An error occurred while loading the file. Please try again.
-
Hu Yi authoredc9ab289f
#!/usr/bin/env python3
##############################################################
#Author Hu Yi (NAOC, huyi.naoc@gmail.com), Zhang Yajie (TJU)#
##############################################################
#Thanks to Zhang Keming who is the author of deepCR.
#Thanks to the authors of astropy and ccdproc.
#Software package dependencies, numpy, astropy, ccdproc and deepCR
#Installation dependencies on Ubuntu 20.04
#apt install python3-numpy python3-astropy python3-ccdproc python3-pip
#python3 -m pip install pytorch deepCR
#Version 0.2
#changelog
#V0.2 training method are developed and test.
import configparser
import numpy as np
from astropy.io import fits as pyfits
from astropy import units as u
from astropy.nddata import CCDData
from pathlib import Path
import ccdproc
import datetime
import sys
__all__ = ['CRMask']
class CRMask:
def __init__(self, obj, flag = None, mask = None, clean = None, sky = None, save_flag = True, update_flag = True, save_name = None, flag_suffix = 'flg', clean_suffix = 'crclean', append_flag = False, mask_suffix = 'crmask', model = 'deepCR', fill_flag = True, fill_method = 'inpainting', gpu_flag = False, config_path = 'crmask.ini', **kwargs):
"""
Instantiation of CRMask with specified model configuration.
Parameters
----------
obj : string, Path, astropy.io.fits.HDUList, numpy.ndarray, astropy.nddata.CCDData or list of string
if model is ``deepCR``, ``lacosmic``, obj is input image to be cosmic-ray masked
if model is ``deepCR_train``, obj is input training and validating images
flag : (optional) string, Path, astropy.io.fits.HDUList, numpy.ndarray or astropy.nddata.CCDData
flag image(s), default is None
mask : (optional) string or list of string
mask image(s), default is None, necessary when model is ``deepCR_train`` or ``benchmark``, otherwise, let it alone
sky : (optional) string or list of string
sky image(s), default is None, optional when model is ``deepCR_train``, otherwise, let it alone
save_flag : (optional) boolean
whether save CR mask (and cleaned) image, default is True
update_flag : (optional) boolean
whether update flag image, default is True
save_name : (optional) string
output mask, cleaned and flag filename. default is None. If save_name is None, use the filename as the input. And if save_flag is True, save_name is None, and obj is a numpy.ndarray or a astropy.nddata.CCDData, cr_mask will raise a ValueError exception
flag_suffix : (optional) string
suffix name of flag file, if flag is a numpy.ndarray or a astropy.nddata.CCDData, default is ``flg``
mask_suffix : (optional) string
suffix name of mask file, default is ``crmask``
clean_suffix : (optional) string
suffix name of cleaned file, default is ``crclean``
model : (optional) string
model type, can be ``deepCR``, ``lacosmic``, ``deepCR_train`` or ``benchmark`` default is ``deepCR``
fill_flag : (optional) boolean
whehter generate cleaned image, default is True
fill_method : (optional) string
fill method for CR contaminated pixel, can be ``inpainting``, ``meanmask``, ``meanmed``, default is ``inpainting``
gpu_flag : (optional) boolean
whether use GPU, default is False
config_path : (optional) string
configuration file path, default is ``./crmask.ini``
"""
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
self.model = model
if model == 'deepCR_train':
self.image_sets = obj
self.mask_sets = mask
self.ignore_sets = flag
self.sky_sets = sky
self.gpu_flag = gpu_flag
self.clean_sets = clean
if config_path != None:
config = configparser.ConfigParser()
config.read(config_path)
if config.has_option('global', 'gpu_flag'):
self.append_flag = config.getboolean('global', 'gpu_flag')
self.config = config
return
if model == 'benchmark':
self.res = obj
self.ref = mask
return
if isinstance(obj, str) or isinstance(obj, Path):
self.hdulist = pyfits.open(obj)
elif isinstance(obj, pyfits.HDUList):
self.hdulist = obj
elif isinstance(obj, np.ndarray) or isinstance(obj, CCDData):
hdulist = pyfits.HDUList()
primary = pyfits.PrimaryHDU()
header = primary.header
header['NEXTEND'] = 1
hdulist.append(primary)
image = pyfits.ImageHDU()
header = image.header
header['BITPIX'] = -32
header['NAXIS'] = 2
header.insert('NAXIS', ('NAXIS1', obj.shape[0]), after = True)
header.insert('NAXIS1', ('NAXIS2', obj.shape[1]), after = True)
header['EXTNAME'] = 'SCI'
header['EXTVER'] = 1
if isinstance(obj, CCDData):
image.data = np.asarray(CCDData)
else:
image.data = obj
hdulist.append(image)
self.hdulist = hdulist
else:
raise TypeError('For cosmic ray masking and cleaning, obj must be a string, or a pathlib.Path object, or a astropy.io.fits.HDUList object!')
if flag != None:
if isinstance(flag, str) or isinstance(flag, Path):
flag_hdulist = pyfits.open(flag, mode = 'update')
elif isinstance(flag, pyfits.HDUList):
flag_hdulist = flag
elif isinstance(flag, np.ndarray) or isinstance(flag, CCDData):
flag_hdulist = pyfits.HDUList()
flag_primary = pyfits.PrimaryHDU(header = self.hdulist[0].header)
flag_hdulist.append(flag_hdulist)
if isinstance(obj, CCDData):
flag_data = np.asarray(CCDData)
flag_image = pyfits.ImageHDU(data=flag_data, header=self.hdulist[1].header)
else:
flag_image = pyfits.ImageHDU(data=flag, header=self.hdulist[1].header)
flag_hdulist.append(flag_image)
else:
raise TypeError('For cosmic ray masking and cleaning, mask must be a string, or a pathlib.Path object, or a astropy.io.fits.HDUList object!')
self.flag = flag_hdulist
else:
self.flag = None
self.update_flag = update_flag
self.save_flag = save_flag
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
self.save_name = save_name
self.flag_suffix = flag_suffix
self.clean_suffix = clean_suffix
self.append_flag = append_flag
self.mask_suffix = mask_suffix
self.gpu_flag = gpu_flag
self.fill_method = fill_method
self.model = model
if config_path != None:
config = configparser.ConfigParser()
config.read(config_path)
if config.has_option('global', 'save_flag'):
self.save_flag = config.getboolean('global', 'save_flag')
if config.has_option('global', 'clean_suffix'):
self.clean_suffix = config.get('global', 'clean_suffix')
if config.has_option('global', 'append_flag'):
self.append_flag = config.getboolean('global', 'append_flag')
if config.has_option('global', 'flag_suffix'):
self.flag_suffix = config.get('global', 'flag_suffix')
if config.has_option('global', 'mask_suffix'):
self.mask_suffix = config.get('global', 'mask_suffix')
if config.has_option('global', 'gpu_flag'):
self.append_flag = config.getboolean('global', 'gpu_flag')
if config.has_option('global', 'fill_flag'):
self.fill_flag = config.getboolean('global', 'fill_flag')
if config.has_option('global', 'fill_method'):
self.fill_method = config.get('global', 'fill_method')
if config.has_option('global', 'model'):
self.model = config.get('global', 'model')
self.config = config
def cr_mask_lacosmic(self):
"""
This method is called by `cr_mask`, do NOT use it directly.
"""
config = self.config
if config.has_option('lacosmic', 'sigclip'):
sigclip = config.getfloat('lacosmic', 'sigclip')
else:
sigclip = 4.0
if config.has_option('lacosmic', 'sigfrac'):
sigfrac = config.getfloat('lacosmic', 'sigfrac')
else:
sigfrac = 0.3
if config.has_option('lacosmic', 'objlim'):
objlim = config.getfloat('lacosmic', 'objlim')
else:
objlim = 5.0
if config.has_option('lacosmic', 'gain'):
gain = config.getfloat('lacosmic', 'gain')
else:
gain = 1.0
if config.has_option('lacosmic', 'readnoise'):
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
readnoise = config.getfloat('lacosmic', 'readnoise')
else:
readnoise = 6.5
if config.has_option('lacosmic', 'satlevel'):
satlevel = config.getfloat('lacosmic', 'satlevel')
else:
satlevel = 65535.0
if config.has_option('lacosmic', 'pssl'):
pssl = config.getfloat('lacosmic', 'pssl')
else:
pssl = 0.0
if config.has_option('lacosmic', 'niter'):
niter = config.getint('lacosmic', 'niter')
else:
niter = 4
if config.has_option('lacosmic', 'sepmed'):
sepmed = config.getboolean('lacosmic', 'sepmed')
else:
sepmed = True
if config.has_option('lacosmic', 'cleantype'):
cleantype = config.get('lacosmic', 'cleantype')
else:
cleantype = self.fill_method
if config.has_option('lacosmic', 'fsmode'):
fsmode = config.get('lacosmic', 'fsmode')
else:
fsmode = 'median'
if config.has_option('lacosmic', 'psfmodel'):
psfmodel = config.get('lacosmic', 'psfmodel')
else:
psfmodel = 'gauss'
if config.has_option('lacosmic', 'psffwhm'):
psffwhm = config.getfloat('lacosmic', 'psffwhm')
else:
psffwhm = 2.5
if config.has_option('lacosmic', 'psfsize'):
psfsize = config.getint('lacosmic', 'psfsize')
else:
psfsize = 7
if config.has_option('lacosmic', 'psfk'):
psfk = config.get('lacosmic', 'psfk')
else:
psfk = None
if config.has_option('lacosmic', 'psfbeta'):
psfbeta = config.getfloat('lacosmic', 'psfbeta')
else:
psfbeta = 4.765
if config.has_option('lacosmic', 'gain_apply'):
gain_apply = config.getboolean('lacosmic', 'gain_apply')
else:
gain_apply = True
data = self.hdulist[1].data
start_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
cleaned, masked = ccdproc.cosmicray_lacosmic(data, sigclip, sigfrac, objlim, gain, readnoise, satlevel, pssl, niter, sepmed, cleantype, fsmode, psfmodel, psffwhm, psfsize, psfk, psfbeta, False, gain_apply)
end_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
masked_hdulist = pyfits.HDUList()
masked_primary = pyfits.PrimaryHDU(header=self.hdulist[0].header)
masked_hdulist.append(masked_primary)
masked = masked.astype(np.uint8)
masked_image = pyfits.ImageHDU(data=masked, header=self.hdulist[1].header)
masked_hdulist.append(masked_image)
#TODO
#add history keywords here
if self.flag != None:
self.flag[1].data |= (mask<<4)
self.flag[1].header.add_history('Use ccdproc.cosimicray_lacosmicfor cosmic ray detecting')
value = 'CRMask start at {0}'.format(start_time)
self.flag[1].header.add_history(value)
value = 'CRMask end at {0}'.format(end_time)
self.flag[1].header.add_history(value)
masked_hdulist[1].header.add_history('Use ccdproc.cosimicray_lacosmic for cosmic ray detecting')
value = 'CRMask start at {0}'.format(start_time)
masked_hdulist[1].header.add_history(value)
value = 'CRMask end at {0}'.format(end_time)
masked_hdulist[1].header.add_history(value)
if self.fill_flag:
cleaned_hdulist = pyfits.HDUList()
cleaned_primary = pyfits.PrimaryHDU(header=self.hdulist[0].header)
cleaned_hdulist.append(cleaned_primary)
cleaned_image = pyfits.ImageHDU(data=cleaned, header=self.hdulist[1].header)
cleaned_hdulist.append(cleaned_image)
cleaned_hdulist[1].header.add_history('Use ccdproc.cosimicray_lacosmic for cosmic ray detecting')
value = 'CRMask start at {0}'.format(start_time)
cleaned_hdulist[1].header.add_history(value)
value = 'CRMask end at {0}'.format(end_time)
cleaned_hdulist[1].header.add_history(value)
return masked_hdulist, cleaned_hdulist
else:
return masked_hdulist
def cr_mask_deepCR(self):
"""
This method is called by `cr_mask`, do NOT use it directly.
"""
from deepCR import deepCR
config = self.config
if config.has_option('deepCR', 'threshold'):
threshold = config.getfloat('deepCR', 'threshold')
else:
threshold = 0.5
if config.has_option('deepCR', 'inpaint'):
inpaint = config.getboolean('deepCR', 'inpaint')
else:
inpaint = True
if config.has_option('deepCR', 'binary'):
binary = config.getboolean('deepCR', 'binary')
else:
binary = True
if config.has_option('deepCR', 'patch'):
patch = config.getint('deepCR', 'patch')
else:
patch = 256
if config.has_option('deepCR', 'segment'):
segment = config.getboolean('deepCR', 'segment')
else:
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
segment = True
if config.has_option('deepCR', 'parallel'):
parallel = config.getboolean('deepCR', 'parallel')
else:
parallel = True
if config.has_option('deepCR', 'clean_model'):
clean_model = config.get('deepCR', 'clean_model')
else:
clean_model = 'ACS-WFC-F606W-2-32'
if config.has_option('deepCR', 'inpaint_model'):
inpaint_model = config.get('deepCR', 'inpaint_model')
else:
inpaint_model = 'ACS-WFC-F606W-2-32'
if config.has_option('deepCR', 'n_jobs'):
n_jobs = config.getint('deepCR', 'n_jobs')
else:
n_jobs = -1
if config.has_option('deepCR', 'hidden'):
hidden = config.getint('deepCR', 'hidden')
else:
hidden = 32
if self.gpu_flag:
model = deepCR(clean_model, inpaint_model, device = 'GPU', hidden = hidden)
else:
model = deepCR(clean_model, inpaint_model, device = 'CPU', hidden = hidden)
data = self.hdulist[1].data
masked_hdulist = pyfits.HDUList()
masked_primary = pyfits.PrimaryHDU(header=self.hdulist[0].header)
masked_hdulist.append(masked_primary)
if inpaint:
cleaned_hdulist = pyfits.HDUList()
cleaned_primary = pyfits.PrimaryHDU(header=self.hdulist[0].header)
cleaned_hdulist.append(cleaned_primary)
start_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
if binary:
if inpaint:
masked, cleaned = model.clean(data, threshold = threshold, inpaint = inpaint, segment = segment, patch = patch, parallel = parallel, n_jobs = n_jobs)
else:
masked = model.clean(data, threshold = threshold, inpaint = inpaint, segment = segment, patch = patch, parallel = parallel, n_jobs = n_jobs)
else:
if inpaint:
masked, cleaned = model.clean(data, threshold = threshold, inpaint = inpaint, binary = False, segment = segment, patch = patch, parallel = parallel, n_jobs = n_jobs)
else:
masked = model.clean(data, threshold = threshold, inpaint = inpaint, binary = False, segment = segment, patch = patch, parallel = parallel, n_jobs = n_jobs)
end_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
masked = masked.astype(np.uint8)
masked_image = pyfits.ImageHDU(data=masked, header=self.hdulist[1].header)
masked_hdulist.append(masked_image)
#TODO
#add history keywords here
if self.flag != None:
self.flag[1].data |= (mask<<4)
self.flag[1].header.add_history('Use deepCR for cosmic ray detecting')
value = 'CRMask start at {0}'.format(start_time)
self.flag[1].header.add_history(value)
value = 'CRMask end at {0}'.format(end_time)
self.flag[1].header.add_history(value)
masked_hdulist[1].header.add_history('Use deepCR for cosmic ray detecting')
value = 'CRMask start at {0}'.format(start_time)
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
masked_hdulist[1].header.add_history(value)
value = 'CRMask end at {0}'.format(end_time)
masked_hdulist[1].header.add_history(value)
value = 'deepCR mask model {0}'.format(clean_model)
masked_hdulist[1].header.add_history(value)
if inpaint:
cleaned_image = pyfits.ImageHDU(data=cleaned, header=self.hdulist[1].header)
cleaned_hdulist.append(cleaned_image)
cleaned_hdulist[1].header.add_history('Use deepCR for cosmic ray detecting')
value = 'CRMask start at {0}'.format(start_time)
cleaned_hdulist[1].header.add_history(value)
value = 'CRMask end at {0}'.format(end_time)
cleaned_hdulist[1].header.add_history(value)
value = 'deepCR inpaint model {0}'.format(inpaint_model)
cleaned_hdulist[1].header.add_history(value)
return masked_hdulist,cleaned_hdulist
else:
return masked_hdulist
def cr_mask(self):
"""
Cosmic ray detection and mask.
