Chip.py 40.5 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
import galsim
import os
import numpy as np
from astropy.table import Table
from numpy.random import Generator, PCG64
Fang Yuedong's avatar
Fang Yuedong committed
6
7
from astropy.io import fits
from datetime import datetime
Fang Yuedong's avatar
Fang Yuedong committed
8

9
10
11
12
from ObservationSim.Instrument.Chip import Effects as effects
from ObservationSim.Instrument.FocalPlane import FocalPlane
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader

Fang Yuedong's avatar
Fang Yuedong committed
13
14
15
16
17
18
try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources

Fang Yuedong's avatar
Fang Yuedong committed
19
class Chip(FocalPlane):
20
    def __init__(self, chipID, ccdEffCurve_dir=None, CRdata_dir=None, sls_dir=None, config=None, treering_func=None, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
21
22
23
24
25
26
27
28
        # Get focal plane (instance of paraent class) info
        # TODO: use chipID to config individual chip?
        super().__init__()
        self.npix_x = 9216
        self.npix_y = 9232
        self.read_noise = 5.0   # e/pix
        self.dark_noise = 0.02  # e/pix/s
        self.pix_scale  = 0.074 # pixel scale
Fang Yuedong's avatar
Fang Yuedong committed
29
30
        self.gain = float(config["ins_effects"]["gain"])
        self.bias_level = float(config["ins_effects"]["bias_level"])
Fang Yuedong's avatar
Fang Yuedong committed
31
        self.overscan   = 1000
Fang Yuedong's avatar
Fang Yuedong committed
32
33
34
35
        self.exptime    = float(config["obs_setting"]["exp_time"])   # second
        self.dark_exptime = float(config["ins_effects"]['dark_exptime'])
        self.flat_exptime = float(config["ins_effects"]['flat_exptime'])
        self.readout_time = float(config["ins_effects"]['readout_time'])
36
        self.full_well = int(config["ins_effects"]["full_well"])
Fang Yuedong's avatar
Fang Yuedong committed
37

38
39
        self.logger = logger

Fang Yuedong's avatar
Fang Yuedong committed
40
41
42
43
44
45
46
47
48
49
50
51
        # A chip ID must be assigned
        self.chipID = int(chipID)
        self._getChipRowCol()

        # Get corresponding filter info
        self.filter_id, self.filter_type = self.getChipFilter()
        self.survey_type = self._getSurveyType()

        # Get boundary (in pix)
        self.bound = self.getChipLim()
        self.ccdEffCurve_dir = ccdEffCurve_dir
        self.CRdata_dir = CRdata_dir
Fang Yuedong's avatar
Fang Yuedong committed
52
        # self.sls_dir=sls_dir
Fang Yuedong's avatar
Fang Yuedong committed
53
54
55
        # self.sls_conf = os.path.join(self.sls_dir, self.getChipSLSConf())
        slsconfs = self.getChipSLSConf()
        if np.size(slsconfs) == 1:
Fang Yuedong's avatar
Fang Yuedong committed
56
57
58
            # self.sls_conf = [os.path.join(self.sls_dir, slsconfs)]
            with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs) as conf_path:
                self.sls_conf = str(conf_path)
Fang Yuedong's avatar
Fang Yuedong committed
59
        else:
Fang Yuedong's avatar
Fang Yuedong committed
60
61
62
63
64
65
            # self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
            self.sls_conf = []
            with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[0]) as conf_path:
                self.sls_conf.append(str(conf_path))
            with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[1]) as conf_path:
                self.sls_conf.append(str(conf_path))
Fang Yuedong's avatar
Fang Yuedong committed
66
67
68
69
70
        
        self.effCurve = self._getChipEffCurve(self.filter_type)
        self._getCRdata()

        # Define the sensor
Fang Yuedong's avatar
Fang Yuedong committed
71
        if config["ins_effects"]["bright_fatter"] == True and self.survey_type == "photometric":
Fang Yuedong's avatar
Fang Yuedong committed
72
            self.sensor = galsim.SiliconSensor(strength=config["ins_effects"]["df_strength"], treering_func=treering_func)
Fang Yuedong's avatar
Fang Yuedong committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        else:
            self.sensor = galsim.Sensor()

    # def _getChipRowCol(self):
    #     self.rowID = (self.chipID - 1) // 5 + 1
    #     self.colID = (self.chipID - 1) % 5 + 1
    def _getChipRowCol(self):
        self.rowID, self.colID = self.getChipRowCol(self.chipID)

    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID

    def _getSurveyType(self):
        if self.filter_type in ["GI", "GV", "GU"]:
            return "spectroscopic"
        else:
            return "photometric"

    def _getChipEffCurve(self, filter_type):
        # CCD efficiency curves
        if filter_type in ['nuv', 'u', 'GU']: filename = 'UV0.txt'
        if filter_type in ['g', 'r', 'GV']: filename = 'Astro_MB.txt'
        if filter_type in ['i', 'z', 'y', 'GI']: filename = 'Basic_NIR.txt'
        # Mirror efficiency:
99
100
101
102
        # if filter_type == 'nuv': mirror_eff = 0.54
        # if filter_type == 'u': mirror_eff = 0.68
        # if filter_type in ['g', 'r', 'i', 'z', 'y']: mirror_eff = 0.8
        # if filter_type in ['GU', 'GV', 'GI']: mirror_eff = 1. # Not sure if this is right
Fang Yuedong's avatar
Fang Yuedong committed
103
        
Fang Yuedong's avatar
Fang Yuedong committed
104
105
106
107
        # path = os.path.join(self.ccdEffCurve_dir, filename)
        # table = Table.read(path, format='ascii')
        with pkg_resources.path('ObservationSim.Instrument.data.ccd', filename) as ccd_path:
            table = Table.read(ccd_path, format='ascii')
108
109
        # throughput = galsim.LookupTable(x=table['col1'], f=table['col2']*mirror_eff, interpolant='linear')
        throughput = galsim.LookupTable(x=table['col1'], f=table['col2'], interpolant='linear')
Fang Yuedong's avatar
Fang Yuedong committed
110
111
112
113
        bandpass = galsim.Bandpass(throughput, wave_type='nm')
        return bandpass

    def _getCRdata(self):
Fang Yuedong's avatar
Fang Yuedong committed
114
115
116
117
        # path = os.path.join(self.CRdata_dir, 'wfc-cr-attachpixel.dat')
        # self.attachedSizes = np.loadtxt(path)
        with pkg_resources.path('ObservationSim.Instrument.data', "wfc-cr-attachpixel.dat") as cr_path:
            self.attachedSizes = np.loadtxt(cr_path)
Fang Yuedong's avatar
Fang Yuedong committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

    def getChipFilter(self, chipID=None, filter_layout=None):
        """Return the filter index and type for a given chip #(chipID)
        """
        filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI"]
        # TODO: maybe a more elegent way other than hard coded?
        # e.g. use something like a nested dict:
        if filter_layout is not None:
            return filter_layout[chipID][0], filter_layout[chipID][1]
        if chipID == None:
            chipID = self.chipID

        # updated configurations
        # if chipID>30 or chipID<1: raise ValueError("!!! Chip ID: [1,30]")
        # if chipID in [10, 15, 16, 21]: filter_type = 'y'
        # if chipID in [11, 20]:         filter_type = "z"
        # if chipID in [9, 22]:           filter_type = "i"
        # if chipID in [12, 19]:         filter_type = "u"
        # if chipID in [7, 24]:         filter_type = "r"
        # if chipID in [14, 13, 18, 17]:    filter_type = "nuv"
        # if chipID in [8, 23]:         filter_type = "g"
        # if chipID in [6, 5, 25, 26]:    filter_type = "GI"
        # if chipID in [27, 30, 1, 4]:    filter_type = "GV"
        # if chipID in [28, 29, 2, 3]:    filter_type = "GU"
        if chipID in [6, 15, 16, 25]: filter_type = "y"
        if chipID in [11, 20]:         filter_type = "z"
        if chipID in [7, 24]:           filter_type = "i"
        if chipID in [14, 17]:         filter_type = "u"
        if chipID in [9, 22]:         filter_type = "r"
        if chipID in [12, 13, 18, 19]:    filter_type = "nuv"
        if chipID in [8, 23]:         filter_type = "g"
        if chipID in [1, 10, 21, 30]:    filter_type = "GI"
        if chipID in [2, 5, 26, 29]:    filter_type = "GV"
        if chipID in [3, 4, 27, 28]:    filter_type = "GU"
        filter_id = filter_type_list.index(filter_type)

        return filter_id, filter_type

    def getChipLim(self, chipID=None):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
        NOTE: There are 5*4 CCD chips in the focus plane for photometric observation.
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """
        # if chipID == None:
        #     chipID = self.chipID
        
        # gx = self.npix_gap_x
        # gy1, gy2 = self.npix_gap_y

        # # xlim of a given ccd chip
        # xrem = (chipID-1)%self.nchip_x - self.nchip_x // 2
        # xcen = (self.npix_x + gx) * xrem
        # nx0 = xcen - self.npix_x//2 + 1
        # nx1 = xcen + self.npix_x//2

        # # ylim of a given ccd chip
        # yrem = 2*((chipID-1)//self.nchip_x) - (self.nchip_y-1)
        # ycen = (self.npix_y//2 + gy1//2) * yrem
        # if chipID <= 6: ycen = (self.npix_y//2 + gy1//2) * yrem - (gy2-gy1)
        # if chipID >= 25: ycen = (self.npix_y//2 + gy1//2) * yrem + (gy2-gy1)
        # ny0 = ycen - self.npix_y//2 + 1
        # ny1 = ycen + self.npix_y//2

        if chipID == None:
            chipID = self.chipID
            rowID, colID = self.rowID, self.colID
        else:
            rowID, colID = self.getChipRowCol(chipID)
        gx1, gx2 = self.npix_gap_x
        gy = self.npix_gap_y

        # xlim of a given CCD chip
        xrem = 2*(colID - 1) - (self.nchip_x - 1)
        xcen = (self.npix_x//2 + gx1//2) * xrem
        if chipID >= 26 or chipID == 21:
            xcen = (self.npix_x//2 + gx1//2) * xrem - (gx2-gx1)
        if chipID <= 5 or chipID == 10:
            xcen = (self.npix_x//2 + gx1//2) * xrem + (gx2-gx1)
        nx0 = xcen - self.npix_x//2 + 1
        nx1 = xcen + self.npix_x//2

        # ylim of a given CCD chip
        yrem = (rowID - 1) - self.nchip_y // 2
        ycen = (self.npix_y + gy) * yrem
        ny0 = ycen - self.npix_y//2 + 1
        ny1 = ycen + self.npix_y//2

        return galsim.BoundsD(nx0-1, nx1-1, ny0-1, ny1-1)


    def getSkyCoverage(self, wcs):
        return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)


    def getSkyCoverageEnlarged(self, wcs, margin=0.5):
        """The enlarged sky coverage of the chip
        """
        margin /= 60.0
        bound = self.getSkyCoverage(wcs)
        return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)

    def isContainObj(self, ra_obj, dec_obj, wcs=None, margin=1):
        # magin in number of pix
        if wcs is None:
            wcs = self.img.wcs
        pos_obj = wcs.toImage(galsim.CelestialCoord(ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
        xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
        ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
        if (pos_obj.x - xmin) * (pos_obj.x - xmax) > 0.0 or (pos_obj.y - ymin) * (pos_obj.y - ymax) > 0.0:
            return False
        return True

    def getChipNoise(self, exptime=150.0):
        noise = self.dark_noise * exptime + self.read_noise**2
        return noise

    def getChipSLSConf(self):
        confFile = ''
        if self.chipID == 1: confFile = ['CSST_GI2.conf', 'CSST_GI1.conf']
        if self.chipID == 2: confFile = ['CSST_GV4.conf', 'CSST_GV3.conf']
        if self.chipID == 3: confFile = ['CSST_GU2.conf', 'CSST_GU1.conf']
        if self.chipID == 4: confFile = ['CSST_GU4.conf', 'CSST_GU3.conf']
        if self.chipID == 5: confFile = ['CSST_GV2.conf', 'CSST_GV1.conf']
        if self.chipID == 10: confFile = ['CSST_GI4.conf', 'CSST_GI3.conf']
        if self.chipID == 21: confFile = ['CSST_GI6.conf', 'CSST_GI5.conf']
        if self.chipID == 26: confFile = ['CSST_GV8.conf', 'CSST_GV7.conf']
        if self.chipID == 27: confFile = ['CSST_GU6.conf', 'CSST_GU5.conf']
        if self.chipID == 28: confFile = ['CSST_GU8.conf', 'CSST_GU7.conf']
        if self.chipID == 29: confFile = ['CSST_GV6.conf', 'CSST_GV5.conf']
        if self.chipID == 30: confFile = ['CSST_GI8.conf', 'CSST_GI7.conf']
        return confFile

Fang Yuedong's avatar
Fang Yuedong committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def generateHeader(self, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, exptime=150.):
        h_prim = generatePrimaryHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            pointNum = str(pointing_ID),
            ra=ra_cen, 
            dec=dec_cen, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            date=date_obs,
            time_obs=time_obs,
            im_type = im_type,
            exptime=exptime
            )
        h_ext = generateExtensionHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            ra=ra_cen, 
            dec=dec_cen, 
            pa=img_rot.deg, 
            gain=self.gain, 
            readout=self.read_noise, 
            dark=self.dark_noise, 
            saturation=90000, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            extName='raw')
        return h_prim, h_ext

    def outputCal(self, img, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, output_dir, exptime=150.):
        h_prim, h_ext = self.generateHeader(
            ra_cen=ra_cen,
            dec_cen=dec_cen,
            img_rot=img_rot,
            im_type=im_type,
            pointing_ID=pointing_ID,
            date_obs=date_obs,
            time_obs=time_obs,
            exptime=exptime)
        hdu1 = fits.PrimaryHDU(header=h_prim)
        hdu2 = fits.ImageHDU(img.array, header=h_ext)
        hdu1 = fits.HDUList([hdu1, hdu2])
        fname = os.path.join(output_dir, h_prim['FILENAME']+'.fits')
        hdu1.writeto(fname, output_verify='ignore', overwrite=True)

301
    def addEffects(self, config, img, chip_output, filt, ra_cen, dec_cen, img_rot, exptime=150., pointing_ID=0, timestamp_obs=1621915200, pointing_type='MS', sky_map=None, tel=None, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
302
303
304
305
306
307
308
309
        SeedGainNonuni=int(config["random_seeds"]["seed_gainNonUniform"])
        SeedBiasNonuni=int(config["random_seeds"]["seed_biasNonUniform"])
        SeedRnNonuni = int(config["random_seeds"]["seed_rnNonUniform"])
        SeedBadColumns = int(config["random_seeds"]["seed_badcolumns"])
        SeedDefective = int(config["random_seeds"]["seed_defective"])
        SeedCosmicRay = int(config["random_seeds"]["seed_CR"])
        fullwell = int(config["ins_effects"]["full_well"])
        if config["ins_effects"]["add_hotpixels"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
310
311
312
            BoolHotPix = True
        else:
            BoolHotPix = False
Fang Yuedong's avatar
Fang Yuedong committed
313
        if config["ins_effects"]["add_deadpixels"]== True:
Fang Yuedong's avatar
Fang Yuedong committed
314
315
316
            BoolDeadPix = True
        else:
            BoolDeadPix = False
317
        self.logger = logger
Fang Yuedong's avatar
Fang Yuedong committed
318

319
320
321
322
323
        # Get Poisson noise generator
        seed = int(config["random_seeds"]["seed_poisson"]) + pointing_ID*30 + self.chipID
        rng_poisson = galsim.BaseDeviate(seed)
        poisson_noise = galsim.PoissonNoise(rng_poisson, sky_level=0.)

324
        # Add sky background
Zhang Xin's avatar
Zhang Xin committed
325
        if sky_map is None:
326
            sky_map = filt.getSkyNoise(exptime=self.exptime)
327
328
329
330
331
332
333
334
            sky_map = sky_map * np.ones_like(img.array)
            sky_map = galsim.Image(array=sky_map)
            # Apply Poisson noise to the sky map
            # (NOTE): only for photometric chips
            # since it utilize the photon shooting
            # to draw stamps
            if self.survey_type == "photometric":
                sky_map.addNoise(poisson_noise)
335
336
337
338
        elif img.array.shape != sky_map.shape:
            raise ValueError("The shape img and sky_map must be equal.")
        elif tel is not None: # If sky_map is given in flux
            sky_map = sky_map * tel.pupil_area * self.exptime
Fang Yuedong's avatar
Fang Yuedong committed
339
        if config["ins_effects"]["add_back"] == True:
340
341
342
            img += sky_map
        del sky_map

Fang Yuedong's avatar
Fang Yuedong committed
343
        # Apply flat-field large scale structure for one chip
Fang Yuedong's avatar
Fang Yuedong committed
344
        if config["ins_effects"]["flat_fielding"] == True:
345
346
347
348
349
350
351
            if self.logger is not None:
                self.logger.info("  Creating and applying Flat-Fielding")
                msg = str(img.bounds)
                self.logger.info(msg)
            else:
                print("  Creating and applying Flat-Fielding", flush=True)
                print(img.bounds, flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
352
353
            flat_img = effects.MakeFlatSmooth(
                img.bounds, 
Fang Yuedong's avatar
Fang Yuedong committed
354
                int(config["random_seeds"]["seed_flat"]))
Fang Yuedong's avatar
Fang Yuedong committed
355
            flat_normal = flat_img / np.mean(flat_img.array)
356
357
            if self.survey_type == "photometric":
                img *= flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
358
            del flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
359
            if config["output_setting"]["flat_output"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
360
361
362
                del flat_img

        # Apply Shutter-effect for one chip
Fang Yuedong's avatar
Fang Yuedong committed
363
        if config["ins_effects"]["shutter_effect"] == True:
364
365
366
367
            if self.logger is not None:
                self.logger.info("  Apply shutter effect")
            else:
                print("  Apply shutter effect", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
368
            shuttimg = effects.ShutterEffectArr(img, t_shutter=1.3, dist_bearing=735, dt=1E-3)    # shutter effect normalized image for this chip
369
370
            if self.survey_type == "photometric":
                img *= shuttimg
Fang Yuedong's avatar
Fang Yuedong committed
371
            if config["output_setting"]["shutter_output"] == True:    # output 16-bit shutter effect image with pixel value <=65535
Fang Yuedong's avatar
Fang Yuedong committed
372
373
374
375
376
                shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
                shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" % (chip_output.subdir, self.chipID))
                del shutt_gsimg
            del shuttimg

377
378
379
380
381
        # Add Poisson noise to the resulting images
        # (NOTE): this can only applied to the slitless image
        # since it dose not use photon shooting to draw stamps
        if self.survey_type == "spectroscopic":
            img.addNoise(poisson_noise)
Fang Yuedong's avatar
Fang Yuedong committed
382
383

        # Add cosmic-rays
Fang Yuedong's avatar
Fang Yuedong committed
384
        if config["ins_effects"]["cosmic_ray"] == True and pointing_type=='MS':
385
386
387
388
            if self.logger is not None:
                self.logger.info(("  Adding Cosmic-Ray"))
            else:
                print("  Adding Cosmic-Ray", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
389
            cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
390
                xLen=self.npix_x, yLen=self.npix_y, 
391
                exTime=self.exptime+0.5*self.readout_time, 
Xin Zhang's avatar
Xin Zhang committed
392
                cr_pixelRatio=0.003*(self.exptime+0.5*self.readout_time)/600.,
Fang Yuedong's avatar
Fang Yuedong committed
393
394
                gain=self.gain, 
                attachedSizes=self.attachedSizes,
Fang Yuedong's avatar
Fang Yuedong committed
395
                seed=SeedCosmicRay+pointing_ID*30+self.chipID)   # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
396
397
398
399
            img += cr_map
            cr_map[cr_map > 65535] = 65535
            cr_map[cr_map < 0] = 0
            crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
Fang Yuedong's avatar
Fang Yuedong committed
400
            del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
401
            # crmap_gsimg.write("%s/CosmicRay_%s_1.fits" % (chip_output.subdir, self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
            # crmap_gsimg.write("%s/CosmicRay_%s.fits" % (chip_output.subdir, self.chipID))
            datetime_obs = datetime.fromtimestamp(timestamp_obs)
            date_obs = datetime_obs.strftime("%y%m%d")
            time_obs = datetime_obs.strftime("%H%M%S")
            self.outputCal(
                img=crmap_gsimg,
                ra_cen=ra_cen,
                dec_cen=dec_cen,
                img_rot=img_rot,
                im_type='CRS',
                pointing_ID=pointing_ID,
                date_obs=date_obs,
                time_obs=time_obs,
                output_dir=chip_output.subdir,
Fang Yuedong's avatar
Fang Yuedong committed
416
                exptime=self.exptime)
Fang Yuedong's avatar
Fang Yuedong committed
417
418
            del crmap_gsimg

419
        # Apply PRNU effect and output PRNU flat file:
Fang Yuedong's avatar
Fang Yuedong committed
420
        if config["ins_effects"]["prnu_effect"] == True:
421
422
423
424
            if self.logger is not None:
                self.logger.info("  Applying PRNU effect")
            else:
                print("  Applying PRNU effect", flush=True)
425
426
427
428
            prnu_img = effects.PRNU_Img(
                xsize=self.npix_x, 
                ysize=self.npix_y, 
                sigma=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
429
                seed=int(config["random_seeds"]["seed_prnu"]+self.chipID))
430
            img *= prnu_img
Fang Yuedong's avatar
Fang Yuedong committed
431
            if config["output_setting"]["prnu_output"] == True:
432
                prnu_img.write("%s/FlatImg_PRNU_%s.fits" % (chip_output.subdir,self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
433
            if config["output_setting"]["flat_output"] == False:
434
435
436
                del prnu_img

        # Add dark current
Fang Yuedong's avatar
Fang Yuedong committed
437
        if config["ins_effects"]["add_dark"] == True:
438
439
440
441
442
443
444
445
446
            dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng_poisson, self.dark_noise*(self.exptime+0.5*self.readout_time)))
            img.addNoise(dark_noise)

        # Add Hot Pixels or/and Dead Pixels
        rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
        badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
        img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

        # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
447
        if config["ins_effects"]["add_badcolumns"] == True:
448
            img = effects.BadColumns(img, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
449

Fang Yuedong's avatar
Fang Yuedong committed
450
        # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
451
        if config["ins_effects"]["add_bias"] == True:
452
453
454
455
            if self.logger is not None:
                self.logger.info("  Adding Bias level and 16-channel non-uniformity")
            else:
                print("  Adding Bias level and 16-channel non-uniformity")
456
457
458
459
460
461
462
463
            if config["ins_effects"]["bias_16channel"] == True:
                img = effects.AddBiasNonUniform16(img, 
                    bias_level=float(config["ins_effects"]["bias_level"]), 
                    nsecy = 2, nsecx=8, 
                    seed=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
            elif config["ins_effects"]["bias_16channel"] == False:
                img += self.bias_level
Fang Yuedong's avatar
Fang Yuedong committed
464

465
        # Apply Nonlinearity on the chip image
Fang Yuedong's avatar
Fang Yuedong committed
466
        if config["ins_effects"]["non_linear"] == True:
467
468
469
470
            if self.logger is not None:
                self.logger.info("  Applying Non-Linearity on the chip image")
            else:
                print("  Applying Non-Linearity on the chip image", flush=True)
471
472
473
            img = effects.NonLinearity(GSImage=img, beta1=5.e-7, beta2=0)

        # Apply CCD Saturation & Blooming
Fang Yuedong's avatar
Fang Yuedong committed
474
        if config["ins_effects"]["saturbloom"] == True:
475
476
477
478
            if self.logger is not None:
                self.logger.info("  Applying CCD Saturation & Blooming")
            else:
                print("  Applying CCD Saturation & Blooming")
479
480
481
            img = effects.SaturBloom(GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)

        # Apply CTE Effect
Fang Yuedong's avatar
Fang Yuedong committed
482
        if config["ins_effects"]["cte_trail"] == True:
483
484
485
486
            if self.logger is not None:
                self.logger.info("  Apply CTE Effect")
            else:
                print("  Apply CTE Effect")
487
488
489
            img = effects.CTE_Effect(GSImage=img, threshold=27)

        # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
490
491
        if config["ins_effects"]["add_readout"] == True:
            seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
492
493
494
495
496
            rng_readout = galsim.BaseDeviate(seed)
            readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
            img.addNoise(readout_noise)

        # Apply Gain & Quantization
497
498
499
500
        if self.logger is not None:
            self.logger.info("  Applying Gain (and 16 channel non-uniformity) & Quantization")
        else:
            print("  Applying Gain (and 16 channel non-uniformity) & Quantization", flush=True)
501
502
503
504
505
506
507
508
509
        if config["ins_effects"]["gain_16channel"] == True:
            img = effects.ApplyGainNonUniform16(
                img, gain=self.gain, 
                nsecy = 2, nsecx=8, 
                seed=SeedGainNonuni+self.chipID,
                logger=self.logger)
        elif config["ins_effects"]["gain_16channel"] == False:
            img /= self.gain
            
510
511
512
513
514
515
516
        img.array[img.array > 65535] = 65535
        img.replaceNegative(replace_value=0)
        img.quantize()

        ######################################################################################
        # Output images for calibration pointing
        ######################################################################################
Fang Yuedong's avatar
Fang Yuedong committed
517
        # Bias output
518
        if config["ins_effects"]["add_bias"] == True and config["output_setting"]["bias_output"] == True and pointing_type=='CAL':
519
520
521
522
            if self.logger is not None:
                self.logger.info("  Output N frame Bias files")
            else:
                print("  Output N frame Bias files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
523
            NBias = int(config["ins_effects"]["NBias"])
Fang Yuedong's avatar
Fang Yuedong committed
524
525
526
            for i in range(NBias):
                BiasCombImg, BiasTag = effects.MakeBiasNcomb(
                    self.npix_x, self.npix_y, 
Fang Yuedong's avatar
Fang Yuedong committed
527
                    bias_level=float(config["ins_effects"]["bias_level"]), 
Fang Yuedong's avatar
Fang Yuedong committed
528
                    ncombine=1, read_noise=self.read_noise, gain=1,
529
530
                    seed=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
531
                # Readout noise for Biases is not generated with random seeds. So readout noise for bias images can't be reproduced.
Fang Yuedong's avatar
Fang Yuedong committed
532
533
534
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
535
536
                            xLen=self.npix_x, yLen=self.npix_y, 
                            exTime=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
537
                            cr_pixelRatio=0.003*(0.01+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
538
539
540
541
542
543
544
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+1)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
                    BiasCombImg += cr_map
                    del cr_map

Fang Yuedong's avatar
Fang Yuedong committed
545
                # Non-Linearity for Bias
Fang Yuedong's avatar
Fang Yuedong committed
546
                if config["ins_effects"]["non_linear"] == True:
547
548
549
550
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Bias image")
                    else:
                        print("  Applying Non-Linearity on the Bias image", flush=True)
551
552
553
                    BiasCombImg = effects.NonLinearity(GSImage=BiasCombImg, beta1=5.e-7, beta2=0)

                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
554
                if config["ins_effects"]["add_badcolumns"] == True:
555
                    BiasCombImg = effects.BadColumns(BiasCombImg-float(config["ins_effects"]["bias_level"])+5, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger) + float(config["ins_effects"]["bias_level"])-5
Fang Yuedong's avatar
Fang Yuedong committed
556
557
558

                BiasCombImg = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
559
560
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
561
562
                # BiasCombImg = effects.AddOverscan(
                #     BiasCombImg, 
Fang Yuedong's avatar
Fang Yuedong committed
563
                #     overscan=float(config["ins_effects"]["bias_level"])-2, gain=self.gain, 
Fang Yuedong's avatar
Fang Yuedong committed
564
565
566
567
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                BiasCombImg.replaceNegative(replace_value=0)
                BiasCombImg.quantize()
                BiasCombImg = galsim.ImageUS(BiasCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
568
569
570
571
                # BiasCombImg.write("%s/BiasImg_%s_%s_%s.fits" % (chip_output.subdir, BiasTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
572
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
573
574
575
576
577
                self.outputCal(
                    img=BiasCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
578
                    im_type='BIAS',
Fang Yuedong's avatar
Fang Yuedong committed
579
580
581
582
583
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=0.0)
Fang Yuedong's avatar
Fang Yuedong committed
584
585
586
            del BiasCombImg

        # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
587
        if config["ins_effects"]["flat_fielding"] == True and config["output_setting"]["flat_output"] == True and pointing_type=='CAL':
588
589
590
591
            if self.logger is not None:
                self.logger.info("  Output N frame Flat-Field files")
            else:
                print("  Output N frame Flat-Field files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
592
593
            NFlat = int(config["ins_effects"]["NFlat"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
594
595
                biaslevel = self.bias_level
                overscan = biaslevel-2
596
            elif config["ins_effects"]["add_bias"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
597
598
                biaslevel = 0
                overscan = 0
599
            darklevel = self.dark_noise*(self.flat_exptime+0.5*self.readout_time)
Fang Yuedong's avatar
Fang Yuedong committed
600
601
602
603
604
605
606
607
            for i in range(NFlat):
                FlatSingle = flat_img * prnu_img + darklevel
                FlatCombImg, FlatTag = effects.MakeFlatNcomb(
                    flat_single_image=FlatSingle, 
                    ncombine=1, 
                    read_noise=self.read_noise,
                    gain=1, 
                    overscan=overscan, 
608
                    biaslevel=0,
609
610
                    seed_bias=SeedDefective+self.chipID,
                    logger=self.logger
Fang Yuedong's avatar
Fang Yuedong committed
611
                    )
Fang Yuedong's avatar
Fang Yuedong committed
612
613
614
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
615
                            xLen=self.npix_x, yLen=self.npix_y, 
616
                            exTime=self.flat_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
617
                            cr_pixelRatio=0.003*(self.flat_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
618
619
620
621
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+3)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
622
                    FlatCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
623
                    del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
624

Fang Yuedong's avatar
Fang Yuedong committed
625
                if config["ins_effects"]["non_linear"] == True:
626
627
628
629
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Flat image")
                    else:
                        print("  Applying Non-Linearity on the Flat image", flush=True)
630
                    FlatCombImg = effects.NonLinearity(GSImage=FlatCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
631

Fang Yuedong's avatar
Fang Yuedong committed
632
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
633
634
                    FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)

635
636
637
638
639
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                FlatCombImg = effects.DefectivePixels(FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
640
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
641
                if config["ins_effects"]["add_badcolumns"] == True:
642
                    FlatCombImg = effects.BadColumns(FlatCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
643

644
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
645
                if config["ins_effects"]["add_bias"] == True:
646
647
648
649
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
650
                    # img += float(config["ins_effects"]["bias_level"])
651
652
653
                    FlatCombImg = effects.AddBiasNonUniform16(FlatCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
654
655
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
656
657
                
                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
658
                if config["ins_effects"]["add_readout"] == True:
659
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID + 3
660
661
662
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    FlatCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
663
664
665

                FlatCombImg = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
666
667
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
668
669
670
671
                # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
                FlatCombImg.replaceNegative(replace_value=0)
                FlatCombImg.quantize()
                FlatCombImg = galsim.ImageUS(FlatCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
672
673
674
675
                # FlatCombImg.write("%s/FlatImg_%s_%s_%s.fits" % (chip_output.subdir, FlatTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
676
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
677
678
679
680
681
                self.outputCal(
                    img=FlatCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
682
                    im_type='FLAT',
Fang Yuedong's avatar
Fang Yuedong committed
683
684
685
686
687
688
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.flat_exptime)

Fang Yuedong's avatar
Fang Yuedong committed
689
690
691
692
693
694
695
            del FlatCombImg, FlatSingle, prnu_img
            # flat_img.replaceNegative(replace_value=0)
            # flat_img.quantize()
            # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
            del flat_img

        # Export Dark current images
696
        if config["ins_effects"]["add_dark"] == True and config["output_setting"]["dark_output"] == True and pointing_type=='CAL':
697
698
699
700
            if self.logger is not None:
                self.logger.info("  Output N frame Dark Current files")
            else:
                print("  Output N frame Dark Current files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
701
702
            NDark = int(config["ins_effects"]["NDark"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
703
704
                biaslevel = self.bias_level
                overscan = biaslevel-2
Fang Yuedong's avatar
Fang Yuedong committed
705
            elif config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
706
707
708
709
710
                biaslevel = 0
                overscan = 0
            for i in range(NDark):
                DarkCombImg, DarkTag = effects.MakeDarkNcomb(
                    self.npix_x, self.npix_y, 
711
                    overscan=overscan, bias_level=0, darkpsec=0.02, exptime=self.dark_exptime+0.5*self.readout_time,
Fang Yuedong's avatar
Fang Yuedong committed
712
                    ncombine=1, read_noise=self.read_noise, 
713
714
                    gain=1, seed_bias=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
715
716
717
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
718
                            xLen=self.npix_x, yLen=self.npix_y, 
719
                            exTime=self.dark_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
720
                            cr_pixelRatio=0.003*(self.dark_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
721
722
723
724
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+2)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
725
                    DarkCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
                    cr_map[cr_map > 65535] = 65535
                    cr_map[cr_map < 0] = 0
                    crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
                    del cr_map
                    datetime_obs = datetime.fromtimestamp(timestamp_obs)
                    date_obs = datetime_obs.strftime("%y%m%d")
                    time_obs = datetime_obs.strftime("%H%M%S")
                    self.outputCal(
                        img=crmap_gsimg,
                        ra_cen=ra_cen,
                        dec_cen=dec_cen,
                        img_rot=img_rot,
                        im_type='CRD',
                        pointing_ID=pointing_ID,
                        date_obs=date_obs,
                        time_obs=time_obs,
                        output_dir=chip_output.subdir,
                        exptime=self.dark_exptime)
                    del crmap_gsimg
Fang Yuedong's avatar
Fang Yuedong committed
745
746

                # Non-Linearity for Dark
Fang Yuedong's avatar
Fang Yuedong committed
747
                if config["ins_effects"]["non_linear"] == True:
748
749
750
751
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Dark image")
                    else:
                        print("  Applying Non-Linearity on the Dark image", flush=True)
752
                    DarkCombImg = effects.NonLinearity(GSImage=DarkCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
753

Fang Yuedong's avatar
Fang Yuedong committed
754
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
755
756
                    DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)

757
758
759
760
761
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                DarkCombImg = effects.DefectivePixels(DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
762
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
763
                if config["ins_effects"]["add_badcolumns"] == True:
764
                    DarkCombImg = effects.BadColumns(DarkCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
765

766
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
767
                if config["ins_effects"]["add_bias"] == True:
768
769
770
771
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
772
                    # img += float(config["ins_effects"]["bias_level"])
773
774
775
                    DarkCombImg = effects.AddBiasNonUniform16(DarkCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
776
777
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
778
779

                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
780
                if config["ins_effects"]["add_readout"] == True:
781
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID + 2
782
783
784
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    DarkCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
785
786
787
788

                DarkCombImg = effects.ApplyGainNonUniform16(
                    DarkCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
789
790
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
791
792
793
794
795
796
797
                # DarkCombImg = effects.AddOverscan(
                #     DarkCombImg, 
                #     overscan=overscan, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                DarkCombImg.replaceNegative(replace_value=0)
                DarkCombImg.quantize()
                DarkCombImg = galsim.ImageUS(DarkCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
798
799
800
801
                # DarkCombImg.write("%s/DarkImg_%s_%s_%s.fits" % (chip_output.subdir, DarkTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
802
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
803
804
805
806
807
                self.outputCal(
                    img=DarkCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
808
                    im_type='DARK',
Fang Yuedong's avatar
Fang Yuedong committed
809
810
811
812
813
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.dark_exptime)
Fang Yuedong's avatar
Fang Yuedong committed
814
815
816
817
            del DarkCombImg
        # img = galsim.ImageUS(img)

        # # 16 output channel, with each a single image file
Fang Yuedong's avatar
Fang Yuedong committed
818
        # if config["ins_effects"]["readout16"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
819
820
821
822
823
824
825
826
827
828
829
830
        #     print("  16 Output Channel simulation")
        #     for coli in [0, 1]:
        #         for rowi in range(8):
        #             sub_img = effects.readout16(
        #                 GSImage=img, 
        #                 rowi=rowi, 
        #                 coli=coli, 
        #                 overscan_value=self.overscan)
        #             rowcoltag = str(rowi) + str(coli)
        #             img_name_root = chip_output.img_name.split(".")[0]
        #             sub_img.write("%s/%s_%s.fits" % (chip_output.subdir, img_name_root, rowcoltag))
        #     del sub_img
Zhang Xin's avatar
Zhang Xin committed
831
        return img