.format(iccd))
imx= data[0]
imy= data[1]
psf_e1 = data[2]
psf_e2 = data[3]
psf_sz = data[4]
print(np.shape(imx))
npsf = np.shape(imx)[0]
ellX = np.sqrt(psf_e1**2 + psf_e2**2)
angX = np.arctan2(psf_e2, psf_e1)/2
angX = np.rad2deg(angX)
szX = psf_sz
##############################
prefix = 'psfEll20IDW'
data = np.load('data/'+prefix+'_{:}_1.npy'.format(iccd))
#imx= data[0]
#imy= data[1]
psf_e1 = data[0]
psf_e2 = data[1]
psf_sz = data[2]
ellY = np.sqrt(psf_e1**2 + psf_e2**2)
angY = np.arctan2(psf_e2, psf_e1)/2
angY = np.rad2deg(angY)
szY = psf_sz
##############################
fig=plt.figure(figsize=(6, 5))
grid = plt.GridSpec(3,1,left=0.15, right=0.95, wspace=None, hspace=0.02)
#plt.subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=None,hspace=0.02)
ax = plt.subplot(grid[0:2,0])
plt.plot([0.01,0.1],[0.01,0.1], 'k--', lw=1. )
plt.scatter(ellX, ellY, color='b', alpha=1., s=3., edgecolors='None')
#plt.xlim([0.015, 0.085])
#plt.ylim([0.015, 0.085])
plt.ylabel('$\epsilon_{\\rm IDW}$')
plt.gca().axes.get_xaxis().set_visible(False)
ax = plt.subplot(grid[2,0])
plt.plot([0.015,0.085],[0.,0.], 'k--', lw=1. )
plt.scatter(ellX, (ellY-ellX), color='b', s=3., edgecolors='None')
#plt.xlim([0.015, 0.085])
#plt.ylim([-0.0018, 0.0018])
plt.xlabel('$\epsilon_{\\rm ORG}$')
plt.ylabel('$\Delta$')
plt.savefig('figs/psfEllOPIDWPDF_{:}.pdf'.format(iccd))
fig=plt.figure(figsize=(6, 6))
plt.hist((szY-szX)/szX, bins=20, color='r', alpha=0.5)
plt.xlabel('$(R_{\\rm IDW}-R_{\\rm ORG})/R_{\\rm ORG}$')
plt.ylabel('PDF')
plt.savefig('figs/psfEllOPIDWPDF_dsz_{:}.pdf'.format(iccd))
class PSFInterpModule_coverage(unittest.TestCase):
def test_psfEll_(self):
iccd = 1
iwave= 1
config_file = "/public/home/weichengliang/CSST_git/newVersion/CSST/config/config_C3.yaml"
chip = defineCCD(iccd, config_file)
print(chip.chipID)
print(chip.cen_pix_x, chip.cen_pix_y)
ipath = '/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/psfCubeTest'
psfMatA = PSFInterp(chip, npsf=400, PSF_data_file=ipath, PSF_data_prefix="S20x20_")
psfMatB = PSFInterp(chip, npsf=900, PSF_data_file=ipath, PSF_data_prefix="S30x30_")
test_psfEll(iccd, iwave, psfMatA)
test_psfEll(iccd, iwave, psfMatB)
test_psfEllPlot(OVERPLOT=True)
test_psfIDW(iccd, iwave, psfMatA, chip, psfMatB)
ipsf = 1
test_psfResidualPlot(iccd, iwave, ipsf, psfMatA)
test_psfEllIDWPlot(OVERPLOT=True)
test_psfdEllabsPlot(iccd)
if __name__ == '__main__':
unittest.main()
print('#####haha#####')
import unittest
import sys,os,math
from itertools import islice
import numpy as np
import yaml
from ObservationSim.Config import Config
from ObservationSim.Config.Config import config_dir
from ObservationSim.Instrument import Chip
from ObservationSim.PSF.PSFInterp import PSFInterp
def defineCCD(iccd, config_file):
with open(config_file, "r") as stream:
try:
config = yaml.safe_load(stream)
#for key, value in config.items():
# print (key + " : " + str(value))
except yaml.YAMLError as exc:
print(exc)
path_dict = config_dir(config=config, work_dir=config['work_dir'], data_dir=config['data_dir'])
chip = Chip(chipID=iccd, config=config)
#chip = Chip(chipID=iccd, ccdEffCurve_dir=path_dict["ccd_dir"], CRdata_dir=path_dict["CRdata_dir"], normalize_dir=path_dict["normalize_dir"], sls_dir=path_dict['sls_dir'], config=config)
return chip
def loadPSFSet(iccd):
config_file = "/public/home/weichengliang/CSST_git/newVersion/CSST/config/config_C3.yaml"
chip = defineCCD(iccd, config_file)
print(chip.chipID)
print(chip.cen_pix_x, chip.cen_pix_y)
ipath = '/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/psfCube'
psfMat= PSFInterp(chip, npsf=900, PSF_data_file=ipath, PSF_data_prefix="")
psfSet= psfMat._loadPSF(iccd, ipath, PSF_data_prefix="")
twave = 0 #[0...3]
tpsf = 0 #[0...899]
field_x= psfSet[twave][tpsf]['field_x']
field_y= psfSet[twave][tpsf]['field_y']
image_x= psfSet[twave][tpsf]['image_x']
image_y= psfSet[twave][tpsf]['image_y']
centroid_x= psfSet[twave][tpsf]['centroid_x']
centroid_y= psfSet[twave][tpsf]['centroid_y']
print("pos_info:", field_x, field_y, image_x, image_y, centroid_x, centroid_y)
return psfSet
class PSFInterpModule_coverage(unittest.TestCase):
def test_psfEll_(self):
iccd = 1 #[1...30]
psfSet = loadPSFSet(iccd)
if __name__ == '__main__':
unittest.main()
print('#####haha#####')
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment