Commit a03daa94 authored by Wei Chengliang's avatar Wei Chengliang
Browse files

bug fixes & extrapolate PSF for saturated objects

parent 4325fe99
Pipeline #7365 failed with stage
in 0 seconds
......@@ -62,10 +62,10 @@ call_sequence:
hot_pixels: YES
dead_pixels: YES
bad_columns: YES
# Apply response nonlinearity
nonlinearity: {}
# Apply CCD Saturation & Blooming
blooming: {}
# Apply response nonlinearity
nonlinearity: {}
# Run CTE simulation
# CTE_effect: {}
# Add prescan and overscan
......
......@@ -37,7 +37,7 @@ void addEffects(int ngx_ima, int ngy_ima, float *arr_ima, float *arr_imc, int bi
{
printf("Adding BF effect...\n");
//setup BF correlation fliter
float neX;
float neX, neXtemp;
float neP1 = 50000;
float bfaP1[9]={0.9707182, 0.002143905, 0.004131103, 0.001149542, 0.0005501739, 0.0005469659, 0.0003726081, 0.0003795207, 0.0001633302};
float neP2 = 10000;
......@@ -56,15 +56,18 @@ void addEffects(int ngx_ima, int ngy_ima, float *arr_ima, float *arr_imc, int bi
neX = arr_ima[j+i*ny];
if(neX >= 10000)
{
neXtemp = neX;
if(neXtemp > 100000)
neXtemp = 100000;
bfa[0][0]=0; //linearInterp(neX, neP1, bfaP1[0], neP2, bfaP2[0]); //0;
bfa[0][1]=bfa[0][-1]=linearInterp(neX, neP1, bfaP1[1], neP2, bfaP2[1]); //0.01575;
bfa[-1][0]=bfa[1][0]=linearInterp(neX, neP1, bfaP1[2], neP2, bfaP2[2]); //0.00652;
bfa[-1][-1]=bfa[1][1]=bfa[-1][1]=bfa[1][-1]=linearInterp(neX, neP1, bfaP1[3], neP2, bfaP2[3]); //0.00335;
bfa[0][-2]=bfa[0][2]=linearInterp(neX, neP1, bfaP1[4], neP2, bfaP2[4]);
bfa[-2][0]=bfa[2][0]=linearInterp(neX, neP1, bfaP1[5], neP2, bfaP2[5]); //0.00118;
bfa[-2][-1]=bfa[-2][1]=bfa[2][1]=bfa[2][-1]=linearInterp(neX, neP1, bfaP1[6], neP2, bfaP2[6]);
bfa[-1][-2]=bfa[1][2]=bfa[-1][2]=bfa[1][-2]=linearInterp(neX, neP1, bfaP1[7], neP2, bfaP2[7]); //0.00083;
bfa[-2][-2]=bfa[-2][2]=bfa[2][-2]=bfa[2][2]=linearInterp(neX, neP1, bfaP1[8], neP2, bfaP2[8]); //0.00043;
bfa[0][1]=bfa[0][-1]=linearInterp(neXtemp, neP1, bfaP1[1], neP2, bfaP2[1]); //0.01575;
bfa[-1][0]=bfa[1][0]=linearInterp(neXtemp, neP1, bfaP1[2], neP2, bfaP2[2]); //0.00652;
bfa[-1][-1]=bfa[1][1]=bfa[-1][1]=bfa[1][-1]=linearInterp(neXtemp, neP1, bfaP1[3], neP2, bfaP2[3]); //0.00335;
bfa[0][-2]=bfa[0][2]=linearInterp(neXtemp, neP1, bfaP1[4], neP2, bfaP2[4]);
bfa[-2][0]=bfa[2][0]=linearInterp(neXtemp, neP1, bfaP1[5], neP2, bfaP2[5]); //0.00118;
bfa[-2][-1]=bfa[-2][1]=bfa[2][1]=bfa[2][-1]=linearInterp(neXtemp, neP1, bfaP1[6], neP2, bfaP2[6]);
bfa[-1][-2]=bfa[1][2]=bfa[-1][2]=bfa[1][-2]=linearInterp(neXtemp, neP1, bfaP1[7], neP2, bfaP2[7]); //0.00083;
bfa[-2][-2]=bfa[-2][2]=bfa[2][-2]=bfa[2][2]=linearInterp(neXtemp, neP1, bfaP1[8], neP2, bfaP2[8]); //0.00043;
}
else
{
......
......@@ -115,7 +115,7 @@ class Galaxy(MockObject):
# Set Galsim Parameters
if self.getMagFilter(filt) <= 15 and (not big_galaxy):
folding_threshold = 5.e-4
folding_threshold = 5.e-8
else:
folding_threshold = 5.e-3
gsp = galsim.GSParams(folding_threshold=folding_threshold)
......@@ -170,8 +170,11 @@ class Galaxy(MockObject):
# print("nphotons_sub-band_%d = %.2f"%(i, nphotons))
# Get PSF model
EXTRA = False
if self.getMagFilter(filt) <= filt.mag_saturation-1.:
EXTRA = True
psf, pos_shear = psf_model.get_PSF(
chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold)
chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold, extrapolate=EXTRA)
if self.bfrac == 0:
gal_temp = disk
......