Returns
-------
masked : numpy.ndarray
cosmic ray masked image.
cleaned : numpy.ndarray, optional
Only returned if `fill_flag` is True
cosmic ray cleaned image.
Examples
-------
>>> from crmask import CRMask
>>> crobj = CRMask('xxxx.fits', 'deepCR')
>>> crobj.cr_mask()
"""
if self.model == 'lacosmic':
if self.fill_flag:
masked, cleaned = CRMask.cr_mask_lacosmic(self)
else:
masked = CRMask.cr_mask_lacosmic(self)
elif self.model == 'deepCR':
if self.fill_flag:
masked, cleaned = CRMask.cr_mask_deepCR(self)
else:
masked = CRMask.cr_mask_deepCR(self)
else:
raise ValueError('Cosmic ray model are not supported!')
#save the result to a file.
output = None
if self.save_flag:
if self.save_name != None:
output = self.save_name
else:
output = self.hdulist.filename()
#append to the input
if self.append_flag:
self.hdulist.append(masked[1])
if self.fill_flag:
self.hdulist.append(cleaned[1])
if output != None:
self.hdulist.writeto(output)
else:
#TODO
#raise an exception.
pass
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
else:
if output != None:
if output.split('.')[-1] == 'fits':
mask_output = output[0:-4] + self.mask_suffix + '.fits'
clean_output = output[0:-4] + self.clean_suffix + '.fits'
else:
mask_output = output + '.' + self.mask_suffix + '.fits'
clean_output = output + '.' + self.clean_suffix + '.fits'
masked.writeto(mask_output)
if self.fill_flag:
cleaned.writeto(clean_output)
else:
#TODO
#raise an exception here
pass
#update flag file.
if self.update_flag and self.flag != None:
flag_output = self.flag.filename()
if flag_output == None:
if output != None:
if output.split('.')[-1] == 'fits':
flag_output = output[0:-4] + self.flag_suffix + '.fits'
else:
flag_output = output + '.' + self.flag_suffix + '.fits'
else:
#raise an exception here.
pass
self.flag.writeto(flag_output)
if self.fill_flag:
return (masked, cleaned)
else:
return masked
def cr_train_deepCR_image_to_ndarray(self, image_sets, patch):
"""
This method is called by `cr_train`, do NOT use it directly.
"""
if isinstance(image_sets, str):
if image_sets[-4:] == '.npy':
input_image = np.load(image_sets)
elif image_sets[-5:] == '.fits':
image = pyfits.open(image_sets)
data = image[1].data
x, y = data.shape
m = x // patch
n = y // patch
start_x = np.mod(x, patch) // 2
start_y = np.mod(y, patch) // 2
input_image = np.zeros((m * n, patch, patch), dtype = data.dtype)
for i in range(m):
for j in range(n):
input_image[i * m + j] = data[start_x + i * patch:start_x + (i + 1) * patch, start_y + j * patch:start_y + (j + 1) * patch]
#input_image = data[start_x:start_x + m * patch, start_y:start_y + m * patch].reshape(m*n,patch,patch)
else:
#TODO
#raise an exception
pass
if isinstance(image_sets, list):
input_list = []
for image_file in image_sets:
if isinstance(image_file, str):
if image_file[-4:] == '.npy':
input_image = np.load(image_file)
elif image_file[-5:] == '.fits':
image = pyfits.open(image_file)
data = image[1].data
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
x, y = data.shape
m = x // patch
n = y // patch
start_x = np.mod(x, patch) // 2
start_y = np.mod(y, patch) // 2
input_image = np.zeros((m * n, patch, patch), dtype = data.dtype)
for i in range(m):
for j in range(n):
input_image[i * m + j] = data[start_x + i * patch:start_x + (i + 1) * patch, start_y + j * patch:start_y + (j + 1) * patch]
#input_image = data[start_x:start_x + m * patch, start_y:start_y + m * patch].reshape(m*n,patch,patch)
input_list.append(input_image)
else:
#TODO
#raise an exception
pass
else:
#TODO
#raise an exception
pass
input_image = np.concatenate(input_list)
return input_image
def cr_train_deepCR_prepare_data(self, patch):
"""
This method is called by `cr_train`, do NOT use it directly.
"""
if self.image_sets != None:
self.training_image = CRMask.cr_train_deepCR_image_to_ndarray(self, self.image_sets, patch)
np.save('image.npy', self.training_image)
else:
raise ValueError('training image should not be None')
if self.mask_sets != None:
self.training_mask = CRMask.cr_train_deepCR_image_to_ndarray(self, self.mask_sets, patch).astype(np.int16)
np.save('mask.npy', self.training_mask)
else:
raise ValueError('mask image should not be None')
if self.ignore_sets != None:
self.training_ignore = CRMask.cr_train_deepCR_image_to_ndarray(self, self.flag, patch)
else:
self.training_ignore = None
if self.sky_sets != None:
self.training_sky = CRMask.cr_train_deepCR_image_to_ndarray(self, self.sky, patch)
else:
self.training_sky = None
def cr_train_deepCR(self):
"""
This method is called by `cr_train`, do NOT use it directly.
"""
from deepCR import train
config = self.config
if config.has_option('deepCR', 'aug_sky'):
aug_sky = np.array(config.get('deepCR', 'aug_sky').split()).astype(np.float32)
aug_sky0 = aug_sky[0]
aug_sky1 = aug_sky[1]
else:
aug_sky0 = 0.
aug_sky1 = 0.
if config.has_option('deepCR', 'model_name'):
model_name = config.get('deepCR', 'model_name')
else:
model_name = 'model'
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
if config.has_option('deepCR', 'hidden'):
hidden = config.getint('deepCR', 'hidden')
else:
hidden = 50
if config.has_option('deepCR', 'epoch'):
epoch = config.getint('deepCR', 'epoch')
else:
epoch = 50
if config.has_option('deepCR', 'patch'):
patch = config.getint('deepCR', 'patch')
else:
patch = 256
if config.has_option('deepCR', 'batch'):
batch = config.getint('deepCR', 'batch')
else:
batch = 16
if config.has_option('deepCR', 'lr'):
lr = config.getfloat('deepCR', 'lr')
else:
lr = 0.005
if config.has_option('deepCR', 'auto_lr_decay'):
auto_lr_decay = config.getboolean('deepCR', 'auto_lr_decay')
else:
auto_lr_decay = True
if config.has_option('deepCR', 'lr_decay_patience'):
lr_decay_patience = config.getint('deepCR', 'lr_decay_patience')
else:
lr_decay_patience = 4
if config.has_option('deepCR', 'lr_decay_factor'):
lr_decay_factor = config.getfloat('deepCR', 'lr_decay_factor')
else:
lr_decay_factor = 0.1
if config.has_option('deepCR', 'save_after'):
save_after = config.getfloat('deepCR', 'save_after')
else:
save_after = 100000
if config.has_option('deepCR', 'plot_every'):
plot_every = config.getint('deepCR', 'plot_every')
else:
plot_every = 10
if config.has_option('deepCR', 'verbose'):
verbose = config.getboolean('deepCR', 'verbose')
else:
verbose = True
if config.has_option('deepCR', 'use_tqdm'):
use_tqdm = config.getboolean('deepCR', 'use_tqdm')
else:
use_tqdm = False
if config.has_option('deepCR', 'use_tqdm_notebook'):
use_tqdm_notebook = config.getboolean('deepCR', 'use_tqdm_notebook')
else:
use_tqdm_notebook = False
if config.has_option('deepCR', 'directory'):
directory = config.get('deepCR', 'directory')
else:
directory = './'
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
CRMask.cr_train_deepCR_prepare_data(self, patch)
print('Loading data completes!')
trainer = train(self.training_image, self.training_mask, self.training_ignore, self.training_sky, [aug_sky0, aug_sky1], model_name, hidden, self.gpu_flag, epoch, batch, lr, auto_lr_decay, lr_decay_patience, lr_decay_factor, save_after, plot_every, verbose, use_tqdm, use_tqdm_notebook, directory)
print('Start training!')
trainer.train()
trainer.save()
print('Training completes!')
def cr_train(self):
"""
Training models, only support ``deepCR_train``. It will generate pytorch's *.pth file.
The train is very painful and time consuming, do NOT use it in pipelines.
Returns
-------
No returns
Examples
-------
>>> from crmask import CRMask
>>> imglist = ['MSC_MS_210525170000_100000010_23_sci.fits', 'MSC_MS_210525171000_100000011_23_sci.fits', 'MSC_MS_210525172000_100000012_23_sci.fits', 'MSC_MS_210525173000_100000013_23_sci.fits', 'MSC_MS_210525174000_100000014_23_sci.fits', 'MSC_MS_210525175000_100000015_23_sci.fits', 'MSC_MS_210525180000_100000016_23_sci.fits', 'MSC_MS_210525181000_100000017_23_sci.fits', 'MSC_MS_210525182000_100000018_23_sci.fits', 'MSC_MS_210525183000_100000019_23_sci.fits']
>>> masklist = ['MSC_CRM_210525170000_100000010_23_raw.fits', 'MSC_CRM_210525171000_100000011_23_raw.fits', 'MSC_CRM_210525172000_100000012_23_raw.fits', 'MSC_CRM_210525173000_100000013_23_raw.fits', 'MSC_CRM_210525174000_100000014_23_raw.fits', 'MSC_CRM_210525175000_100000015_23_raw.fits', 'MSC_CRM_210525180000_100000016_23_raw.fits', 'MSC_CRM_210525181000_100000017_23_raw.fits', 'MSC_CRM_210525182000_100000018_23_raw.fits', 'MSC_CRM_210525183000_100000019_23_raw.fits']
>>> trainobj = CRMask(imglist, mask = masklist, model = 'deepCR_train')
>>> trainobj.cr_train()
"""
if self.model == 'deepCR_train':
CRMask.cr_train_deepCR(self)
else:
raise ValueError('Unsupported training model')
def cr_benchmark(self):
"""
Do NOT use this method, just for internal test.
"""
if isinstance(self.res, str) or isinstance(self.res, Path):
hdulist = pyfits.open(self.res)
res = hdulist[1].data
elif isinstance(self.res, pyfits.HDUList):
res = hdulist[1].data
elif isinstance(self.res, np.ndarray):
res = self.res
elif isinstance(self.res, CCDData):
res = np.asarray(self.res)
else:
raise TypeError('Input result image type error')
if isinstance(self.ref, str) or isinstance(self.ref, Path):
hdulist = pyfits.open(self.ref)
ref = hdulist[1].data
elif isinstance(self.ref, pyfits.HDUList):
ref = hdulist[1].data
elif isinstance(self.ref, np.ndarray):
ref = self.ref
elif isinstance(self.ref, CCDData):
ref = np.asarray(self.ref)
else:
raise TypeError('Input reference image type error')
if res.shape != ref.shape:
raise TypeError('size of input result and reference image are not the same size')
ref_crpix = np.count_nonzero(ref)
res_crpix = np.count_nonzero(res)
true_positive = np.count_nonzero(res&ref)
false_negtive = np.count_nonzero((res^ref)&ref)
return true_positive / ref_crpix, false_negtive / res_crpix