Commit a63e6632 authored by Fang Yuedong's avatar Fang Yuedong
Browse files

add first measurement and evaluation pipelines

parent 33baa6e6
......@@ -8,16 +8,16 @@
# n_objects: 500
rotate_objs: NO
use_mpi: YES
run_name: "test_20230509"
run_name: "test_20230517"
pos_sampling:
# type: "HexGrid"
# type: "RectGrid"
# grid_spacing: 18.5 # arcsec (~250 pixels)
type: "uniform"
object_density: 50 # arcmin^-2
object_density: 37 # arcmin^-2
output_img_dir: "./workspace"
output_img_dir: "/share/home/fangyuedong/injection_pipeline/workspace"
input_img_list: "/share/home/fangyuedong/injection_pipeline/input_L1_img_MSC_0000000.list"
###############################################
......@@ -79,4 +79,18 @@ ins_effects:
# Random seeds
###############################################
random_seeds:
seed_Av: 121212 # Seed for generating random intrinsic extinction
\ No newline at end of file
seed_Av: 121212 # Seed for generating random intrinsic extinction
###############################################
# Measurement setting
###############################################
measurement_setting:
input_img_list: "/share/home/fangyuedong/injection_pipeline/injected_L1_img_MSC_0000000.list"
# input_img_list: "/share/home/fangyuedong/injection_pipeline/input_L1_img_MSC_0000000.list"
input_wht_list: "/share/home/fangyuedong/injection_pipeline/L1_wht_img_MSC_0000000.list"
input_flg_list: "/share/home/fangyuedong/injection_pipeline/L1_flg_img_MSC_0000000.list"
input_psf_list: "/share/home/fangyuedong/injection_pipeline/psf_img_MSC_0000000.list"
sex_config: "/share/home/fangyuedong/injection_pipeline/config/default.config"
sex_param: "/share/home/fangyuedong/injection_pipeline/config/default.param"
n_jobs: 8
output_dir: "/share/home/fangyuedong/injection_pipeline/workspace"
\ No newline at end of file
import argparse
import numpy as np
import os
from astropy.io import fits
from astropy.stats import sigma_clip
from astropy.stats import median_absolute_deviation
from astropy.stats import mad_std
def get_all_stats(values_arrays):
"""
"""
stats = {}
stats['mean'] = np.mean(values_arrays)
stats['median'] = np.median(values_arrays)
stats['std'] = np.std(values_arrays)
stats['mad'] = mad_std(values_arrays)
return stats
def define_options():
parser = argparse.ArgumentParser()
parser.add_argument('--data_image', dest='data_image', type=str, required=True,
help='Name of the data image: (default: "%(default)s"')
parser.add_argument('--seg_image', dest='seg_image', type=str, required=True,
help='Name of the mask / segmentation image: (default: "%(default)s"')
parser.add_argument('--flag_image', dest='flag_image', type=str, required=False,
default=None, help='Name of the flag image (default: "%(default)s"')
parser.add_argument('--sky_image', dest='sky_image', type=str, required=False,
default=None, help='Name of the sky image (default: "%(default)s"')
parser.add_argument('--aper_min', dest='aper_min', type=int, required=False,
default=5, help='Minimum no. of pixels at level: (default: "%(default)s"')
parser.add_argument('--aper_max', dest='aper_max', type=int, required=False,
default=20, help='Maximum no. of pixels at level: (default: "%(default)s"')
parser.add_argument('--aper_sampling', dest='aper_sampling', type=int, required=False,
default=1, help='Minimum no. of pixels at level: (default: "%(default)s"')
parser.add_argument('--n_sample', dest='n_sample', type=int, required=False,
default=500, help='Minimum no. of pixels at level: (default: "%(default)s"')
parser.add_argument('--out_basename', dest='out_basename', type=str, required=False,
default="aper", help='Base name for the output names: (default: "%(default)s"')
parser.add_argument('--output_dir', dest='output_dir', type=str, required=False,
default="./workspace", help='dir path for the output : (default: "%(default)s"')
return parser
def create_circular_mask(h, w, center=None, radius=None):
if center is None: # use the middle of the image
center = [int(w / 2), int(h / 2)]
if radius is None: # use the smallest distance between the center and image walls
radius = min(center[0], center[1], w - center[0], h - center[1])
Y, X = np.ogrid[:h, :w]
dist_from_center = np.sqrt((X - center[0]) ** 2 + (Y - center[1]) ** 2)
mask = dist_from_center <= radius
return mask
def sampling(image_data, seg_data, flag_data, aperture, Nsample):
wx, wy = np.where( (image_data != 0) & (seg_data == 0) & (flag_data == 0))
Nx, Ny = image_data.shape
flux_average = np.zeros(Nsample)
flux_median = np.zeros(Nsample)
x_position = np.zeros(Nsample)
y_position = np.zeros(Nsample)
i = 0
i_iter = 0
while i < Nsample:
if i_iter > 100*Nsample:
print('# Not enough background pixels for image depth analysis!')
break
i_iter += 1
idx = np.random.randint(len(wx))
stmpsize = aperture+1
if wx[idx]+stmpsize >= Nx:
continue
if wy[idx]+stmpsize >= Ny:
continue
img_stmp = image_data[ wx[idx]:wx[idx]+stmpsize, wy[idx]:wy[idx]+stmpsize ]
seg_stmp = seg_data[ wx[idx]:wx[idx]+stmpsize, wy[idx]:wy[idx]+stmpsize ]
flag_stmp = flag_data[ wx[idx]:wx[idx]+stmpsize, wy[idx]:wy[idx]+stmpsize ]
mask = create_circular_mask(stmpsize, stmpsize, center=[stmpsize//2,stmpsize//2], radius=aperture//2)
area = np.pi*(aperture/2)**2
area_sum = len(mask[mask==True])
ratio = area/area_sum
ss = np.sum(seg_stmp[mask])
if ss != 0:
continue
fs = np.sum(flag_stmp[mask])
if fs != 0:
continue
flux_average[i] = np.average(img_stmp[mask])
flux_median[i] = np.median(img_stmp[mask])
x_position[i] = (wx[idx]+wx[idx]+stmpsize)/2.0
y_position[i] = (wy[idx]+wy[idx]+stmpsize)/2.0
i += 1
print('Needed %i tries for %i samples!'%(i_iter, Nsample))
return flux_average, flux_median, x_position, y_position
def noise_statistics_aperture(fitsname, segname, flagname=None, sky_image=None, aperture_min=1, aperture_max=10, aperture_step=1, seed=None, Nsample=100, sigma_cl=10., base_name="aper", output_dir='./'):
f = fits.open(fitsname)
fseg = fits.open(segname)
# image_data = f[1].data
image_data = f[1].data * f[1].header["GAIN1"]
seg_data = fseg[0].data
f.close()
fseg.close()
if flagname:
fflag = fits.open(flagname)
flag_data = fflag[1].data
fflag.close()
else:
flag_data = np.zeros(image_data.shape)
if sky_image:
hdu = fits.open(sky_image)
sky_data = hdu[0].data * hdu[0].header["GAIN1"]
image_data -= sky_data
if seed != None:
np.random.seed(seed)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
im = image_data
im[seg_data > 0] = 0.
hist_data = im[im != 0.].flatten()
aperture_list = np.arange(aperture_min, aperture_max+1, aperture_step, dtype=int)
sigma_output = np.zeros(len(aperture_list))
mad_output = np.zeros(len(aperture_list))
mad_std_output = np.zeros(len(aperture_list))
for j, aperture in enumerate(aperture_list):
flux_average, flux_median, x_position, y_position = sampling(image_data, seg_data, flag_data, aperture, Nsample)
mean_stats = get_all_stats(flux_average)
median_stats = get_all_stats(flux_median)
print("Mean: %e += %e +- %e"%(mean_stats['median'], mean_stats['mad'], mean_stats['std']))
print("Median: %e += %e +- %e"%(median_stats['median'], median_stats['mad'], median_stats['std']))
aper_file = '%s_%03i.txt'%(base_name, aperture)
aper_file = os.path.join(output_dir, aper_file)
print('Aperture file: %s'%aper_file)
with open(aper_file, "w+") as aper_out:
for one_value in zip(flux_average, flux_median, x_position, y_position):
one_line = "{:.7f} {:.7f} {:.1f} {:.1f}\n".format(*one_value)
aper_out.write(one_line)
return aperture_list, sigma_output, mad_output, mad_std_output
if __name__ == "__main__":
args = define_options().parse_args()
aperture_ap, sigma_ap, mad_ap, nmad_ap = noise_statistics_aperture(
args.data_image,
args.seg_image,
args.flag_image,
args.sky_image,
aperture_min=args.aper_min,
aperture_max=args.aper_max,
aperture_step=args.aper_sampling,
Nsample=args.n_sample,
base_name=args.out_basename,
output_dir=args.output_dir)
\ No newline at end of file
import argparse
import os
import numpy as np
import matplotlib.pyplot as plt
from astropy.io import ascii, fits
from cross_match_catalogs import read_catalog, match_catalogs_img
from ObservationSim.Instrument import Telescope, Filter, FilterParam
VC_A = 2.99792458e+18 # speed of light: A/s
def define_options():
parser = argparse.ArgumentParser()
parser.add_argument('--TU_catalog', dest='TU_catalog', type=str, required=True,
help='path to the (injected) truth catalog')
parser.add_argument('--source_catalog', dest='source_catalog', type=str, required=True,
help='path to the (extracted) injected catalog')
parser.add_argument('--orig_catalog', dest='orig_catalog', type=str, required=True,
help='path to the (extracted) original catalog')
parser.add_argument('--image', dest='image', type=str, required=True,
help='path to the image, used to get the header info')
parser.add_argument('--output_dir', dest='output_dir', type=str, required=False,
default='./workspace', help='output path')
return parser
def getChipFilter(chipID, filter_layout=None):
"""Return the filter index and type for a given chip #(chipID)
"""
filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI", "FGS"]
if filter_layout is not None:
return filter_layout[chipID][0], filter_layout[chipID][1]
# updated configurations
if chipID>42 or chipID<1: raise ValueError("!!! Chip ID: [1,42]")
if chipID in [6, 15, 16, 25]: filter_type = "y"
if chipID in [11, 20]: filter_type = "z"
if chipID in [7, 24]: filter_type = "i"
if chipID in [14, 17]: filter_type = "u"
if chipID in [9, 22]: filter_type = "r"
if chipID in [12, 13, 18, 19]: filter_type = "nuv"
if chipID in [8, 23]: filter_type = "g"
if chipID in [1, 10, 21, 30]: filter_type = "GI"
if chipID in [2, 5, 26, 29]: filter_type = "GV"
if chipID in [3, 4, 27, 28]: filter_type = "GU"
if chipID in range(31, 43): filter_type = 'FGS'
filter_id = filter_type_list.index(filter_type)
return filter_id, filter_type
def magToFlux(mag):
"""
flux of a given AB magnitude
Parameters:
mag: magnitude in unit of AB
Return:
flux: flux in unit of erg/s/cm^2/Hz
"""
flux = 10**(-0.4*(mag+48.6))
return flux
def getElectronFluxFilt(mag, filt, tel, exptime=150.):
photonEnergy = filt.getPhotonE()
flux = magToFlux(mag)
factor = 1.0e4 * flux/photonEnergy * VC_A * (1.0/filt.blue_limit - 1.0/filt.red_limit)
return factor * filt.efficiency * tel.pupil_area * exptime
def convert_catalog(catname):
data_dir = os.path.dirname(catname)
base_name = os.path.basename(catname)
text_file = ascii.read(catname)
fits_filename = os.path.join(data_dir, base_name + '.fits')
text_file.write(fits_filename, overwrite=True)
def validation_hist(val, idx, name="val", nbins=10, fig_name='detected_counts.png', output_dir='./'):
counts, bins = np.histogram(val, bins=nbins)
is_empty = np.full(len(val), False)
for i in range(len(idx)):
if idx[i].size == 0:
is_empty[i] = True
counts_detected, _ = np.histogram(val[~is_empty], bins=nbins)
plt.figure()
plt.stairs(counts, bins, color='r', label='TU objects')
plt.stairs(counts_detected, bins, color='g', label='Detected')
plt.xlabel(name, size='x-large')
plt.title("Counts")
plt.legend(loc='upper right', fancybox=True)
fig_name = os.path.join(output_dir, fig_name)
plt.savefig(fig_name)
return counts, bins
def hist_fraction(val, idx, name='val', nbins=10, normed=False, output_dir='./'):
counts, bins = np.histogram(val, bins=nbins)
is_empty = np.full(len(val), False)
for i in range(len(idx)):
if idx[i].size == 0:
is_empty[i] = True
counts_detected, _ = np.histogram(val[~is_empty], bins=nbins, density=normed)
fraction = counts_detected / counts
fraction[np.where(np.isnan(fraction))[0]] = 0.
plt.figure()
plt.stairs(fraction, bins, color='r', label='completeness fraction')
plt.xlabel(name, size='x-large')
plt.title("Completeness Fraction")
fig_name = os.path.join(output_dir, "completeness_fraction_%s.png"%(name))
plt.savefig(fig_name)
return fraction
def calculate_fraction(TU_catalog, source_catalog, output_dir, nbins=10):
convert_catalog(TU_catalog)
x_TU, y_TU, col_list = read_catalog(TU_catalog + '.fits', ext_num=1, ra_name="xImage", dec_name="yImage", col_list=["mag"])
mag_TU = col_list[0]
x_source, y_source, _ = read_catalog(source_catalog, ext_num=1, ra_name="X_IMAGE", dec_name="Y_IMAGE")
idx1, idx2, = match_catalogs_img(x1=x_TU, y1=y_TU, x2=x_source, y2=y_source)
counts, bins = validation_hist(val=mag_TU, idx=idx1, name="mag_injected", output_dir=output_dir)
fraction = hist_fraction(val=mag_TU, idx=idx1, name="mag_injected", nbins=10, output_dir=output_dir)
return counts, bins, fraction
def calculate_undetected_flux(orig_cat, mag_bins, fraction, mag_low=20.0, mag_high=26.0, image=None, output_dir='./'):
# Get info from original image
hdu = fits.open(image)
header0 = hdu[0].header
header1 = hdu[1].header
nx_pix, ny_pix = header0["PIXSIZE1"], header0["PIXSIZE2"]
exp_time = header0["EXPTIME"]
gain = header1["GAIN1"]
chipID = int(header0["DETECTOR"][-2:])
zp = header1["ZP"]
hdu.close()
# Get info from original catalog
ra_orig, dec_orig, col_list_orig = read_catalog(orig_cat, ra_name='RA', dec_name='DEC', col_list=['Mag_Kron'])
mag_orig = col_list_orig[0]
nbins = len(mag_bins) - 1
counts, _ = np.histogram(mag_orig, bins=nbins)
mags = (mag_bins[:-1] + mag_bins[1:])/2.
counts_missing = (counts / fraction) - counts
counts_missing[np.where(np.isnan(counts_missing))[0]] = 0.
counts_missing[np.where(np.isinf(counts_missing))[0]] = 0.
print(counts_missing)
print(counts_missing.sum())
plt.figure()
plt.stairs(counts_missing, mag_bins, color='r', label='undetected counts')
plt.xlabel("mag_injected", size='x-large')
plt.title("Undetected Sources")
fig_name = os.path.join(output_dir, "undetected_sources.png")
plt.savefig(fig_name)
tel = Telescope()
filter_param = FilterParam()
filter_id, filter_type = getChipFilter(chipID=chipID)
filt = Filter(filter_id=filter_id,
filter_type=filter_type,
filter_param=filter_param)
undetected_flux = 0.
for i in range(len(mags)):
if mags[i] < mag_low or mags[i] > mag_high:
continue
flux_electrons = counts_missing[i] * getElectronFluxFilt(mag=mags[i], filt=filt, tel=tel)
undetected_flux += flux_electrons
undetected_flux /= (float(nx_pix) * float(ny_pix))
return undetected_flux
if __name__ == "__main__":
args = define_options().parse_args()
counts, bins, fraction = calculate_fraction(
TU_catalog=args.TU_catalog,
source_catalog=args.source_catalog,
output_dir=args.output_dir,
nbins=20
)
undetected_flux = calculate_undetected_flux(
orig_cat=args.orig_catalog,
mag_bins=bins,
fraction=fraction,
image=args.image,
output_dir=args.output_dir,
)
print(undetected_flux)
\ No newline at end of file
......@@ -41,8 +41,8 @@ def match_catalogs_sky(ra1, dec1, ra2, dec2, max_dist=0.6, others1=[], others2=[
def match_catalogs_img(x1, y1, x2, y2, max_dist=0.5, others1=[], others2=[], thresh=[]):
cat1 = np.array([(x, y) for x,y in zip(x1, y1)])
cat2 = np.array([(x, y) for x,y in zip(x2, y2)])
print(np.shape(cat1))
print(np.shape(cat2))
# print(np.shape(cat1))
# print(np.shape(cat2))
tree = BallTree(cat2)
idx1 = tree.query_radius(cat1, r = max_dist)
tree = BallTree(cat1)
......@@ -59,7 +59,7 @@ def match_catalogs_img(x1, y1, x2, y2, max_dist=0.5, others1=[], others2=[], thr
def validation_hist(val1, idx1, name="val1", nbins=10):
counts, bins = np.histogram(val1)
plt.stairs(bins, counts)
plt.stairs(counts, bins)
plt.xlabel(name, size='x-large')
plt.savefig("detection_completeness.png")
# plt.show()
......
......@@ -69,7 +69,7 @@ class SimCat(CatalogBase):
for i in range(ngals):
param = self.initialize_param()
igals = ngals % max_ngals
igals = i % max_ngals
param['ra'] = gals['ra_true'][igals]
param['dec'] = gals['dec_true'][igals]
......
......@@ -28,6 +28,7 @@ class SingleEpochImage(object):
elif 'object_density' in self.config["pos_sampling"] and self.config["pos_sampling"]['object_density'] is not None:
# Fixed number density of objects
self.objs_per_real = round(self.u_area * self.config["pos_sampling"]['object_density'])
print("number of injected obj = ",self.objs_per_real)
else:
# Grid types: calculate nobjects later
self.objs_per_real = None
......@@ -56,22 +57,24 @@ class SingleEpochImage(object):
self.setup_image_for_injection()
self.header_ext = generateExtensionHeader(
chip=self.chip,
xlen=self.chip.npix_x,
ylen=self.chip.npix_y,
ra=self.ra_cen,
dec=self.dec_cen,
pa=self.pos_ang,
gain=self.chip.gain, # {TODO}
readout=self.chip.read_noise,
dark=self.chip.dark_noise,
saturation=90000,
pixel_scale=self.chip.pix_scale,
pixel_size=self.chip.pix_size,
xcen=self.chip.x_cen,
ycen=self.chip.y_cen,
extName = 'raw')
# [TODO] Header should come from input image
# self.header_ext = generateExtensionHeader(
# chip=self.chip,
# xlen=self.chip.npix_x,
# ylen=self.chip.npix_y,
# ra=self.ra_cen,
# dec=self.dec_cen,
# pa=self.pos_ang,
# gain=self.chip.gain, # {TODO}
# readout=self.chip.read_noise,
# dark=self.chip.dark_noise,
# saturation=90000,
# pixel_scale=self.chip.pix_scale,
# pixel_size=self.chip.pix_size,
# xcen=self.chip.x_cen,
# ycen=self.chip.y_cen,
# extName = 'raw')
self.header_ext = self.header_img
# (TODO) specify sub-directory
self.chip_output = ChipOutput(
......@@ -100,19 +103,22 @@ class SingleEpochImage(object):
def read_initial_image(self, filepath):
data_dir = os.path.dirname(filepath)
img_name = os.path.basename(filepath)
data = fits.open(filepath)
self.header0 = data[0].header
self.header_img = data[1].header
hdu = fits.open(filepath)
self.header0 = hdu[0].header
self.header_img = hdu[1].header
self.image = fits.getdata(filepath)
hdu.close()
# Determine which CCD
self.chip_ID = int(self.header0['DETECTOR'][-2:])
# Construnct Chip object
self.chip = Chip(chipID=self.chip_ID, config=self.config)
self.exp_time = float(self.header0 ['EXPTIME'])
self.chip.gain = float(self.header_img["GAIN1"])
# Process L1 image
self.image = self.image * self.exp_time / self.chip.gain
# self.image = self.image * self.exp_time / self.chip.gain
self.image = self.image * self.chip.gain
# Process L1 SKY image
# [TODO]
......@@ -172,6 +178,8 @@ class SingleEpochImage(object):
nobj = len(pos)
# Make sure we have enough objects to inject
assert nobj <= len(cat.objs)
chip_wcs = galsim.FitsWCS(header=self.header_ext)
for i in range(nobj):
obj = cat.objs[i]
......@@ -190,7 +198,7 @@ class SingleEpochImage(object):
# Update object position to a point on grid
obj.param['ra'], obj.param['dec'] = pos[i][0], pos[i][1]
self.chip_output.Log_info("ra = %.3f, dec = %.3f"%(obj.param['ra'], obj.param['dec']))
pos_img, offset, local_wcs, real_wcs, fd_shear = obj.getPosImg_Offset_WCS(img=self.chip.img, fdmodel=self.fd_model, chip=self.chip, verbose=False, img_header=self.header_ext)
pos_img, offset, local_wcs, real_wcs, fd_shear = obj.getPosImg_Offset_WCS(img=self.chip.img, fdmodel=self.fd_model, chip=self.chip, verbose=False, chip_wcs=chip_wcs)
self.chip_output.Log_info("pos_img_x = %.3f, pos_img_y = %.3f"%(pos_img.x, pos_img.y))
try:
isUpdated, pos_shear = obj.drawObj_multiband(
......@@ -225,8 +233,9 @@ class SingleEpochImage(object):
self.chip.img = galsim.Image(self.chip.img.array, dtype=np.float32)
# [TODO] TEST
self.chip.img *= self.gain
self.chip.img /= self.exp_time
# self.chip.img *= self.chip.gain
# self.chip.img /= self.exp_time
self.chip.img /= self.chip.gain
hdu1 = fits.PrimaryHDU(header=self.header0)
hdu2 = fits.ImageHDU(self.chip.img.array, header=self.header_img)
......
......@@ -33,11 +33,17 @@ class InjectionPipeline(object):
# Prepare the output directory
if not os.path.exists(self.config["output_img_dir"]):
os.makedirs(self.config["output_img_dir"])
try:
os.makedirs(self.config["output_img_dir"])
except OSError:
pass
self.output_dir = os.path.join(self.config["output_img_dir"], self.config["run_name"])
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
try:
os.makedirs(self.output_dir)
except OSError:
pass
def run_injection_img_list(self, Catalog):
if self.config["use_mpi"]:
......
import numpy as np
import argparse
import os
from skimage.draw import ellipse
from astropy.io import fits
def define_options():
parser = argparse.ArgumentParser()
parser.add_argument('--catalog', dest='catalog_path', type=str, required=False,
default=None, help='path to the object catalog (default: "%(default)s"')
parser.add_argument('--flag_image', dest='flag_path', type=str, required=False,
default=None, help='path to the flag image (default: "%(default)s"')
parser.add_argument('--output_dir', dest='output_dir', type=str,
default=None, help='path to the output mask image (default: "%(default)s"')
parser.add_argument('--margin', dest='margin', type=float,
default=0, help='margin for major and minor axes')
return parser
def mask_object(img, x_image, y_image, A_image, B_image, theta_image, margin=0):
rr, cc = ellipse(
r=y_image,
c=x_image,
r_radius=B_image,
c_radius=A_image,
shape=img.shape,
rotation=np.deg2rad(-theta_image)
)
img[rr, cc] = 1
def create_mask_catalog(catalog_path, flag_path, output_dir, margin=0):
catalog_dir = os.path.dirname(catalog_path)
catalog_name = os.path.basename(catalog_path)
flag_dir = os.path.dirname(flag_path)
flag_name = os.path.basename(flag_path)
# Read header and data from flag image
hdu = fits.open(flag_path)
header0 = hdu[0].header
header1 = hdu[1].header
flag_img = fits.getdata(flag_path)
hdu.close()
# Read data from detection catalog
hdu = fits.open(catalog_path)
catalog = hdu[1].data
hdu.close()
# Setup mask image
mask = flag_img.copy()
mask[mask != 0] = 1
# Columns used for mask creation
x_image = catalog["X_IMAGE"]
y_image = catalog["Y_IMAGE"]
A_image = catalog["A_IMAGE"]
B_image = catalog["B_IMAGE"]
theta_image = catalog["theta_image"]
for i in range(len(catalog)):
mask_object(
img=mask,
x_image=x_image[i],
y_image=y_image[i],
A_image=A_image[i],
B_image=B_image[i],
theta_image=theta_image[i],
margin=margin
)
# Save flag image
fname = os.path.join(output_dir, flag_name.replace("flg_L1", "mask_L1"))
hdu1 = fits.PrimaryHDU(header=header0)
hdu2 = fits.ImageHDU(mask, header=header1)
hdu1 = fits.HDUList([hdu1, hdu2])
hdu1.writeto(fname, output_verify='ignore', overwrite=True)
if __name__ == "__main__":
args = define_options().parse_args()
create_mask_catalog(
catalog_path=args.catalog_path,
flag_path=args.flag_path,
output_dir=args.output_dir,
margin=args.margin
)
\ No newline at end of file
# Default configuration file for SExtractor 2.25.0
# EB 2019-10-03
#
#-------------------------------- Catalog ------------------------------------
CATALOG_NAME test.cat # name of the output catalog
CATALOG_TYPE FITS_1.0 # NONE,ASCII,ASCII_HEAD, ASCII_SKYCAT,
# ASCII_VOTABLE, FITS_1.0 or FITS_LDAC
PARAMETERS_NAME default.param # name of the file containing catalog contents
#------------------------------- Extraction ----------------------------------
DETECT_TYPE CCD # CCD (linear) or PHOTO (with gamma correction)
DETECT_MINAREA 3 # min. # of pixels above threshold
DETECT_THRESH 1.5 # <sigmas> or <threshold>,<ZP> in mag.arcsec-2
ANALYSIS_THRESH 1.5 # <sigmas> or <threshold>,<ZP> in mag.arcsec-2
THRESH_TYPE RELATIVE
FILTER Y # apply filter for detection (Y or N)?
FILTER_NAME ../measurement_pipeline/data/default.conv # name of the file containing the filter
DEBLEND_NTHRESH 64 # Number of deblending sub-thresholds
DEBLEND_MINCONT 0.0005 # Minimum contrast parameter for deblending
CLEAN Y # Clean spurious detections? (Y or N)?
CLEAN_PARAM 1.0 # Cleaning efficiency
MASK_TYPE CORRECT # type of detection MASKing: can be one of
# NONE, BLANK or CORRECT
#------------------------------ Flagging -----------------------------------
#FLAG_TYPE OR
#------------------------------ Photometry -----------------------------------
PHOT_APERTURES 5 # MAG_APER aperture diameter(s) in pixels
PHOT_AUTOPARAMS 2.5, 3.5 # MAG_AUTO parameters: <Kron_fact>,<min_radius>
PHOT_PETROPARAMS 2.0, 3.5 # MAG_PETRO parameters: <Petrosian_fact>,
# <min_radius>
SATUR_LEVEL 50000.0 # level (in ADUs) at which arises saturation
SATUR_KEY SATURATE # keyword for saturation level (in ADUs)
MAG_ZEROPOINT 0.0 # magnitude zero-point
#MAG_GAMMA 4.0 # gamma of emulsion (for photographic scans)
GAIN 1.0 # detector gain in e-/ADU
#GAIN_KEY GAIN # keyword for detector gain in e-/ADU
PIXEL_SCALE 0 # size of pixel in arcsec (0=use FITS WCS info)
#------------------------- Star/Galaxy Separation ----------------------------
SEEING_FWHM 0.15 # stellar FWHM in arcsec
STARNNW_NAME ../measurement_pipeline/data/default.nnw # Neural-Network_Weight table filename
#------------------------------ Background -----------------------------------
BACK_TYPE AUTO
BACK_SIZE 400 # Background mesh: <size> or <width>,<height>
BACK_FILTERSIZE 3 # Background filter: <size> or <width>,<height>
BACKPHOTO_TYPE GLOBAL # can be GLOBAL or LOCAL
#------------------------------ Check Image ----------------------------------
CHECKIMAGE_TYPE NONE # can be NONE, BACKGROUND, BACKGROUND_RMS,
# MINIBACKGROUND, MINIBACK_RMS, -BACKGROUND,
# FILTERED, OBJECTS, -OBJECTS, SEGMENTATION,
# or APERTURES
CHECKIMAGE_NAME ../check.fits # Filename for the check-image
#--------------------- Memory (change with caution!) -------------------------
MEMORY_OBJSTACK 3000 # number of objects in stack
MEMORY_PIXSTACK 300000 # number of pixels in stack
MEMORY_BUFSIZE 1024 # number of lines in buffer
#----------------------------- Miscellaneous ---------------------------------
VERBOSE_TYPE NORMAL # can be QUIET, NORMAL or FULL
HEADER_SUFFIX .head # Filename extension for additional headers
WRITE_XML N # Write XML file (Y/N)?
XML_NAME sex.xml # Filename for XML output
#------------------------------ Weighting -----------------------------------
#WEIGHT_TYPE MAP_WEIGHT
#RESCALE_WEIGHTS Y
#WEIGHT_IMAGE weight.fits
#WEIGHT_GAIN N
#WEIGHT_THRESH 1e-7
# ID and flags
NUMBER
FLAGS
# Basic coordinates
X_IMAGE
Y_IMAGE
XMIN_IMAGE
XMAX_IMAGE
YMIN_IMAGE
YMAX_IMAGE
# Accurate coordinates
XWIN_IMAGE
YWIN_IMAGE
ERRAWIN_IMAGE
ERRBWIN_IMAGE
ERRTHETAWIN_IMAGE
ALPHAWIN_J2000
DELTAWIN_J2000
ERRAWIN_WORLD
ERRBWIN_WORLD
ERRTHETAWIN_J2000
# Peak value
XPEAK_IMAGE
YPEAK_IMAGE
ALPHAPEAK_J2000
DELTAPEAK_J2000
# Basic shape info
A_IMAGE
B_IMAGE
THETA_IMAGE
A_WORLD
B_WORLD
THETA_J2000
ELONGATION
FLUX_RADIUS
# Isophotal photometry
#FLUX_ISO
#FLUXERR_ISO
MAG_ISO
MAGERR_ISO
ISOAREA_IMAGE
ISOAREAF_IMAGE
ISOAREA_WORLD
ISOAREAF_WORLD
# Aperture photometry
FLUX_APER(1)
FLUXERR_APER(1)
MAG_APER(1)
MAGERR_APER(1)
# Kron photometry
FLUX_AUTO
FLUXERR_AUTO
MAG_AUTO
MAGERR_AUTO
KRON_RADIUS
# Petrosian photometry
#FLUX_PETRO
#FLUXERR_PETRO
MAG_PETRO
MAGERR_PETRO
PETRO_RADIUS
# Basic surface brightnesses
BACKGROUND
THRESHOLD
MU_THRESHOLD
FLUX_MAX
MU_MAX
\ No newline at end of file
import os
import subprocess
import joblib
from subprocess import Popen
# try:
# import importlib.resources as pkg_resources
# except ImportError:
# # Try backported to PY<37 'importlib_resources'
# import importlib_resources as pkg_resources
class Detection(object):
def __init__(self, n_jobs=4, output_dir=None):
self.CONFIG_PATH = os.path.join(os.path.dirname(__file__), "data/")
self.n_jobs = n_jobs
if output_dir:
self.output_dir = output_dir
else:
self.output_dir = os.path.dirname(__file__)
def run_sextractor(self, image, weight, flag, psf=None, sex_config=None, sex_param=None, output_cat=None):
if output_cat is None:
basename = os.path.basename(image)
output_cat = basename.replace(".fits", "_extracted.cat")
output_cat = os.path.join(self.output_dir, output_cat)
if sex_config is None:
sex_config = os.path.join(self.CONFIG_PATH, "default.config")
if sex_param is None:
sex_param = os.path.join(self.CONFIG_PATH, "default.param")
filter_path = os.path.join(self.CONFIG_PATH, "default.conv")
nnw_path = os.path.join(self.CONFIG_PATH, "default.nnw")
sex_cmd1 = 'sex ' + image + ', ' + image
sex_cmd2 = ' -c ' + sex_config
sex_cmd3 = ' -CATALOG_NAME ' + output_cat + ' -WEIGHT_IMAGE ' + weight \
+ ' -FLAG_IMAGE ' + flag
sex_cmd4 = ' -PARAMETERS_NAME ' + sex_param + ' -FILTER_NAME ' + filter_path \
+ ' -STARNNW_NAME ' + nnw_path
sex_cmd5 = ''
if psf is not None:
sex_cmd5 += ' -PSF_NAME ' + psf
sex_cmd = sex_cmd1 + sex_cmd2 + sex_cmd3 + sex_cmd4 + sex_cmd5
print(sex_cmd)
p = Popen(sex_cmd, shell=True)
p.wait()
def run_detection(self, image_list, weight_list, flag_list, psf_list=None, sex_config=None, sex_param=None, output_cat_list=None):
assert len(image_list) == len(weight_list), "length of image list must be equal to length of weight list"
assert len(image_list) == len(flag_list), "length of image list must be equal to length of flag list"
if psf_list:
assert len(image_list) == len(psf_list), "length of image list must be equal to length of psf list"
else:
psf_list = [None for i in range(len(image_list))]
if output_cat_list:
assert len(image_list) == len(output_cat_list), "length of image list must be equal to length of output catalog path list"
else:
output_cat_list = [None for i in range(len(image_list))]
joblib.Parallel(n_jobs=self.n_jobs)(joblib.delayed(self.run_sextractor)(image=image_list[i], weight=weight_list[i], flag=flag_list[i], psf=psf_list[i], sex_config=sex_config, sex_param=sex_param, output_cat=output_cat_list[i]) for i in range(len(image_list)))
\ No newline at end of file
import argparse
import os
import yaml
from detection import Detection
def parse_args():
'''
Parse command line arguments. Many of the following
can be set in the .yaml config file as well.
'''
parser = argparse.ArgumentParser()
parser.add_argument('config_file', help='.yaml config file for injection settings.')
parser.add_argument('-c', '--config_dir', help='Directory that houses the .yaml config file.')
# parser.add_argument('-d', '--data_dir', help='Directory that houses the input data.')
# parser.add_argument('-w', '--work_dir', help='The path for output.')
return parser.parse_args()
class MeasurementPipeline(object):
def __init__(self):
# Load configuration
args = parse_args()
if args.config_dir is None:
args.config_dir = ''
args.config_dir = os.path.abspath(args.config_dir)
args.config_file = os.path.join(args.config_dir, args.config_file)
with open(args.config_file, "r") as stream:
try:
self.config = yaml.safe_load(stream)
for key, value in self.config.items():
print (key + " : " + str(value))
except yaml.YAMLError as exc:
print(exc)
with open(self.config["measurement_setting"]["input_img_list"]) as input_list:
self.img_list = [line.rstrip() for line in input_list]
with open(self.config["measurement_setting"]["input_wht_list"]) as input_list:
self.wht_list = [line.rstrip() for line in input_list]
with open(self.config["measurement_setting"]["input_flg_list"]) as input_list:
self.flg_list = [line.rstrip() for line in input_list]
if self.config["measurement_setting"]["input_psf_list"]:
with open(self.config["measurement_setting"]["input_psf_list"]) as input_list:
self.psf_list = [line.rstrip() for line in input_list]
else:
self.psf_list = None
def run_pipeline(self):
# Detection
detection = Detection(
n_jobs=self.config["measurement_setting"]["n_jobs"],
output_dir=os.path.join(
self.config["measurement_setting"]["output_dir"],
self.config["run_name"]
)
)
detection.run_detection(
image_list=self.img_list,
weight_list=self.wht_list,
flag_list=self.flg_list,
psf_list=self.psf_list,
sex_config=self.config["measurement_setting"]["sex_config"],
sex_param=self.config["measurement_setting"]["sex_param"],
)
if __name__ == "__main__":
pipeline = MeasurementPipeline()
pipeline.run_pipeline()
\ No newline at end of file
#!/bin/bash
python /share/home/fangyuedong/injection_pipeline/evaluation/aperture_noise.py \
--data_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1.fits \
--seg_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_seg.fits \
--flag_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_flg_L1.fits \
--sky_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_sky.fits \
--aper_min 20 \
--aper_max 50 \
--aper_sampling 5 \
--output_dir /share/home/fangyuedong/injection_pipeline/workspace/test_20230517
\ No newline at end of file
#!/bin/bash
python /share/home/fangyuedong/injection_pipeline/evaluation/calculate_completeness_fraction.py \
--TU_catalog /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_injected.cat \
--source_catalog /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_injected_extracted.cat \
--orig_catalog /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_cat.fits \
--image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1.fits \
--output_dir /share/home/fangyuedong/injection_pipeline/workspace/test_20230517
\ No newline at end of file
......@@ -3,7 +3,7 @@
#PBS -N INJ
#PBS -l nodes=wcl-1:ppn=60
#PBS -u fangyuedong
#PBS -j oe
####PBS -j oe
cd $PBS_O_WORKDIR
......
#!/bin/bash
python /share/home/fangyuedong/injection_pipeline/measurement_pipeline/create_mask.py \
--catalog /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_extracted.cat \
--flag_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_flg_L1.fits \
--output_dir /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/ \
--margin 10
\ No newline at end of file
#!/bin/bash
python /share/home/fangyuedong/injection_pipeline/measurement_pipeline/run_measurement.py config_injection.yaml -c /share/home/fangyuedong/injection_pipeline/config
\ No newline at end of file
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment