Commit a4587b61 authored by Wei Chengliang's avatar Wei Chengliang
Browse files

update codestyle-PEP8

parent 95e6759c
Pipeline #7732 passed with stage
in 0 seconds
...@@ -63,7 +63,7 @@ class Observation(object): ...@@ -63,7 +63,7 @@ class Observation(object):
chip.flat_img, _ = chip_utils.get_flat( chip.flat_img, _ = chip_utils.get_flat(
img=chip.img, seed=int(self.config["random_seeds"]["seed_flat"])) img=chip.img, seed=int(self.config["random_seeds"]["seed_flat"]))
if chip.chipID <= 30: if chip.chipID <= 30:
chip.flat_img = chip.flat_img*chip_utils.get_innerflat(chip = chip) chip.flat_img = chip.flat_img*chip_utils.get_innerflat(chip=chip)
if chip.chipID > 30: if chip.chipID > 30:
chip.shutter_img = np.ones_like(chip.img.array) chip.shutter_img = np.ones_like(chip.img.array)
else: else:
......
...@@ -172,7 +172,8 @@ def get_flat(img, seed): ...@@ -172,7 +172,8 @@ def get_flat(img, seed):
flat_normal = flat_img / np.mean(flat_img.array) flat_normal = flat_img / np.mean(flat_img.array)
return flat_img, flat_normal return flat_img, flat_normal
def get_innerflat(chip = None, filt = None):
def get_innerflat(chip=None, filt=None):
from observation_sim.mock_objects import FlatLED from observation_sim.mock_objects import FlatLED
led_obj = FlatLED(chip, filt) led_obj = FlatLED(chip, filt)
flat_img = led_obj.getInnerFlat() flat_img = led_obj.getInnerFlat()
......
...@@ -51,7 +51,7 @@ fluxLED = {'LED1': 15, 'LED2': 15, 'LED3': 12.5, 'LED4': 9, 'LED5': 9, ...@@ -51,7 +51,7 @@ fluxLED = {'LED1': 15, 'LED2': 15, 'LED3': 12.5, 'LED4': 9, 'LED5': 9,
mirro_eff = {'GU': 0.61, 'GV': 0.8, 'GI': 0.8} mirro_eff = {'GU': 0.61, 'GV': 0.8, 'GI': 0.8}
bandtoLed = {'NUV':['LED1','LED2'], 'u':['LED13','LED14'], 'g':['LED3','LED4','LED5'], 'r':['LED6','LED7'], 'i':['LED8'], 'z':['LED9','LED10'], 'y':['LED10'], 'GU':['LED1','LED2','LED13','LED14'], 'GV':['LED3','LED4','LED5','LED6'], 'GI':['LED7','LED8','LED9','LED10']} bandtoLed = {'NUV': ['LED1', 'LED2'], 'u': ['LED13', 'LED14'], 'g': ['LED3', 'LED4', 'LED5'], 'r': ['LED6', 'LED7'], 'i': ['LED8'], 'z': ['LED9', 'LED10'], 'y': ['LED10'], 'GU': ['LED1', 'LED2', 'LED13', 'LED14'], 'GV': ['LED3', 'LED4', 'LED5', 'LED6'], 'GI': ['LED7', 'LED8', 'LED9', 'LED10']}
# mirro_eff = {'GU':1, 'GV':1, 'GI':1} # mirro_eff = {'GU':1, 'GV':1, 'GI':1}
...@@ -71,19 +71,18 @@ class FlatLED(MockObject): ...@@ -71,19 +71,18 @@ class FlatLED(MockObject):
with pkg_resources.path('observation_sim.mock_objects.data.led', "") as ledDir: with pkg_resources.path('observation_sim.mock_objects.data.led', "") as ledDir:
self.flatDir = ledDir.as_posix() self.flatDir = ledDir.as_posix()
def getInnerFlat(self): def getInnerFlat(self):
ledflats = bandtoLed[self.chip.filter_type] ledflats = bandtoLed[self.chip.filter_type]
iFlat = np.zeros([self.chip.npix_y, self.chip.npix_x]) iFlat = np.zeros([self.chip.npix_y, self.chip.npix_x])
for nled in ledflats: for nled in ledflats:
iFlat = iFlat + self.getLEDImage(led_type=nled, LED_Img_flag =False) iFlat = iFlat + self.getLEDImage(led_type=nled, LED_Img_flag=False)
iFlat = iFlat / len(ledflats) iFlat = iFlat/len(ledflats)
return iFlat return iFlat
### ###
# return LED flat, e/s # return LED flat, e/s
### ###
def getLEDImage(self, led_type='LED1', LED_Img_flag =True): def getLEDImage(self, led_type='LED1', LED_Img_flag=True):
# cwave = cwaves[led_type] # cwave = cwaves[led_type]
flat = fits.open(os.path.join(self.flatDir, 'model_' + flat = fits.open(os.path.join(self.flatDir, 'model_' +
cwaves_name[led_type] + 'nm.fits')) cwaves_name[led_type] + 'nm.fits'))
......
...@@ -340,7 +340,7 @@ class Galaxy(MockObject): ...@@ -340,7 +340,7 @@ class Galaxy(MockObject):
if self.getMagFilter(filt) <= filt.mag_saturation-2.: if self.getMagFilter(filt) <= filt.mag_saturation-2.:
EXTRA = True EXTRA = True
psf, pos_shear = psf_model.get_PSF( psf, pos_shear = psf_model.get_PSF(
chip, pos_img_local=pos_img_local, bandNo=i+1, galsimGSObject=True, g_order=order, grating_split_pos=grating_split_pos, extrapolate = EXTRA, ngg=3072) chip, pos_img_local=pos_img_local, bandNo=i+1, galsimGSObject=True, g_order=order, grating_split_pos=grating_split_pos, extrapolate=EXTRA, ngg=3072)
star_p = galsim.Convolve(psf, gal) star_p = galsim.Convolve(psf, gal)
if nnx == 0: if nnx == 0:
galImg = star_p.drawImage( galImg = star_p.drawImage(
......
...@@ -452,14 +452,14 @@ class PSFInterpSLS(PSFModel): ...@@ -452,14 +452,14 @@ class PSFInterpSLS(PSFModel):
(n1, n2, n01)) (n1, n2, n01))
if extrapolate is True: if extrapolate is True:
# for rep_i in np.arange(0, 2, 1): # for rep_i in np.arange(0, 2, 1):
# PSF_int_trans[rep_i,:] = 1e9*pow(10,rep_i) # PSF_int_trans[rep_i,:] = 1e9*pow(10,rep_i)
# PSF_int_trans[-1-rep_i,:] = 1e9*pow(10,rep_i) # PSF_int_trans[-1-rep_i,:] = 1e9*pow(10,rep_i)
# PSF_int_trans[:,rep_i] = 1e9*pow(10,rep_i) # PSF_int_trans[:,rep_i] = 1e9*pow(10,rep_i)
# PSF_int_trans[:,-1-rep_i] = 1e9*pow(10,rep_i) # PSF_int_trans[:,-1-rep_i] = 1e9*pow(10,rep_i)
PSF_int_trans = psf_extrapolate1(PSF_int_trans, ngg=ngg) PSF_int_trans = psf_extrapolate1(PSF_int_trans, ngg=ngg)
# fits.writeto('/home/zhangxin/CSST_SIM/CSST_sim_develop/psf_test/psf_large.fits',PSF_int_trans) # fits.writeto('/home/zhangxin/CSST_SIM/CSST_sim_develop/psf_test/psf_large.fits',PSF_int_trans)
#### ####
# from astropy.io import fits # from astropy.io import fits
# fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans) # fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans)
......
...@@ -64,6 +64,7 @@ def psf_extrapolate(psf, rr_trim=64, ngg=256): ...@@ -64,6 +64,7 @@ def psf_extrapolate(psf, rr_trim=64, ngg=256):
imPSF = imPSF/np.nansum(imPSF) imPSF = imPSF/np.nansum(imPSF)
return imPSF return imPSF
def psf_extrapolate1(psf, rr_trim=64, ngg=256): def psf_extrapolate1(psf, rr_trim=64, ngg=256):
# ngg = 256 # ngg = 256
# extrapolate PSF # extrapolate PSF
...@@ -83,7 +84,6 @@ def psf_extrapolate1(psf, rr_trim=64, ngg=256): ...@@ -83,7 +84,6 @@ def psf_extrapolate1(psf, rr_trim=64, ngg=256):
# radii_log = radii[1:] # radii_log = radii[1:]
means_log = np.log(means[1:]) means_log = np.log(means[1:])
# xim = np.arange(256)-128 # xim = np.arange(256)-128
# xim, yim = np.meshgrid(xim, xim) # xim, yim = np.meshgrid(xim, xim)
# rim = np.sqrt(xim**2 + yim**2) # rim = np.sqrt(xim**2 + yim**2)
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment