Chip.py 40.8 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
import galsim
import os
import numpy as np
from astropy.table import Table
from numpy.random import Generator, PCG64
Fang Yuedong's avatar
Fang Yuedong committed
6
7
from astropy.io import fits
from datetime import datetime
Fang Yuedong's avatar
Fang Yuedong committed
8

9
10
11
12
from ObservationSim.Instrument.Chip import Effects as effects
from ObservationSim.Instrument.FocalPlane import FocalPlane
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader

Fang Yuedong's avatar
Fang Yuedong committed
13
14
15
16
17
18
try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources

Fang Yuedong's avatar
Fang Yuedong committed
19
class Chip(FocalPlane):
xin's avatar
xin committed
20
    def __init__(self, chipID, ccdEffCurve_dir=None, CRdata_dir=None, sls_dir=None, config=None, treering_func=None, logger=None, direct_Img_sls=False):
Fang Yuedong's avatar
Fang Yuedong committed
21
22
23
24
25
26
27
28
        # Get focal plane (instance of paraent class) info
        # TODO: use chipID to config individual chip?
        super().__init__()
        self.npix_x = 9216
        self.npix_y = 9232
        self.read_noise = 5.0   # e/pix
        self.dark_noise = 0.02  # e/pix/s
        self.pix_scale  = 0.074 # pixel scale
Fang Yuedong's avatar
Fang Yuedong committed
29
30
        self.gain = float(config["ins_effects"]["gain"])
        self.bias_level = float(config["ins_effects"]["bias_level"])
Fang Yuedong's avatar
Fang Yuedong committed
31
        self.overscan   = 1000
Fang Yuedong's avatar
Fang Yuedong committed
32
33
34
35
        self.exptime    = float(config["obs_setting"]["exp_time"])   # second
        self.dark_exptime = float(config["ins_effects"]['dark_exptime'])
        self.flat_exptime = float(config["ins_effects"]['flat_exptime'])
        self.readout_time = float(config["ins_effects"]['readout_time'])
Fang Yuedong's avatar
Fang Yuedong committed
36

37
        self.logger = logger
xin's avatar
xin committed
38
        self.direct_Img_sls = direct_Img_sls
39

Fang Yuedong's avatar
Fang Yuedong committed
40
41
42
43
44
45
46
47
48
49
50
51
        # A chip ID must be assigned
        self.chipID = int(chipID)
        self._getChipRowCol()

        # Get corresponding filter info
        self.filter_id, self.filter_type = self.getChipFilter()
        self.survey_type = self._getSurveyType()

        # Get boundary (in pix)
        self.bound = self.getChipLim()
        self.ccdEffCurve_dir = ccdEffCurve_dir
        self.CRdata_dir = CRdata_dir
Fang Yuedong's avatar
Fang Yuedong committed
52
        # self.sls_dir=sls_dir
Fang Yuedong's avatar
Fang Yuedong committed
53
54
55
        # self.sls_conf = os.path.join(self.sls_dir, self.getChipSLSConf())
        slsconfs = self.getChipSLSConf()
        if np.size(slsconfs) == 1:
Fang Yuedong's avatar
Fang Yuedong committed
56
57
58
            # self.sls_conf = [os.path.join(self.sls_dir, slsconfs)]
            with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs) as conf_path:
                self.sls_conf = str(conf_path)
Fang Yuedong's avatar
Fang Yuedong committed
59
        else:
Fang Yuedong's avatar
Fang Yuedong committed
60
61
62
63
64
65
            # self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
            self.sls_conf = []
            with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[0]) as conf_path:
                self.sls_conf.append(str(conf_path))
            with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[1]) as conf_path:
                self.sls_conf.append(str(conf_path))
Fang Yuedong's avatar
Fang Yuedong committed
66
67
68
69
70
        
        self.effCurve = self._getChipEffCurve(self.filter_type)
        self._getCRdata()

        # Define the sensor
Fang Yuedong's avatar
Fang Yuedong committed
71
        if config["ins_effects"]["bright_fatter"] == True and self.survey_type == "photometric":
Fang Yuedong's avatar
Fang Yuedong committed
72
            self.sensor = galsim.SiliconSensor(strength=config["ins_effects"]["df_strength"], treering_func=treering_func)
Fang Yuedong's avatar
Fang Yuedong committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        else:
            self.sensor = galsim.Sensor()

    # def _getChipRowCol(self):
    #     self.rowID = (self.chipID - 1) // 5 + 1
    #     self.colID = (self.chipID - 1) % 5 + 1
    def _getChipRowCol(self):
        self.rowID, self.colID = self.getChipRowCol(self.chipID)

    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID

    def _getSurveyType(self):
        if self.filter_type in ["GI", "GV", "GU"]:
            return "spectroscopic"
        else:
            return "photometric"

    def _getChipEffCurve(self, filter_type):
        # CCD efficiency curves
        if filter_type in ['nuv', 'u', 'GU']: filename = 'UV0.txt'
        if filter_type in ['g', 'r', 'GV']: filename = 'Astro_MB.txt'
        if filter_type in ['i', 'z', 'y', 'GI']: filename = 'Basic_NIR.txt'
        # Mirror efficiency:
        if filter_type == 'nuv': mirror_eff = 0.54
        if filter_type == 'u': mirror_eff = 0.68
        if filter_type in ['g', 'r', 'i', 'z', 'y']: mirror_eff = 0.8
        if filter_type in ['GU', 'GV', 'GI']: mirror_eff = 1. # Not sure if this is right
        
Fang Yuedong's avatar
Fang Yuedong committed
104
105
106
107
        # path = os.path.join(self.ccdEffCurve_dir, filename)
        # table = Table.read(path, format='ascii')
        with pkg_resources.path('ObservationSim.Instrument.data.ccd', filename) as ccd_path:
            table = Table.read(ccd_path, format='ascii')
Fang Yuedong's avatar
Fang Yuedong committed
108
109
110
111
112
        throughput = galsim.LookupTable(x=table['col1'], f=table['col2']*mirror_eff, interpolant='linear')
        bandpass = galsim.Bandpass(throughput, wave_type='nm')
        return bandpass

    def _getCRdata(self):
Fang Yuedong's avatar
Fang Yuedong committed
113
114
115
116
        # path = os.path.join(self.CRdata_dir, 'wfc-cr-attachpixel.dat')
        # self.attachedSizes = np.loadtxt(path)
        with pkg_resources.path('ObservationSim.Instrument.data', "wfc-cr-attachpixel.dat") as cr_path:
            self.attachedSizes = np.loadtxt(cr_path)
Fang Yuedong's avatar
Fang Yuedong committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

    def getChipFilter(self, chipID=None, filter_layout=None):
        """Return the filter index and type for a given chip #(chipID)
        """
        filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI"]
        # TODO: maybe a more elegent way other than hard coded?
        # e.g. use something like a nested dict:
        if filter_layout is not None:
            return filter_layout[chipID][0], filter_layout[chipID][1]
        if chipID == None:
            chipID = self.chipID

        # updated configurations
        # if chipID>30 or chipID<1: raise ValueError("!!! Chip ID: [1,30]")
        # if chipID in [10, 15, 16, 21]: filter_type = 'y'
        # if chipID in [11, 20]:         filter_type = "z"
        # if chipID in [9, 22]:           filter_type = "i"
        # if chipID in [12, 19]:         filter_type = "u"
        # if chipID in [7, 24]:         filter_type = "r"
        # if chipID in [14, 13, 18, 17]:    filter_type = "nuv"
        # if chipID in [8, 23]:         filter_type = "g"
        # if chipID in [6, 5, 25, 26]:    filter_type = "GI"
        # if chipID in [27, 30, 1, 4]:    filter_type = "GV"
        # if chipID in [28, 29, 2, 3]:    filter_type = "GU"
        if chipID in [6, 15, 16, 25]: filter_type = "y"
        if chipID in [11, 20]:         filter_type = "z"
        if chipID in [7, 24]:           filter_type = "i"
        if chipID in [14, 17]:         filter_type = "u"
        if chipID in [9, 22]:         filter_type = "r"
        if chipID in [12, 13, 18, 19]:    filter_type = "nuv"
        if chipID in [8, 23]:         filter_type = "g"
xin's avatar
xin committed
148
149
150
151
152
153
154
155
        if self.direct_Img_sls:
            if chipID in [1, 10, 21, 30]:    filter_type = "i"
            if chipID in [2, 5, 26, 29]:    filter_type = "g"
            if chipID in [3, 4, 27, 28]:    filter_type = "u"
        else:
            if chipID in [1, 10, 21, 30]:    filter_type = "GI"
            if chipID in [2, 5, 26, 29]:    filter_type = "GV"
            if chipID in [3, 4, 27, 28]:    filter_type = "GU"
Fang Yuedong's avatar
Fang Yuedong committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        filter_id = filter_type_list.index(filter_type)

        return filter_id, filter_type

    def getChipLim(self, chipID=None):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
        NOTE: There are 5*4 CCD chips in the focus plane for photometric observation.
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """
        # if chipID == None:
        #     chipID = self.chipID
        
        # gx = self.npix_gap_x
        # gy1, gy2 = self.npix_gap_y

        # # xlim of a given ccd chip
        # xrem = (chipID-1)%self.nchip_x - self.nchip_x // 2
        # xcen = (self.npix_x + gx) * xrem
        # nx0 = xcen - self.npix_x//2 + 1
        # nx1 = xcen + self.npix_x//2

        # # ylim of a given ccd chip
        # yrem = 2*((chipID-1)//self.nchip_x) - (self.nchip_y-1)
        # ycen = (self.npix_y//2 + gy1//2) * yrem
        # if chipID <= 6: ycen = (self.npix_y//2 + gy1//2) * yrem - (gy2-gy1)
        # if chipID >= 25: ycen = (self.npix_y//2 + gy1//2) * yrem + (gy2-gy1)
        # ny0 = ycen - self.npix_y//2 + 1
        # ny1 = ycen + self.npix_y//2

        if chipID == None:
            chipID = self.chipID
            rowID, colID = self.rowID, self.colID
        else:
            rowID, colID = self.getChipRowCol(chipID)
        gx1, gx2 = self.npix_gap_x
        gy = self.npix_gap_y

        # xlim of a given CCD chip
        xrem = 2*(colID - 1) - (self.nchip_x - 1)
        xcen = (self.npix_x//2 + gx1//2) * xrem
        if chipID >= 26 or chipID == 21:
            xcen = (self.npix_x//2 + gx1//2) * xrem - (gx2-gx1)
        if chipID <= 5 or chipID == 10:
            xcen = (self.npix_x//2 + gx1//2) * xrem + (gx2-gx1)
        nx0 = xcen - self.npix_x//2 + 1
        nx1 = xcen + self.npix_x//2

        # ylim of a given CCD chip
        yrem = (rowID - 1) - self.nchip_y // 2
        ycen = (self.npix_y + gy) * yrem
        ny0 = ycen - self.npix_y//2 + 1
        ny1 = ycen + self.npix_y//2

        return galsim.BoundsD(nx0-1, nx1-1, ny0-1, ny1-1)


    def getSkyCoverage(self, wcs):
        return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)


    def getSkyCoverageEnlarged(self, wcs, margin=0.5):
        """The enlarged sky coverage of the chip
        """
        margin /= 60.0
        bound = self.getSkyCoverage(wcs)
        return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)

    def isContainObj(self, ra_obj, dec_obj, wcs=None, margin=1):
        # magin in number of pix
        if wcs is None:
            wcs = self.img.wcs
        pos_obj = wcs.toImage(galsim.CelestialCoord(ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
        xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
        ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
        if (pos_obj.x - xmin) * (pos_obj.x - xmax) > 0.0 or (pos_obj.y - ymin) * (pos_obj.y - ymax) > 0.0:
            return False
        return True

    def getChipNoise(self, exptime=150.0):
        noise = self.dark_noise * exptime + self.read_noise**2
        return noise

    def getChipSLSConf(self):
        confFile = ''
        if self.chipID == 1: confFile = ['CSST_GI2.conf', 'CSST_GI1.conf']
        if self.chipID == 2: confFile = ['CSST_GV4.conf', 'CSST_GV3.conf']
        if self.chipID == 3: confFile = ['CSST_GU2.conf', 'CSST_GU1.conf']
        if self.chipID == 4: confFile = ['CSST_GU4.conf', 'CSST_GU3.conf']
        if self.chipID == 5: confFile = ['CSST_GV2.conf', 'CSST_GV1.conf']
        if self.chipID == 10: confFile = ['CSST_GI4.conf', 'CSST_GI3.conf']
        if self.chipID == 21: confFile = ['CSST_GI6.conf', 'CSST_GI5.conf']
        if self.chipID == 26: confFile = ['CSST_GV8.conf', 'CSST_GV7.conf']
        if self.chipID == 27: confFile = ['CSST_GU6.conf', 'CSST_GU5.conf']
        if self.chipID == 28: confFile = ['CSST_GU8.conf', 'CSST_GU7.conf']
        if self.chipID == 29: confFile = ['CSST_GV6.conf', 'CSST_GV5.conf']
        if self.chipID == 30: confFile = ['CSST_GI8.conf', 'CSST_GI7.conf']
        return confFile

Fang Yuedong's avatar
Fang Yuedong committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def generateHeader(self, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, exptime=150.):
        h_prim = generatePrimaryHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            pointNum = str(pointing_ID),
            ra=ra_cen, 
            dec=dec_cen, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            date=date_obs,
            time_obs=time_obs,
            im_type = im_type,
            exptime=exptime
            )
        h_ext = generateExtensionHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            ra=ra_cen, 
            dec=dec_cen, 
            pa=img_rot.deg, 
            gain=self.gain, 
            readout=self.read_noise, 
            dark=self.dark_noise, 
            saturation=90000, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            extName='raw')
        return h_prim, h_ext

    def outputCal(self, img, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, output_dir, exptime=150.):
        h_prim, h_ext = self.generateHeader(
            ra_cen=ra_cen,
            dec_cen=dec_cen,
            img_rot=img_rot,
            im_type=im_type,
            pointing_ID=pointing_ID,
            date_obs=date_obs,
            time_obs=time_obs,
            exptime=exptime)
        hdu1 = fits.PrimaryHDU(header=h_prim)
        hdu2 = fits.ImageHDU(img.array, header=h_ext)
        hdu1 = fits.HDUList([hdu1, hdu2])
        fname = os.path.join(output_dir, h_prim['FILENAME']+'.fits')
        hdu1.writeto(fname, output_verify='ignore', overwrite=True)

305
    def addEffects(self, config, img, chip_output, filt, ra_cen, dec_cen, img_rot, exptime=150., pointing_ID=0, timestamp_obs=1621915200, pointing_type='MS', sky_map=None, tel=None, logger=None):
xin's avatar
xin committed
306
307
308

        SeedGainNonuni = int(config["random_seeds"]["seed_gainNonUniform"])
        SeedBiasNonuni = int(config["random_seeds"]["seed_biasNonUniform"])
Fang Yuedong's avatar
Fang Yuedong committed
309
310
311
312
313
        SeedRnNonuni = int(config["random_seeds"]["seed_rnNonUniform"])
        SeedBadColumns = int(config["random_seeds"]["seed_badcolumns"])
        SeedDefective = int(config["random_seeds"]["seed_defective"])
        SeedCosmicRay = int(config["random_seeds"]["seed_CR"])
        fullwell = int(config["ins_effects"]["full_well"])
xin's avatar
xin committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

        if config["output_setting"]["output_SCI"]:
            if sky_map is None:
                sky_map = filt.getSkyNoise(exptime=self.exptime)
            elif img.array.shape != sky_map.shape:
                raise ValueError("The shape img and sky_map must be equal.")
            elif tel is not None:  # If sky_map is given in flux
                sky_map = sky_map * tel.pupil_area * self.exptime
            if config["ins_effects"]["add_back"] == True:
                img += sky_map
            # del sky_map

            # Add Poisson noise
            seed = int(config["random_seeds"]["seed_poisson"]) + pointing_ID * 30 + self.chipID
            rng_poisson = galsim.BaseDeviate(seed)
            poisson_noise = galsim.PoissonNoise(rng_poisson, sky_level=0.)
            img.addNoise(poisson_noise)

            dark_noise = galsim.DeviateNoise(
                galsim.PoissonDeviate(rng_poisson, self.dark_noise * (self.exptime + 0.5 * self.readout_time)))
            img.addNoise(dark_noise)

            seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID * 30 + self.chipID
            rng_readout = galsim.BaseDeviate(seed)
            readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
            img.addNoise(readout_noise)

            img.array[img.array > fullwell] = fullwell
            img = img - sky_map - self.dark_noise * (self.exptime + 0.5 * self.readout_time)
            return img


Fang Yuedong's avatar
Fang Yuedong committed
346
        if config["ins_effects"]["add_hotpixels"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
347
348
349
            BoolHotPix = True
        else:
            BoolHotPix = False
Fang Yuedong's avatar
Fang Yuedong committed
350
        if config["ins_effects"]["add_deadpixels"]== True:
Fang Yuedong's avatar
Fang Yuedong committed
351
352
353
            BoolDeadPix = True
        else:
            BoolDeadPix = False
354
        self.logger = logger
Fang Yuedong's avatar
Fang Yuedong committed
355

356
        # Add sky background
Zhang Xin's avatar
Zhang Xin committed
357
        if sky_map is None:
358
359
360
361
362
            sky_map = filt.getSkyNoise(exptime=self.exptime)
        elif img.array.shape != sky_map.shape:
            raise ValueError("The shape img and sky_map must be equal.")
        elif tel is not None: # If sky_map is given in flux
            sky_map = sky_map * tel.pupil_area * self.exptime
Fang Yuedong's avatar
Fang Yuedong committed
363
        if config["ins_effects"]["add_back"] == True:
364
365
366
            img += sky_map
        del sky_map

Fang Yuedong's avatar
Fang Yuedong committed
367
        # Apply flat-field large scale structure for one chip
Fang Yuedong's avatar
Fang Yuedong committed
368
        if config["ins_effects"]["flat_fielding"] == True:
369
370
371
372
373
374
375
            if self.logger is not None:
                self.logger.info("  Creating and applying Flat-Fielding")
                msg = str(img.bounds)
                self.logger.info(msg)
            else:
                print("  Creating and applying Flat-Fielding", flush=True)
                print(img.bounds, flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
376
377
            flat_img = effects.MakeFlatSmooth(
                img.bounds, 
Fang Yuedong's avatar
Fang Yuedong committed
378
                int(config["random_seeds"]["seed_flat"]))
Fang Yuedong's avatar
Fang Yuedong committed
379
            flat_normal = flat_img / np.mean(flat_img.array)
380
381
            if self.survey_type == "photometric":
                img *= flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
382
            del flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
383
            if config["output_setting"]["flat_output"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
384
385
386
                del flat_img

        # Apply Shutter-effect for one chip
Fang Yuedong's avatar
Fang Yuedong committed
387
        if config["ins_effects"]["shutter_effect"] == True:
388
389
390
391
            if self.logger is not None:
                self.logger.info("  Apply shutter effect")
            else:
                print("  Apply shutter effect", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
392
            shuttimg = effects.ShutterEffectArr(img, t_shutter=1.3, dist_bearing=735, dt=1E-3)    # shutter effect normalized image for this chip
393
394
            if self.survey_type == "photometric":
                img *= shuttimg
Fang Yuedong's avatar
Fang Yuedong committed
395
            if config["output_setting"]["shutter_output"] == True:    # output 16-bit shutter effect image with pixel value <=65535
Fang Yuedong's avatar
Fang Yuedong committed
396
397
398
399
400
                shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
                shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" % (chip_output.subdir, self.chipID))
                del shutt_gsimg
            del shuttimg

401
        # Add Poisson noise
Fang Yuedong's avatar
Fang Yuedong committed
402
        seed = int(config["random_seeds"]["seed_poisson"]) + pointing_ID*30 + self.chipID
403
404
405
        rng_poisson = galsim.BaseDeviate(seed)
        poisson_noise = galsim.PoissonNoise(rng_poisson, sky_level=0.)
        img.addNoise(poisson_noise)
Fang Yuedong's avatar
Fang Yuedong committed
406
407

        # Add cosmic-rays
Fang Yuedong's avatar
Fang Yuedong committed
408
        if config["ins_effects"]["cosmic_ray"] == True and pointing_type=='MS':
409
410
411
412
            if self.logger is not None:
                self.logger.info(("  Adding Cosmic-Ray"))
            else:
                print("  Adding Cosmic-Ray", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
413
            cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
414
                xLen=self.npix_x, yLen=self.npix_y, 
415
                exTime=self.exptime+0.5*self.readout_time, 
Xin Zhang's avatar
Xin Zhang committed
416
                cr_pixelRatio=0.003*(self.exptime+0.5*self.readout_time)/600.,
Fang Yuedong's avatar
Fang Yuedong committed
417
418
                gain=self.gain, 
                attachedSizes=self.attachedSizes,
Fang Yuedong's avatar
Fang Yuedong committed
419
                seed=SeedCosmicRay+pointing_ID*30+self.chipID)   # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
420
421
422
423
            img += cr_map
            cr_map[cr_map > 65535] = 65535
            cr_map[cr_map < 0] = 0
            crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
Fang Yuedong's avatar
Fang Yuedong committed
424
            del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
425
            # crmap_gsimg.write("%s/CosmicRay_%s_1.fits" % (chip_output.subdir, self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            # crmap_gsimg.write("%s/CosmicRay_%s.fits" % (chip_output.subdir, self.chipID))
            datetime_obs = datetime.fromtimestamp(timestamp_obs)
            date_obs = datetime_obs.strftime("%y%m%d")
            time_obs = datetime_obs.strftime("%H%M%S")
            self.outputCal(
                img=crmap_gsimg,
                ra_cen=ra_cen,
                dec_cen=dec_cen,
                img_rot=img_rot,
                im_type='CRS',
                pointing_ID=pointing_ID,
                date_obs=date_obs,
                time_obs=time_obs,
                output_dir=chip_output.subdir,
Fang Yuedong's avatar
Fang Yuedong committed
440
                exptime=self.exptime)
Fang Yuedong's avatar
Fang Yuedong committed
441
442
            del crmap_gsimg

443
        # Apply PRNU effect and output PRNU flat file:
Fang Yuedong's avatar
Fang Yuedong committed
444
        if config["ins_effects"]["prnu_effect"] == True:
445
446
447
448
            if self.logger is not None:
                self.logger.info("  Applying PRNU effect")
            else:
                print("  Applying PRNU effect", flush=True)
449
450
451
452
            prnu_img = effects.PRNU_Img(
                xsize=self.npix_x, 
                ysize=self.npix_y, 
                sigma=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
453
                seed=int(config["random_seeds"]["seed_prnu"]+self.chipID))
454
            img *= prnu_img
Fang Yuedong's avatar
Fang Yuedong committed
455
            if config["output_setting"]["prnu_output"] == True:
456
                prnu_img.write("%s/FlatImg_PRNU_%s.fits" % (chip_output.subdir,self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
457
            if config["output_setting"]["flat_output"] == False:
458
459
460
                del prnu_img

        # Add dark current
Fang Yuedong's avatar
Fang Yuedong committed
461
        if config["ins_effects"]["add_dark"] == True:
462
463
464
465
466
467
468
469
470
            dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng_poisson, self.dark_noise*(self.exptime+0.5*self.readout_time)))
            img.addNoise(dark_noise)

        # Add Hot Pixels or/and Dead Pixels
        rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
        badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
        img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

        # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
471
        if config["ins_effects"]["add_badcolumns"] == True:
472
            img = effects.BadColumns(img, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
473

Fang Yuedong's avatar
Fang Yuedong committed
474
        # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
475
        if config["ins_effects"]["add_bias"] == True:
476
477
478
479
            if self.logger is not None:
                self.logger.info("  Adding Bias level and 16-channel non-uniformity")
            else:
                print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
480
            img = effects.AddBiasNonUniform16(img, 
Fang Yuedong's avatar
Fang Yuedong committed
481
                bias_level=float(config["ins_effects"]["bias_level"]), 
Fang Yuedong's avatar
Fang Yuedong committed
482
                nsecy = 2, nsecx=8, 
483
484
                seed=SeedBiasNonuni+self.chipID,
                logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
485

486
        # Apply Nonlinearity on the chip image
Fang Yuedong's avatar
Fang Yuedong committed
487
        if config["ins_effects"]["non_linear"] == True:
488
489
490
491
            if self.logger is not None:
                self.logger.info("  Applying Non-Linearity on the chip image")
            else:
                print("  Applying Non-Linearity on the chip image", flush=True)
492
493
494
            img = effects.NonLinearity(GSImage=img, beta1=5.e-7, beta2=0)

        # Apply CCD Saturation & Blooming
Fang Yuedong's avatar
Fang Yuedong committed
495
        if config["ins_effects"]["saturbloom"] == True:
496
497
498
499
            if self.logger is not None:
                self.logger.info("  Applying CCD Saturation & Blooming")
            else:
                print("  Applying CCD Saturation & Blooming")
500
501
502
            img = effects.SaturBloom(GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)

        # Apply CTE Effect
Fang Yuedong's avatar
Fang Yuedong committed
503
        if config["ins_effects"]["cte_trail"] == True:
504
505
506
507
            if self.logger is not None:
                self.logger.info("  Apply CTE Effect")
            else:
                print("  Apply CTE Effect")
508
509
510
            img = effects.CTE_Effect(GSImage=img, threshold=27)

        # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
511
512
        if config["ins_effects"]["add_readout"] == True:
            seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
513
514
515
516
517
518
            rng_readout = galsim.BaseDeviate(seed)
            readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
            img.addNoise(readout_noise)


        # Apply Gain & Quantization
519
520
521
522
        if self.logger is not None:
            self.logger.info("  Applying Gain (and 16 channel non-uniformity) & Quantization")
        else:
            print("  Applying Gain (and 16 channel non-uniformity) & Quantization", flush=True)
523
524
525
        img = effects.ApplyGainNonUniform16(
            img, gain=self.gain, 
            nsecy = 2, nsecx=8, 
526
527
            seed=SeedGainNonuni+self.chipID,
            logger=self.logger)
528
529
530
531
532
533
534
        img.array[img.array > 65535] = 65535
        img.replaceNegative(replace_value=0)
        img.quantize()

        ######################################################################################
        # Output images for calibration pointing
        ######################################################################################
Fang Yuedong's avatar
Fang Yuedong committed
535
        # Bias output
Fang Yuedong's avatar
Fang Yuedong committed
536
        if config["output_setting"]["bias_output"] == True and pointing_type=='CAL':
537
538
539
540
            if self.logger is not None:
                self.logger.info("  Output N frame Bias files")
            else:
                print("  Output N frame Bias files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
541
            NBias = int(config["ins_effects"]["NBias"])
Fang Yuedong's avatar
Fang Yuedong committed
542
543
544
            for i in range(NBias):
                BiasCombImg, BiasTag = effects.MakeBiasNcomb(
                    self.npix_x, self.npix_y, 
Fang Yuedong's avatar
Fang Yuedong committed
545
                    bias_level=float(config["ins_effects"]["bias_level"]), 
Fang Yuedong's avatar
Fang Yuedong committed
546
                    ncombine=1, read_noise=self.read_noise, gain=1,
547
548
                    seed=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
549
550
551
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
552
553
                            xLen=self.npix_x, yLen=self.npix_y, 
                            exTime=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
554
                            cr_pixelRatio=0.003*(0.01+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
555
556
557
558
559
560
561
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+1)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
                    BiasCombImg += cr_map
                    del cr_map

Fang Yuedong's avatar
Fang Yuedong committed
562
                # Non-Linearity for Bias
Fang Yuedong's avatar
Fang Yuedong committed
563
                if config["ins_effects"]["non_linear"] == True:
564
565
566
567
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Bias image")
                    else:
                        print("  Applying Non-Linearity on the Bias image", flush=True)
568
569
570
                    BiasCombImg = effects.NonLinearity(GSImage=BiasCombImg, beta1=5.e-7, beta2=0)

                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
571
                if config["ins_effects"]["add_badcolumns"] == True:
572
                    BiasCombImg = effects.BadColumns(BiasCombImg-float(config["ins_effects"]["bias_level"])+5, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger) + float(config["ins_effects"]["bias_level"])-5
Fang Yuedong's avatar
Fang Yuedong committed
573
574
575

                BiasCombImg = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
576
577
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
578
579
                # BiasCombImg = effects.AddOverscan(
                #     BiasCombImg, 
Fang Yuedong's avatar
Fang Yuedong committed
580
                #     overscan=float(config["ins_effects"]["bias_level"])-2, gain=self.gain, 
Fang Yuedong's avatar
Fang Yuedong committed
581
582
583
584
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                BiasCombImg.replaceNegative(replace_value=0)
                BiasCombImg.quantize()
                BiasCombImg = galsim.ImageUS(BiasCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
585
586
587
588
                # BiasCombImg.write("%s/BiasImg_%s_%s_%s.fits" % (chip_output.subdir, BiasTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
589
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
590
591
592
593
594
                self.outputCal(
                    img=BiasCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
595
                    im_type='BIAS',
Fang Yuedong's avatar
Fang Yuedong committed
596
597
598
599
600
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=0.0)
Fang Yuedong's avatar
Fang Yuedong committed
601
602
603
            del BiasCombImg

        # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
Fang Yuedong's avatar
Fang Yuedong committed
604
        if config["output_setting"]["flat_output"] == True and pointing_type=='CAL':
605
606
607
608
            if self.logger is not None:
                self.logger.info("  Output N frame Flat-Field files")
            else:
                print("  Output N frame Flat-Field files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
609
610
            NFlat = int(config["ins_effects"]["NFlat"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
611
612
                biaslevel = self.bias_level
                overscan = biaslevel-2
Fang Yuedong's avatar
Fang Yuedong committed
613
            elif config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
614
615
                biaslevel = 0
                overscan = 0
616
            darklevel = self.dark_noise*(self.flat_exptime+0.5*self.readout_time)
Fang Yuedong's avatar
Fang Yuedong committed
617
618
619
620
621
622
623
624
            for i in range(NFlat):
                FlatSingle = flat_img * prnu_img + darklevel
                FlatCombImg, FlatTag = effects.MakeFlatNcomb(
                    flat_single_image=FlatSingle, 
                    ncombine=1, 
                    read_noise=self.read_noise,
                    gain=1, 
                    overscan=overscan, 
625
                    biaslevel=0,
626
627
                    seed_bias=SeedDefective+self.chipID,
                    logger=self.logger
Fang Yuedong's avatar
Fang Yuedong committed
628
                    )
Fang Yuedong's avatar
Fang Yuedong committed
629
630
631
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
632
                            xLen=self.npix_x, yLen=self.npix_y, 
633
                            exTime=self.flat_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
634
                            cr_pixelRatio=0.003*(self.flat_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
635
636
637
638
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+3)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
639
                    FlatCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
640
                    del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
641

Fang Yuedong's avatar
Fang Yuedong committed
642
                if config["ins_effects"]["non_linear"] == True:
643
644
645
646
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Flat image")
                    else:
                        print("  Applying Non-Linearity on the Flat image", flush=True)
647
                    FlatCombImg = effects.NonLinearity(GSImage=FlatCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
648

Fang Yuedong's avatar
Fang Yuedong committed
649
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
650
651
                    FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)

652
653
654
655
656
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                FlatCombImg = effects.DefectivePixels(FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
657
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
658
                if config["ins_effects"]["add_badcolumns"] == True:
659
                    FlatCombImg = effects.BadColumns(FlatCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
660

661
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
662
                if config["ins_effects"]["add_bias"] == True:
663
664
665
666
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
667
                    # img += float(config["ins_effects"]["bias_level"])
668
669
670
                    FlatCombImg = effects.AddBiasNonUniform16(FlatCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
671
672
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
673
674
                
                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
675
676
                if config["ins_effects"]["add_readout"] == True:
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
677
678
679
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    FlatCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
680
681
682

                FlatCombImg = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
683
684
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
685
686
687
688
                # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
                FlatCombImg.replaceNegative(replace_value=0)
                FlatCombImg.quantize()
                FlatCombImg = galsim.ImageUS(FlatCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
689
690
691
692
                # FlatCombImg.write("%s/FlatImg_%s_%s_%s.fits" % (chip_output.subdir, FlatTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
693
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
694
695
696
697
698
                self.outputCal(
                    img=FlatCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
699
                    im_type='FLAT',
Fang Yuedong's avatar
Fang Yuedong committed
700
701
702
703
704
705
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.flat_exptime)

Fang Yuedong's avatar
Fang Yuedong committed
706
707
708
709
710
711
712
            del FlatCombImg, FlatSingle, prnu_img
            # flat_img.replaceNegative(replace_value=0)
            # flat_img.quantize()
            # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
            del flat_img

        # Export Dark current images
Fang Yuedong's avatar
Fang Yuedong committed
713
        if config["output_setting"]["dark_output"] == True and pointing_type=='CAL':
714
715
716
717
            if self.logger is not None:
                self.logger.info("  Output N frame Dark Current files")
            else:
                print("  Output N frame Dark Current files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
718
719
            NDark = int(config["ins_effects"]["NDark"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
720
721
                biaslevel = self.bias_level
                overscan = biaslevel-2
Fang Yuedong's avatar
Fang Yuedong committed
722
            elif config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
723
724
725
726
727
                biaslevel = 0
                overscan = 0
            for i in range(NDark):
                DarkCombImg, DarkTag = effects.MakeDarkNcomb(
                    self.npix_x, self.npix_y, 
728
                    overscan=overscan, bias_level=0, darkpsec=0.02, exptime=self.dark_exptime+0.5*self.readout_time,
Fang Yuedong's avatar
Fang Yuedong committed
729
                    ncombine=1, read_noise=self.read_noise, 
730
731
                    gain=1, seed_bias=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
732
733
734
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
735
                            xLen=self.npix_x, yLen=self.npix_y, 
736
                            exTime=self.dark_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
737
                            cr_pixelRatio=0.003*(self.dark_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
738
739
740
741
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+2)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
742
                    DarkCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
                    cr_map[cr_map > 65535] = 65535
                    cr_map[cr_map < 0] = 0
                    crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
                    del cr_map
                    datetime_obs = datetime.fromtimestamp(timestamp_obs)
                    date_obs = datetime_obs.strftime("%y%m%d")
                    time_obs = datetime_obs.strftime("%H%M%S")
                    self.outputCal(
                        img=crmap_gsimg,
                        ra_cen=ra_cen,
                        dec_cen=dec_cen,
                        img_rot=img_rot,
                        im_type='CRD',
                        pointing_ID=pointing_ID,
                        date_obs=date_obs,
                        time_obs=time_obs,
                        output_dir=chip_output.subdir,
                        exptime=self.dark_exptime)
                    del crmap_gsimg
Fang Yuedong's avatar
Fang Yuedong committed
762
763

                # Non-Linearity for Dark
Fang Yuedong's avatar
Fang Yuedong committed
764
                if config["ins_effects"]["non_linear"] == True:
765
766
767
768
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Dark image")
                    else:
                        print("  Applying Non-Linearity on the Dark image", flush=True)
769
                    DarkCombImg = effects.NonLinearity(GSImage=DarkCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
770

Fang Yuedong's avatar
Fang Yuedong committed
771
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
772
773
                    DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)

774
775
776
777
778
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                DarkCombImg = effects.DefectivePixels(DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
779
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
780
                if config["ins_effects"]["add_badcolumns"] == True:
781
                    DarkCombImg = effects.BadColumns(DarkCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
782

783
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
784
                if config["ins_effects"]["add_bias"] == True:
785
786
787
788
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
789
                    # img += float(config["ins_effects"]["bias_level"])
790
791
792
                    DarkCombImg = effects.AddBiasNonUniform16(DarkCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
793
794
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
795
796

                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
797
798
                if config["ins_effects"]["add_readout"] == True:
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
799
800
801
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    DarkCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
802
803
804
805

                DarkCombImg = effects.ApplyGainNonUniform16(
                    DarkCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
806
807
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
808
809
810
811
812
813
814
                # DarkCombImg = effects.AddOverscan(
                #     DarkCombImg, 
                #     overscan=overscan, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                DarkCombImg.replaceNegative(replace_value=0)
                DarkCombImg.quantize()
                DarkCombImg = galsim.ImageUS(DarkCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
815
816
817
818
                # DarkCombImg.write("%s/DarkImg_%s_%s_%s.fits" % (chip_output.subdir, DarkTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
819
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
820
821
822
823
824
                self.outputCal(
                    img=DarkCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
825
                    im_type='DARK',
Fang Yuedong's avatar
Fang Yuedong committed
826
827
828
829
830
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.dark_exptime)
Fang Yuedong's avatar
Fang Yuedong committed
831
832
833
834
            del DarkCombImg
        # img = galsim.ImageUS(img)

        # # 16 output channel, with each a single image file
Fang Yuedong's avatar
Fang Yuedong committed
835
        # if config["ins_effects"]["readout16"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
836
837
838
839
840
841
842
843
844
845
846
847
        #     print("  16 Output Channel simulation")
        #     for coli in [0, 1]:
        #         for rowi in range(8):
        #             sub_img = effects.readout16(
        #                 GSImage=img, 
        #                 rowi=rowi, 
        #                 coli=coli, 
        #                 overscan_value=self.overscan)
        #             rowcoltag = str(rowi) + str(coli)
        #             img_name_root = chip_output.img_name.split(".")[0]
        #             sub_img.write("%s/%s_%s.fits" % (chip_output.subdir, img_name_root, rowcoltag))
        #     del sub_img
Zhang Xin's avatar
Zhang Xin committed
848
        return img