......@@ -122,7 +122,7 @@ class MockObject(object):
return 2, None
# Set Galsim Parameters
if self.getMagFilter(filt) <= 15:
folding_threshold = 5.e-4
folding_threshold = 5.e-8
else:
folding_threshold = 5.e-3
gsp = galsim.GSParams(folding_threshold=folding_threshold)
......@@ -160,14 +160,17 @@ class MockObject(object):
# print("nphotons_sub-band_%d = %.2f"%(i, nphotons))
# Get PSF model
EXTRA = False
if self.getMagFilter(filt) <= filt.mag_saturation-1.:
EXTRA = True
psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
folding_threshold=folding_threshold)
folding_threshold=folding_threshold, extrapolate=EXTRA)
# star = galsim.DeltaFunction(gsparams=gsp)
# star = star.withFlux(nphotons)
# star = galsim.Convolve(psf, star)
star = psf.withFlux(nphotons)
stamp = star.drawImage(wcs=chip_wcs_local, offset=offset)
stamp = star.drawImage(method='no_pixel', wcs=chip_wcs_local, offset=offset)
if np.sum(np.isnan(stamp.array)) > 0:
continue
stamp.setCenter(x_nominal, y_nominal)
......
......@@ -13,6 +13,7 @@ import galsim
import h5py
from observation_sim.psf.PSFModel import PSFModel
from observation_sim.psf._util import psf_extrapolate
NPSF = 900 # ***# 30*30
......@@ -324,7 +325,7 @@ class PSFInterp(PSFModel):
return twave
return -1
def get_PSF(self, chip, pos_img, bandpass, galsimGSObject=True, findNeighMode='treeFind', folding_threshold=5.e-3, pointing_pa=0.0):
def get_PSF(self, chip, pos_img, bandpass, galsimGSObject=True, findNeighMode='treeFind', folding_threshold=5.e-3, pointing_pa=0.0, extrapolate=False, ngg=2048):
"""
Get the PSF at a given image position
......@@ -358,20 +359,17 @@ class PSFInterp(PSFModel):
imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True,
hoc=self.hoc[twave], hoclist=self.hoclist[twave], PSFCentroidWgt=True)
'''
############TEST: START
TestGaussian = False
if TestGaussian:
gsx = galsim.Gaussian(sigma=0.04)
#pointing_pa = -23.433333
imPSF= gsx.shear(g1=0.8, g2=0.).rotate(0.*galsim.degrees).drawImage(nx = 256, ny=256, scale=pixSize).array
############TEST: END
'''
if extrapolate is True:
ccdList = [ 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25]
rr_trim_list = [72, 64, 96, 88, 64, 72, 72, 76, 72, 72, 76, 72, 72, 64, 88, 96, 64, 72]
imPSF = psf_extrapolate(imPSF, rr_trim=rr_trim_list[ccdList.index(chip.chipID)], ngg=ngg)
if galsimGSObject:
imPSFt = np.zeros([257, 257])
imPSFt[0:256, 0:256] = imPSF
# imPSFt[120:130, 0:256] = 1.
if extrapolate is True:
imPSFt = imPSF
else:
imPSFt = np.zeros([257, 257])
imPSFt[0:256, 0:256] = imPSF
img = galsim.ImageF(imPSFt, scale=pixSize)
gsp = galsim.GSParams(folding_threshold=folding_threshold)
......
import numpy as np
from scipy.interpolate import interp1d
def binningPSF(img, ngg):
imgX = img.reshape(ngg, img.shape[0]//ngg, ngg, img.shape[1]//ngg).mean(-1).mean(1)
return imgX
def radial_average_at_pixel(image, center_x, center_y, dr=10):
# Get coordinates relative to the specified center pixel (x, y)
y, x = np.indices(image.shape)
r = np.sqrt((x - center_x)**2 + (y - center_y)**2)
# Set up bins
max_radius = int(r.max()) # Maximum distance from the center pixel
radial_bins = np.arange(0, max_radius, dr)
# Compute average value in each bin
radial_means = []
for i in range(len(radial_bins) - 1):
mask = (r >= radial_bins[i]) & (r < radial_bins[i + 1])
if np.any(mask):
radial_means.append(image[mask].mean())
else:
radial_means.append(0) # In case no pixels are in the bin
return radial_bins[:-1], radial_means # Exclude last bin since no mean calculated
def psf_extrapolate(psf, rr_trim=64, ngg=256):
# ngg = 256
# extrapolate PSF
if True:
xim = np.arange(256)-128
xim,yim = np.meshgrid(xim, xim)
rim = np.sqrt(xim**2 +yim**2)
# rr_trim = 96
psf_temp = psf
psf_temp[rim > rr_trim] = 0
radii, means = radial_average_at_pixel(psf_temp, 128, 128, dr=4)
radii_log = np.log(radii[1:])
means_log = np.log(means[1:])
finite_mask = np.isfinite(means_log)
f_interp = interp1d(radii_log[finite_mask][:-1], means_log[finite_mask][:-1], kind='linear', fill_value="extrapolate")
# ngg = 1024
xim = np.arange(ngg)-int(ngg/2)
xim,yim = np.meshgrid(xim, xim)
rim = np.sqrt(xim**2 +yim**2)
rim[int(ngg/2),int(ngg/2)] = np.finfo(float).eps # 1e-7
rim_log = np.log(rim)
y_new = f_interp(rim_log)
arr = np.zeros([ngg, ngg])
arr[int(ngg/2-128):int(ngg/2+128), int(ngg/2-128):int(ngg/2+128)] = np.log(psf_temp + np.finfo(float).eps)
arr[rim > rr_trim] = 0
arr[arr==0] = y_new[arr==0]
psf = np.exp(arr)
psf[rim > int(ngg/2)] = 0
imPSF = psf # binningPSF(psf, int(ngg/2))
imPSF = imPSF/np.nansum(imPSF)
return imPSF
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment