Chip.py 35.2 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
import galsim
import os
import numpy as np
from astropy.table import Table
from numpy.random import Generator, PCG64
Fang Yuedong's avatar
Fang Yuedong committed
6
7
from astropy.io import fits
from datetime import datetime
Fang Yuedong's avatar
Fang Yuedong committed
8

9
10
11
12
from ObservationSim.Instrument.Chip import Effects as effects
from ObservationSim.Instrument.FocalPlane import FocalPlane
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader

Fang Yuedong's avatar
Fang Yuedong committed
13
14
15
16
17
18
19
20
21
22
class Chip(FocalPlane):
    def __init__(self, chipID, ccdEffCurve_dir, CRdata_dir, normalize_dir=None, sls_dir=None, config=None, treering_func=None):
        # Get focal plane (instance of paraent class) info
        # TODO: use chipID to config individual chip?
        super().__init__()
        self.npix_x = 9216
        self.npix_y = 9232
        self.read_noise = 5.0   # e/pix
        self.dark_noise = 0.02  # e/pix/s
        self.pix_scale  = 0.074 # pixel scale
Fang Yuedong's avatar
Fang Yuedong committed
23
24
        self.gain = float(config["ins_effects"]["gain"])
        self.bias_level = float(config["ins_effects"]["bias_level"])
Fang Yuedong's avatar
Fang Yuedong committed
25
        self.overscan   = 1000
Fang Yuedong's avatar
Fang Yuedong committed
26
27
28
29
        self.exptime    = float(config["obs_setting"]["exp_time"])   # second
        self.dark_exptime = float(config["ins_effects"]['dark_exptime'])
        self.flat_exptime = float(config["ins_effects"]['flat_exptime'])
        self.readout_time = float(config["ins_effects"]['readout_time'])
Fang Yuedong's avatar
Fang Yuedong committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

        # A chip ID must be assigned
        self.chipID = int(chipID)
        self._getChipRowCol()

        # Get corresponding filter info
        self.filter_id, self.filter_type = self.getChipFilter()
        self.survey_type = self._getSurveyType()

        # Get boundary (in pix)
        self.bound = self.getChipLim()
        self.ccdEffCurve_dir = ccdEffCurve_dir
        self.CRdata_dir = CRdata_dir
        self.normalize_dir = normalize_dir
        self.sls_dir=sls_dir
        # self.sls_conf = os.path.join(self.sls_dir, self.getChipSLSConf())
        slsconfs = self.getChipSLSConf()
        if np.size(slsconfs) == 1:
            self.sls_conf = [os.path.join(self.sls_dir, slsconfs)]
        else:
            self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
        
        if self.normalize_dir is not None:
            self._getNormF()
        self.effCurve = self._getChipEffCurve(self.filter_type)
        self._getCRdata()

        # Define the sensor
Fang Yuedong's avatar
Fang Yuedong committed
58
        if config["ins_effects"]["bright_fatter"] == True and self.survey_type == "photometric":
Fang Yuedong's avatar
Fang Yuedong committed
59
            self.sensor = galsim.SiliconSensor(strength=config["ins_effects"]["df_strength"], treering_func=treering_func)
Fang Yuedong's avatar
Fang Yuedong committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        else:
            self.sensor = galsim.Sensor()

    # def _getChipRowCol(self):
    #     self.rowID = (self.chipID - 1) // 5 + 1
    #     self.colID = (self.chipID - 1) % 5 + 1
    def _getChipRowCol(self):
        self.rowID, self.colID = self.getChipRowCol(self.chipID)

    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID

    def _getSurveyType(self):
        if self.filter_type in ["GI", "GV", "GU"]:
            return "spectroscopic"
        else:
            return "photometric"

    def _getNormF(self):
        self.normF_star = Table.read(os.path.join(self.normalize_dir, 'SLOAN_SDSS.g.fits'))
        self.normF_galaxy = Table.read(os.path.join(self.normalize_dir, 'lsst_throuput_g.fits'))

    def _getChipEffCurve(self, filter_type):
        # CCD efficiency curves
        if filter_type in ['nuv', 'u', 'GU']: filename = 'UV0.txt'
        if filter_type in ['g', 'r', 'GV']: filename = 'Astro_MB.txt'
        if filter_type in ['i', 'z', 'y', 'GI']: filename = 'Basic_NIR.txt'
        # Mirror efficiency:
        if filter_type == 'nuv': mirror_eff = 0.54
        if filter_type == 'u': mirror_eff = 0.68
        if filter_type in ['g', 'r', 'i', 'z', 'y']: mirror_eff = 0.8
        if filter_type in ['GU', 'GV', 'GI']: mirror_eff = 1. # Not sure if this is right
        
        path = os.path.join(self.ccdEffCurve_dir, filename)
        table = Table.read(path, format='ascii')
        throughput = galsim.LookupTable(x=table['col1'], f=table['col2']*mirror_eff, interpolant='linear')
        bandpass = galsim.Bandpass(throughput, wave_type='nm')
        return bandpass

    def _getCRdata(self):
        path = os.path.join(self.CRdata_dir, 'wfc-cr-attachpixel.dat')
        self.attachedSizes = np.loadtxt(path)

    def getChipFilter(self, chipID=None, filter_layout=None):
        """Return the filter index and type for a given chip #(chipID)
        """
        filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI"]
        # TODO: maybe a more elegent way other than hard coded?
        # e.g. use something like a nested dict:
        if filter_layout is not None:
            return filter_layout[chipID][0], filter_layout[chipID][1]
        if chipID == None:
            chipID = self.chipID

        # updated configurations
        # if chipID>30 or chipID<1: raise ValueError("!!! Chip ID: [1,30]")
        # if chipID in [10, 15, 16, 21]: filter_type = 'y'
        # if chipID in [11, 20]:         filter_type = "z"
        # if chipID in [9, 22]:           filter_type = "i"
        # if chipID in [12, 19]:         filter_type = "u"
        # if chipID in [7, 24]:         filter_type = "r"
        # if chipID in [14, 13, 18, 17]:    filter_type = "nuv"
        # if chipID in [8, 23]:         filter_type = "g"
        # if chipID in [6, 5, 25, 26]:    filter_type = "GI"
        # if chipID in [27, 30, 1, 4]:    filter_type = "GV"
        # if chipID in [28, 29, 2, 3]:    filter_type = "GU"
        if chipID in [6, 15, 16, 25]: filter_type = "y"
        if chipID in [11, 20]:         filter_type = "z"
        if chipID in [7, 24]:           filter_type = "i"
        if chipID in [14, 17]:         filter_type = "u"
        if chipID in [9, 22]:         filter_type = "r"
        if chipID in [12, 13, 18, 19]:    filter_type = "nuv"
        if chipID in [8, 23]:         filter_type = "g"
        if chipID in [1, 10, 21, 30]:    filter_type = "GI"
        if chipID in [2, 5, 26, 29]:    filter_type = "GV"
        if chipID in [3, 4, 27, 28]:    filter_type = "GU"
        filter_id = filter_type_list.index(filter_type)

        return filter_id, filter_type

    def getChipLim(self, chipID=None):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
        NOTE: There are 5*4 CCD chips in the focus plane for photometric observation.
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """
        # if chipID == None:
        #     chipID = self.chipID
        
        # gx = self.npix_gap_x
        # gy1, gy2 = self.npix_gap_y

        # # xlim of a given ccd chip
        # xrem = (chipID-1)%self.nchip_x - self.nchip_x // 2
        # xcen = (self.npix_x + gx) * xrem
        # nx0 = xcen - self.npix_x//2 + 1
        # nx1 = xcen + self.npix_x//2

        # # ylim of a given ccd chip
        # yrem = 2*((chipID-1)//self.nchip_x) - (self.nchip_y-1)
        # ycen = (self.npix_y//2 + gy1//2) * yrem
        # if chipID <= 6: ycen = (self.npix_y//2 + gy1//2) * yrem - (gy2-gy1)
        # if chipID >= 25: ycen = (self.npix_y//2 + gy1//2) * yrem + (gy2-gy1)
        # ny0 = ycen - self.npix_y//2 + 1
        # ny1 = ycen + self.npix_y//2

        if chipID == None:
            chipID = self.chipID
            rowID, colID = self.rowID, self.colID
        else:
            rowID, colID = self.getChipRowCol(chipID)
        gx1, gx2 = self.npix_gap_x
        gy = self.npix_gap_y

        # xlim of a given CCD chip
        xrem = 2*(colID - 1) - (self.nchip_x - 1)
        xcen = (self.npix_x//2 + gx1//2) * xrem
        if chipID >= 26 or chipID == 21:
            xcen = (self.npix_x//2 + gx1//2) * xrem - (gx2-gx1)
        if chipID <= 5 or chipID == 10:
            xcen = (self.npix_x//2 + gx1//2) * xrem + (gx2-gx1)
        nx0 = xcen - self.npix_x//2 + 1
        nx1 = xcen + self.npix_x//2

        # ylim of a given CCD chip
        yrem = (rowID - 1) - self.nchip_y // 2
        ycen = (self.npix_y + gy) * yrem
        ny0 = ycen - self.npix_y//2 + 1
        ny1 = ycen + self.npix_y//2

        return galsim.BoundsD(nx0-1, nx1-1, ny0-1, ny1-1)


    def getSkyCoverage(self, wcs):
        return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)


    def getSkyCoverageEnlarged(self, wcs, margin=0.5):
        """The enlarged sky coverage of the chip
        """
        margin /= 60.0
        bound = self.getSkyCoverage(wcs)
        return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)

    def isContainObj(self, ra_obj, dec_obj, wcs=None, margin=1):
        # magin in number of pix
        if wcs is None:
            wcs = self.img.wcs
        pos_obj = wcs.toImage(galsim.CelestialCoord(ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
        xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
        ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
        if (pos_obj.x - xmin) * (pos_obj.x - xmax) > 0.0 or (pos_obj.y - ymin) * (pos_obj.y - ymax) > 0.0:
            return False
        return True

    def getChipNoise(self, exptime=150.0):
        noise = self.dark_noise * exptime + self.read_noise**2
        return noise

    def getChipSLSConf(self):
        confFile = ''
        if self.chipID == 1: confFile = ['CSST_GI2.conf', 'CSST_GI1.conf']
        if self.chipID == 2: confFile = ['CSST_GV4.conf', 'CSST_GV3.conf']
        if self.chipID == 3: confFile = ['CSST_GU2.conf', 'CSST_GU1.conf']
        if self.chipID == 4: confFile = ['CSST_GU4.conf', 'CSST_GU3.conf']
        if self.chipID == 5: confFile = ['CSST_GV2.conf', 'CSST_GV1.conf']
        if self.chipID == 10: confFile = ['CSST_GI4.conf', 'CSST_GI3.conf']
        if self.chipID == 21: confFile = ['CSST_GI6.conf', 'CSST_GI5.conf']
        if self.chipID == 26: confFile = ['CSST_GV8.conf', 'CSST_GV7.conf']
        if self.chipID == 27: confFile = ['CSST_GU6.conf', 'CSST_GU5.conf']
        if self.chipID == 28: confFile = ['CSST_GU8.conf', 'CSST_GU7.conf']
        if self.chipID == 29: confFile = ['CSST_GV6.conf', 'CSST_GV5.conf']
        if self.chipID == 30: confFile = ['CSST_GI8.conf', 'CSST_GI7.conf']
        return confFile

Fang Yuedong's avatar
Fang Yuedong committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    def generateHeader(self, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, exptime=150.):
        h_prim = generatePrimaryHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            pointNum = str(pointing_ID),
            ra=ra_cen, 
            dec=dec_cen, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            date=date_obs,
            time_obs=time_obs,
            im_type = im_type,
            exptime=exptime
            )
        h_ext = generateExtensionHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            ra=ra_cen, 
            dec=dec_cen, 
            pa=img_rot.deg, 
            gain=self.gain, 
            readout=self.read_noise, 
            dark=self.dark_noise, 
            saturation=90000, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            extName='raw')
        return h_prim, h_ext

    def outputCal(self, img, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, output_dir, exptime=150.):
        h_prim, h_ext = self.generateHeader(
            ra_cen=ra_cen,
            dec_cen=dec_cen,
            img_rot=img_rot,
            im_type=im_type,
            pointing_ID=pointing_ID,
            date_obs=date_obs,
            time_obs=time_obs,
            exptime=exptime)
        hdu1 = fits.PrimaryHDU(header=h_prim)
        hdu2 = fits.ImageHDU(img.array, header=h_ext)
        hdu1 = fits.HDUList([hdu1, hdu2])
        fname = os.path.join(output_dir, h_prim['FILENAME']+'.fits')
        hdu1.writeto(fname, output_verify='ignore', overwrite=True)

287
    def addEffects(self, config, img, chip_output, filt, ra_cen, dec_cen, img_rot, exptime=150., pointing_ID=0, timestamp_obs=1621915200, pointing_type='MS', sky_map=None, tel=None):
Fang Yuedong's avatar
Fang Yuedong committed
288
289
290
291
292
293
294
295
        SeedGainNonuni=int(config["random_seeds"]["seed_gainNonUniform"])
        SeedBiasNonuni=int(config["random_seeds"]["seed_biasNonUniform"])
        SeedRnNonuni = int(config["random_seeds"]["seed_rnNonUniform"])
        SeedBadColumns = int(config["random_seeds"]["seed_badcolumns"])
        SeedDefective = int(config["random_seeds"]["seed_defective"])
        SeedCosmicRay = int(config["random_seeds"]["seed_CR"])
        fullwell = int(config["ins_effects"]["full_well"])
        if config["ins_effects"]["add_hotpixels"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
296
297
298
            BoolHotPix = True
        else:
            BoolHotPix = False
Fang Yuedong's avatar
Fang Yuedong committed
299
        if config["ins_effects"]["add_deadpixels"]== True:
Fang Yuedong's avatar
Fang Yuedong committed
300
301
302
303
            BoolDeadPix = True
        else:
            BoolDeadPix = False

304
        # Add sky background
Zhang Xin's avatar
Zhang Xin committed
305
        if sky_map is None:
306
307
308
309
310
            sky_map = filt.getSkyNoise(exptime=self.exptime)
        elif img.array.shape != sky_map.shape:
            raise ValueError("The shape img and sky_map must be equal.")
        elif tel is not None: # If sky_map is given in flux
            sky_map = sky_map * tel.pupil_area * self.exptime
Fang Yuedong's avatar
Fang Yuedong committed
311
        if config["ins_effects"]["add_back"] == True:
312
313
314
            img += sky_map
        del sky_map

Fang Yuedong's avatar
Fang Yuedong committed
315
        # Apply flat-field large scale structure for one chip
Fang Yuedong's avatar
Fang Yuedong committed
316
        if config["ins_effects"]["flat_fielding"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
317
318
319
320
            print("  Creating and applying Flat-Fielding", flush=True)
            print(img.bounds, flush=True)
            flat_img = effects.MakeFlatSmooth(
                img.bounds, 
Fang Yuedong's avatar
Fang Yuedong committed
321
                int(config["random_seeds"]["seed_flat"]))
Fang Yuedong's avatar
Fang Yuedong committed
322
323
324
            flat_normal = flat_img / np.mean(flat_img.array)
            img *= flat_normal
            del flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
325
            if config["output_setting"]["flat_output"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
326
327
328
                del flat_img

        # Apply Shutter-effect for one chip
Fang Yuedong's avatar
Fang Yuedong committed
329
        if config["ins_effects"]["shutter_effect"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
330
331
332
            print("  Apply shutter effect", flush=True)
            shuttimg = effects.ShutterEffectArr(img, t_shutter=1.3, dist_bearing=735, dt=1E-3)    # shutter effect normalized image for this chip
            img *= shuttimg
Fang Yuedong's avatar
Fang Yuedong committed
333
            if config["output_setting"]["shutter_output"] == True:    # output 16-bit shutter effect image with pixel value <=65535
Fang Yuedong's avatar
Fang Yuedong committed
334
335
336
337
338
                shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
                shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" % (chip_output.subdir, self.chipID))
                del shutt_gsimg
            del shuttimg

339
        # Add Poisson noise
Fang Yuedong's avatar
Fang Yuedong committed
340
        seed = int(config["random_seeds"]["seed_poisson"]) + pointing_ID*30 + self.chipID
341
342
343
        rng_poisson = galsim.BaseDeviate(seed)
        poisson_noise = galsim.PoissonNoise(rng_poisson, sky_level=0.)
        img.addNoise(poisson_noise)
Fang Yuedong's avatar
Fang Yuedong committed
344
345

        # Add cosmic-rays
Fang Yuedong's avatar
Fang Yuedong committed
346
        if config["ins_effects"]["cosmic_ray"] == True and pointing_type=='MS':
Fang Yuedong's avatar
Fang Yuedong committed
347
            print("  Adding Cosmic-Ray", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
348
            cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
349
                xLen=self.npix_x, yLen=self.npix_y, 
350
                exTime=self.exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
351
                cr_pixelRatio=0.003*(self.exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
352
353
                gain=self.gain, 
                attachedSizes=self.attachedSizes,
Fang Yuedong's avatar
Fang Yuedong committed
354
                seed=SeedCosmicRay+pointing_ID*30+self.chipID)   # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
355
356
357
358
            img += cr_map
            cr_map[cr_map > 65535] = 65535
            cr_map[cr_map < 0] = 0
            crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
Fang Yuedong's avatar
Fang Yuedong committed
359
            del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
360
            # crmap_gsimg.write("%s/CosmicRay_%s_1.fits" % (chip_output.subdir, self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            # crmap_gsimg.write("%s/CosmicRay_%s.fits" % (chip_output.subdir, self.chipID))
            datetime_obs = datetime.fromtimestamp(timestamp_obs)
            date_obs = datetime_obs.strftime("%y%m%d")
            time_obs = datetime_obs.strftime("%H%M%S")
            self.outputCal(
                img=crmap_gsimg,
                ra_cen=ra_cen,
                dec_cen=dec_cen,
                img_rot=img_rot,
                im_type='CRS',
                pointing_ID=pointing_ID,
                date_obs=date_obs,
                time_obs=time_obs,
                output_dir=chip_output.subdir,
Fang Yuedong's avatar
Fang Yuedong committed
375
                exptime=self.exptime)
Fang Yuedong's avatar
Fang Yuedong committed
376
377
            del crmap_gsimg

378
        # Apply PRNU effect and output PRNU flat file:
Fang Yuedong's avatar
Fang Yuedong committed
379
        if config["ins_effects"]["prnu_effect"] == True:
380
381
382
383
384
            print("  Applying PRNU effect", flush=True)
            prnu_img = effects.PRNU_Img(
                xsize=self.npix_x, 
                ysize=self.npix_y, 
                sigma=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
385
                seed=int(config["random_seeds"]["seed_prnu"]+self.chipID))
386
            img *= prnu_img
Fang Yuedong's avatar
Fang Yuedong committed
387
            if config["output_setting"]["prnu_output"] == True:
388
                prnu_img.write("%s/FlatImg_PRNU_%s.fits" % (chip_output.subdir,self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
389
            if config["output_setting"]["flat_output"] == False:
390
391
392
                del prnu_img

        # Add dark current
Fang Yuedong's avatar
Fang Yuedong committed
393
        if config["ins_effects"]["add_dark"] == True:
394
395
396
397
398
399
400
401
402
            dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng_poisson, self.dark_noise*(self.exptime+0.5*self.readout_time)))
            img.addNoise(dark_noise)

        # Add Hot Pixels or/and Dead Pixels
        rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
        badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
        img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

        # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
403
        if config["ins_effects"]["add_badcolumns"] == True:
404
405
            img = effects.BadColumns(img, seed=SeedBadColumns, chipid=self.chipID)

Fang Yuedong's avatar
Fang Yuedong committed
406
        # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
407
        if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
408
409
            print("  Adding Bias level and 16-channel non-uniformity")
            img = effects.AddBiasNonUniform16(img, 
Fang Yuedong's avatar
Fang Yuedong committed
410
                bias_level=float(config["ins_effects"]["bias_level"]), 
Fang Yuedong's avatar
Fang Yuedong committed
411
412
413
                nsecy = 2, nsecx=8, 
                seed=SeedBiasNonuni+self.chipID)

414
        # Apply Nonlinearity on the chip image
Fang Yuedong's avatar
Fang Yuedong committed
415
        if config["ins_effects"]["non_linear"] == True:
416
417
418
419
            print("  Applying Non-Linearity on the chip image", flush=True)
            img = effects.NonLinearity(GSImage=img, beta1=5.e-7, beta2=0)

        # Apply CCD Saturation & Blooming
Fang Yuedong's avatar
Fang Yuedong committed
420
        if config["ins_effects"]["saturbloom"] == True:
421
422
423
424
            print("  Applying CCD Saturation & Blooming")
            img = effects.SaturBloom(GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)

        # Apply CTE Effect
Fang Yuedong's avatar
Fang Yuedong committed
425
        if config["ins_effects"]["cte_trail"] == True:
426
427
428
429
            print("  Apply CTE Effect")
            img = effects.CTE_Effect(GSImage=img, threshold=27)

        # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
430
431
        if config["ins_effects"]["add_readout"] == True:
            seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
            rng_readout = galsim.BaseDeviate(seed)
            readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
            img.addNoise(readout_noise)


        # Apply Gain & Quantization
        print("  Applying Gain (and 16 channel non-uniformity) & Quantization", flush=True)
        img = effects.ApplyGainNonUniform16(
            img, gain=self.gain, 
            nsecy = 2, nsecx=8, 
            seed=SeedGainNonuni+self.chipID)
        img.array[img.array > 65535] = 65535
        img.replaceNegative(replace_value=0)
        img.quantize()

        ######################################################################################
        # Output images for calibration pointing
        ######################################################################################
Fang Yuedong's avatar
Fang Yuedong committed
450
        # Bias output
Fang Yuedong's avatar
Fang Yuedong committed
451
        if config["output_setting"]["bias_output"] == True and pointing_type=='CAL':
Fang Yuedong's avatar
Fang Yuedong committed
452
            print("  Output N frame Bias files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
453
            NBias = int(config["ins_effects"]["NBias"])
Fang Yuedong's avatar
Fang Yuedong committed
454
455
456
            for i in range(NBias):
                BiasCombImg, BiasTag = effects.MakeBiasNcomb(
                    self.npix_x, self.npix_y, 
Fang Yuedong's avatar
Fang Yuedong committed
457
                    bias_level=float(config["ins_effects"]["bias_level"]), 
Fang Yuedong's avatar
Fang Yuedong committed
458
459
                    ncombine=1, read_noise=self.read_noise, gain=1,
                    seed=SeedBiasNonuni+self.chipID)
Fang Yuedong's avatar
Fang Yuedong committed
460
461
462
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
463
464
                            xLen=self.npix_x, yLen=self.npix_y, 
                            exTime=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
465
                            cr_pixelRatio=0.003*(0.01+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
466
467
468
469
470
471
472
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+1)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
                    BiasCombImg += cr_map
                    del cr_map

Fang Yuedong's avatar
Fang Yuedong committed
473
                # Non-Linearity for Bias
Fang Yuedong's avatar
Fang Yuedong committed
474
                if config["ins_effects"]["non_linear"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
475
                    print("  Applying Non-Linearity on the Bias image", flush=True)
476
477
478
                    BiasCombImg = effects.NonLinearity(GSImage=BiasCombImg, beta1=5.e-7, beta2=0)

                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
479
480
                if config["ins_effects"]["add_badcolumns"] == True:
                    BiasCombImg = effects.BadColumns(BiasCombImg-float(config["ins_effects"]["bias_level"])+5, seed=SeedBadColumns, chipid=self.chipID) + float(config["ins_effects"]["bias_level"])-5
Fang Yuedong's avatar
Fang Yuedong committed
481
482
483
484
485
486

                BiasCombImg = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
                    seed=SeedGainNonuni+self.chipID)
                # BiasCombImg = effects.AddOverscan(
                #     BiasCombImg, 
Fang Yuedong's avatar
Fang Yuedong committed
487
                #     overscan=float(config["ins_effects"]["bias_level"])-2, gain=self.gain, 
Fang Yuedong's avatar
Fang Yuedong committed
488
489
490
491
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                BiasCombImg.replaceNegative(replace_value=0)
                BiasCombImg.quantize()
                BiasCombImg = galsim.ImageUS(BiasCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
492
493
494
495
                # BiasCombImg.write("%s/BiasImg_%s_%s_%s.fits" % (chip_output.subdir, BiasTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
496
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
497
498
499
500
501
502
503
504
505
506
507
                self.outputCal(
                    img=BiasCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
                    im_type='CLB',
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=0.0)
Fang Yuedong's avatar
Fang Yuedong committed
508
509
510
            del BiasCombImg

        # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
Fang Yuedong's avatar
Fang Yuedong committed
511
        if config["output_setting"]["flat_output"] == True and pointing_type=='CAL':
Fang Yuedong's avatar
Fang Yuedong committed
512
            print("  Output N frame Flat-Field files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
513
514
            NFlat = int(config["ins_effects"]["NFlat"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
515
516
                biaslevel = self.bias_level
                overscan = biaslevel-2
Fang Yuedong's avatar
Fang Yuedong committed
517
            elif config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
518
519
                biaslevel = 0
                overscan = 0
520
            darklevel = self.dark_noise*(self.flat_exptime+0.5*self.readout_time)
Fang Yuedong's avatar
Fang Yuedong committed
521
522
523
524
525
526
527
528
            for i in range(NFlat):
                FlatSingle = flat_img * prnu_img + darklevel
                FlatCombImg, FlatTag = effects.MakeFlatNcomb(
                    flat_single_image=FlatSingle, 
                    ncombine=1, 
                    read_noise=self.read_noise,
                    gain=1, 
                    overscan=overscan, 
529
                    biaslevel=0,
Fang Yuedong's avatar
Fang Yuedong committed
530
531
                    seed_bias=SeedDefective+self.chipID
                    )
Fang Yuedong's avatar
Fang Yuedong committed
532
533
534
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
535
                            xLen=self.npix_x, yLen=self.npix_y, 
536
                            exTime=self.flat_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
537
                            cr_pixelRatio=0.003*(self.flat_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
538
539
540
541
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+3)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
542
                    FlatCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
543
                    del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
544

Fang Yuedong's avatar
Fang Yuedong committed
545
                if config["ins_effects"]["non_linear"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
546
                    print("  Applying Non-Linearity on the Flat image", flush=True)
547
                    FlatCombImg = effects.NonLinearity(GSImage=FlatCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
548

Fang Yuedong's avatar
Fang Yuedong committed
549
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
550
551
                    FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)

552
553
554
555
556
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                FlatCombImg = effects.DefectivePixels(FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
557
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
558
                if config["ins_effects"]["add_badcolumns"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
559
560
                    FlatCombImg = effects.BadColumns(FlatCombImg, seed=SeedBadColumns, chipid=self.chipID)

561
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
562
                if config["ins_effects"]["add_bias"] == True:
563
                    print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
564
                    # img += float(config["ins_effects"]["bias_level"])
565
566
567
568
569
570
                    FlatCombImg = effects.AddBiasNonUniform16(FlatCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
                        seed=SeedBiasNonuni+self.chipID)
                
                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
571
572
                if config["ins_effects"]["add_readout"] == True:
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
573
574
575
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    FlatCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
576
577
578
579
580
581
582
583

                FlatCombImg = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
                    seed=SeedGainNonuni+self.chipID)
                # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
                FlatCombImg.replaceNegative(replace_value=0)
                FlatCombImg.quantize()
                FlatCombImg = galsim.ImageUS(FlatCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
584
585
586
587
                # FlatCombImg.write("%s/FlatImg_%s_%s_%s.fits" % (chip_output.subdir, FlatTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
588
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
589
590
591
592
593
594
595
596
597
598
599
600
                self.outputCal(
                    img=FlatCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
                    im_type='CLF',
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.flat_exptime)

Fang Yuedong's avatar
Fang Yuedong committed
601
602
603
604
605
606
607
            del FlatCombImg, FlatSingle, prnu_img
            # flat_img.replaceNegative(replace_value=0)
            # flat_img.quantize()
            # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
            del flat_img

        # Export Dark current images
Fang Yuedong's avatar
Fang Yuedong committed
608
        if config["output_setting"]["dark_output"] == True and pointing_type=='CAL':
Fang Yuedong's avatar
Fang Yuedong committed
609
            print("  Output N frame Dark Current files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
610
611
            NDark = int(config["ins_effects"]["NDark"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
612
613
                biaslevel = self.bias_level
                overscan = biaslevel-2
Fang Yuedong's avatar
Fang Yuedong committed
614
            elif config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
615
616
617
618
619
                biaslevel = 0
                overscan = 0
            for i in range(NDark):
                DarkCombImg, DarkTag = effects.MakeDarkNcomb(
                    self.npix_x, self.npix_y, 
620
                    overscan=overscan, bias_level=0, darkpsec=0.02, exptime=self.dark_exptime+0.5*self.readout_time,
Fang Yuedong's avatar
Fang Yuedong committed
621
622
                    ncombine=1, read_noise=self.read_noise, 
                    gain=1, seed_bias=SeedBiasNonuni+self.chipID)
Fang Yuedong's avatar
Fang Yuedong committed
623
624
625
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
626
                            xLen=self.npix_x, yLen=self.npix_y, 
627
                            exTime=self.dark_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
628
                            cr_pixelRatio=0.003*(self.dark_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
629
630
631
632
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+2)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
633
                    DarkCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
                    cr_map[cr_map > 65535] = 65535
                    cr_map[cr_map < 0] = 0
                    crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
                    del cr_map
                    datetime_obs = datetime.fromtimestamp(timestamp_obs)
                    date_obs = datetime_obs.strftime("%y%m%d")
                    time_obs = datetime_obs.strftime("%H%M%S")
                    self.outputCal(
                        img=crmap_gsimg,
                        ra_cen=ra_cen,
                        dec_cen=dec_cen,
                        img_rot=img_rot,
                        im_type='CRD',
                        pointing_ID=pointing_ID,
                        date_obs=date_obs,
                        time_obs=time_obs,
                        output_dir=chip_output.subdir,
                        exptime=self.dark_exptime)
                    del crmap_gsimg
Fang Yuedong's avatar
Fang Yuedong committed
653
654

                # Non-Linearity for Dark
Fang Yuedong's avatar
Fang Yuedong committed
655
                if config["ins_effects"]["non_linear"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
656
                    print("  Applying Non-Linearity on the Dark image", flush=True)
657
                    DarkCombImg = effects.NonLinearity(GSImage=DarkCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
658

Fang Yuedong's avatar
Fang Yuedong committed
659
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
660
661
                    DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)

662
663
664
665
666
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                DarkCombImg = effects.DefectivePixels(DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
667
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
668
                if config["ins_effects"]["add_badcolumns"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
669
670
                    DarkCombImg = effects.BadColumns(DarkCombImg, seed=SeedBadColumns, chipid=self.chipID)

671
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
672
                if config["ins_effects"]["add_bias"] == True:
673
                    print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
674
                    # img += float(config["ins_effects"]["bias_level"])
675
676
677
678
679
680
                    DarkCombImg = effects.AddBiasNonUniform16(DarkCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
                        seed=SeedBiasNonuni+self.chipID)

                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
681
682
                if config["ins_effects"]["add_readout"] == True:
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
683
684
685
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    DarkCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
686
687
688
689
690
691
692
693
694
695
696
697

                DarkCombImg = effects.ApplyGainNonUniform16(
                    DarkCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
                    seed=SeedGainNonuni+self.chipID)
                # DarkCombImg = effects.AddOverscan(
                #     DarkCombImg, 
                #     overscan=overscan, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                DarkCombImg.replaceNegative(replace_value=0)
                DarkCombImg.quantize()
                DarkCombImg = galsim.ImageUS(DarkCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
698
699
700
701
                # DarkCombImg.write("%s/DarkImg_%s_%s_%s.fits" % (chip_output.subdir, DarkTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
702
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
703
704
705
706
707
708
709
710
711
712
713
                self.outputCal(
                    img=DarkCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
                    im_type='CLD',
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.dark_exptime)
Fang Yuedong's avatar
Fang Yuedong committed
714
715
716
717
            del DarkCombImg
        # img = galsim.ImageUS(img)

        # # 16 output channel, with each a single image file
Fang Yuedong's avatar
Fang Yuedong committed
718
        # if config["ins_effects"]["readout16"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
719
720
721
722
723
724
725
726
727
728
729
730
        #     print("  16 Output Channel simulation")
        #     for coli in [0, 1]:
        #         for rowi in range(8):
        #             sub_img = effects.readout16(
        #                 GSImage=img, 
        #                 rowi=rowi, 
        #                 coli=coli, 
        #                 overscan_value=self.overscan)
        #             rowcoltag = str(rowi) + str(coli)
        #             img_name_root = chip_output.img_name.split(".")[0]
        #             sub_img.write("%s/%s_%s.fits" % (chip_output.subdir, img_name_root, rowcoltag))
        #     del sub_img
Zhang Xin's avatar
Zhang Xin committed
731
        return img