Chip.py 26.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import galsim
import os
import numpy as np
import Instrument.Chip.Effects as effects
from Instrument.FocalPlane import FocalPlane
from astropy.table import Table
from numpy.random import Generator, PCG64

class Chip(FocalPlane):
    def __init__(self, chipID, ccdEffCurve_dir, CRdata_dir, normalize_dir=None, sls_dir=None, config=None, treering_func=None):
        # Get focal plane (instance of paraent class) info
        # TODO: use chipID to config individual chip?
        super().__init__()
        # if config is not None:
        #     self.npix_x     = config["npix_x"]
        #     self.npix_y     = config["npix_y"]
        #     self.read_noise = config["read_noise"]
        #     self.dark_noise = config["dark_noise"]
        #     self.pix_scale  = config["pix_scale"]
        #     self.gain       = config["gain"]
        #     self.bias_level = config["bias_level"]
        #     self.overscan   = config["overscan"]
        # else:
        # Default setting
        self.npix_x = 9216
        self.npix_y = 9232
        self.read_noise = 5.0   # e/pix
        self.dark_noise = 0.02  # e/pix/s
        self.pix_scale  = 0.074 # pixel scale
        # self.gain       = 1.0
        # self.bias_level = 1000  # e-/pix
        self.gain = float(config["gain"])
        self.bias_level = float(config["bias_level"])
        self.overscan   = 1000
        self.exptime    = 150   # second

        # A chip ID must be assigned
        self.chipID = int(chipID)
        self._getChipRowCol()

        # Get corresponding filter info
        self.filter_id, self.filter_type = self.getChipFilter()
        self.survey_type = self._getSurveyType()

        # Get boundary (in pix)
        self.bound = self.getChipLim()
        self.ccdEffCurve_dir = ccdEffCurve_dir
        self.CRdata_dir = CRdata_dir
        self.normalize_dir = normalize_dir
        self.sls_dir=sls_dir
        # self.sls_conf = os.path.join(self.sls_dir, self.getChipSLSConf())
        slsconfs = self.getChipSLSConf()
        if np.size(slsconfs) == 1:
            self.sls_conf = [os.path.join(self.sls_dir, slsconfs)]
        else:
            self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
        
        if self.normalize_dir is not None:
            self._getNormF()
        self.effCurve = self._getChipEffCurve(self.filter_type)
        self._getCRdata()

        # Define the sensor
        if config["bright_fatter"].lower() == "y":
            self.sensor = galsim.SiliconSensor(strength=config["df_strength"], treering_func=treering_func)
        else:
            self.sensor = galsim.Sensor()

    # def _getChipRowCol(self):
    #     self.rowID = (self.chipID - 1) // 5 + 1
    #     self.colID = (self.chipID - 1) % 5 + 1
    def _getChipRowCol(self):
        self.rowID, self.colID = self.getChipRowCol(self.chipID)

    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID

    def _getSurveyType(self):
        if self.filter_type in ["GI", "GV", "GU"]:
            return "spectroscopic"
        else:
            return "photometric"

    def _getNormF(self):
        self.normF_star = Table.read(os.path.join(self.normalize_dir, 'SLOAN_SDSS.g.fits'))
        self.normF_galaxy = Table.read(os.path.join(self.normalize_dir, 'lsst_throuput_g.fits'))

    def _getChipEffCurve(self, filter_type):
        # CCD efficiency curves
        if filter_type in ['nuv', 'u', 'GU']: filename = 'UV0.txt'
        if filter_type in ['g', 'r', 'GV']: filename = 'Astro_MB.txt'
        if filter_type in ['i', 'z', 'y', 'GI']: filename = 'Basic_NIR.txt'
        # Mirror efficiency:
        if filter_type == 'nuv': mirror_eff = 0.54
        if filter_type == 'u': mirror_eff = 0.68
        if filter_type in ['g', 'r', 'i', 'z', 'y']: mirror_eff = 0.8
        if filter_type in ['GU', 'GV', 'GI']: mirror_eff = 1. # Not sure if this is right
        
        path = os.path.join(self.ccdEffCurve_dir, filename)
        table = Table.read(path, format='ascii')
        throughput = galsim.LookupTable(x=table['col1'], f=table['col2']*mirror_eff, interpolant='linear')
        bandpass = galsim.Bandpass(throughput, wave_type='nm')
        return bandpass

    def _getCRdata(self):
        path = os.path.join(self.CRdata_dir, 'wfc-cr-attachpixel.dat')
        self.attachedSizes = np.loadtxt(path)

    def getChipFilter(self, chipID=None, filter_layout=None):
        """Return the filter index and type for a given chip #(chipID)
        """
        filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI"]
        # TODO: maybe a more elegent way other than hard coded?
        # e.g. use something like a nested dict:
        if filter_layout is not None:
            return filter_layout[chipID][0], filter_layout[chipID][1]
        if chipID == None:
            chipID = self.chipID

        # updated configurations
        # if chipID>30 or chipID<1: raise ValueError("!!! Chip ID: [1,30]")
        # if chipID in [10, 15, 16, 21]: filter_type = 'y'
        # if chipID in [11, 20]:         filter_type = "z"
        # if chipID in [9, 22]:           filter_type = "i"
        # if chipID in [12, 19]:         filter_type = "u"
        # if chipID in [7, 24]:         filter_type = "r"
        # if chipID in [14, 13, 18, 17]:    filter_type = "nuv"
        # if chipID in [8, 23]:         filter_type = "g"
        # if chipID in [6, 5, 25, 26]:    filter_type = "GI"
        # if chipID in [27, 30, 1, 4]:    filter_type = "GV"
        # if chipID in [28, 29, 2, 3]:    filter_type = "GU"
        if chipID in [6, 15, 16, 25]: filter_type = "y"
        if chipID in [11, 20]:         filter_type = "z"
        if chipID in [7, 24]:           filter_type = "i"
        if chipID in [14, 17]:         filter_type = "u"
        if chipID in [9, 22]:         filter_type = "r"
        if chipID in [12, 13, 18, 19]:    filter_type = "nuv"
        if chipID in [8, 23]:         filter_type = "g"
        if chipID in [1, 10, 21, 30]:    filter_type = "GI"
        if chipID in [2, 5, 26, 29]:    filter_type = "GV"
        if chipID in [3, 4, 27, 28]:    filter_type = "GU"
        filter_id = filter_type_list.index(filter_type)

        return filter_id, filter_type

    def getChipLim(self, chipID=None):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
        NOTE: There are 5*4 CCD chips in the focus plane for photometric observation.
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """
        # if chipID == None:
        #     chipID = self.chipID
        
        # gx = self.npix_gap_x
        # gy1, gy2 = self.npix_gap_y

        # # xlim of a given ccd chip
        # xrem = (chipID-1)%self.nchip_x - self.nchip_x // 2
        # xcen = (self.npix_x + gx) * xrem
        # nx0 = xcen - self.npix_x//2 + 1
        # nx1 = xcen + self.npix_x//2

        # # ylim of a given ccd chip
        # yrem = 2*((chipID-1)//self.nchip_x) - (self.nchip_y-1)
        # ycen = (self.npix_y//2 + gy1//2) * yrem
        # if chipID <= 6: ycen = (self.npix_y//2 + gy1//2) * yrem - (gy2-gy1)
        # if chipID >= 25: ycen = (self.npix_y//2 + gy1//2) * yrem + (gy2-gy1)
        # ny0 = ycen - self.npix_y//2 + 1
        # ny1 = ycen + self.npix_y//2

        if chipID == None:
            chipID = self.chipID
            rowID, colID = self.rowID, self.colID
        else:
            rowID, colID = self.getChipRowCol(chipID)
        gx1, gx2 = self.npix_gap_x
        gy = self.npix_gap_y

        # xlim of a given CCD chip
        xrem = 2*(colID - 1) - (self.nchip_x - 1)
        xcen = (self.npix_x//2 + gx1//2) * xrem
        if chipID >= 26 or chipID == 21:
            xcen = (self.npix_x//2 + gx1//2) * xrem - (gx2-gx1)
        if chipID <= 5 or chipID == 10:
            xcen = (self.npix_x//2 + gx1//2) * xrem + (gx2-gx1)
        nx0 = xcen - self.npix_x//2 + 1
        nx1 = xcen + self.npix_x//2

        # ylim of a given CCD chip
        yrem = (rowID - 1) - self.nchip_y // 2
        ycen = (self.npix_y + gy) * yrem
        ny0 = ycen - self.npix_y//2 + 1
        ny1 = ycen + self.npix_y//2

        return galsim.BoundsD(nx0-1, nx1-1, ny0-1, ny1-1)


    def getSkyCoverage(self, wcs):
        return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)


    def getSkyCoverageEnlarged(self, wcs, margin=0.5):
        """The enlarged sky coverage of the chip
        """
        margin /= 60.0
        bound = self.getSkyCoverage(wcs)
        return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)

    def isContainObj(self, ra_obj, dec_obj, wcs=None, margin=1):
        # magin in number of pix
        if wcs is None:
            wcs = self.img.wcs
        pos_obj = wcs.toImage(galsim.CelestialCoord(ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
        xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
        ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
        if (pos_obj.x - xmin) * (pos_obj.x - xmax) > 0.0 or (pos_obj.y - ymin) * (pos_obj.y - ymax) > 0.0:
            return False
        return True

    def getChipNoise(self, exptime=150.0):
        noise = self.dark_noise * exptime + self.read_noise**2
        return noise


    def addNoise_phot(self, img, exptime=150.0, sky_noise=0., seed=31415):
        rng = galsim.BaseDeviate(seed)
        dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng, self.dark_noise*exptime))
        img.addNoise(dark_noise)
        ccd_noise = galsim.CCDNoise(rng, sky_level=sky_noise, gain=self.gain, read_noise=self.read_noise)
        img.addNoise(ccd_noise)
        return img

    def addNoise_spec(self, config, tel, img, sky_map, exptime=150.0, seed=31415):
        if img.array.shape != sky_map.shape:
            raise ValueError("The shape img and sky_map must be equal.")

        # n_img_arrar = (img.array + sky_map) * tel.pupil_area * exptime
        # Should be the following?
        rng = galsim.BaseDeviate(seed)
        noise_img = galsim.Image(img, copy=True)
        dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng, self.dark_noise*exptime))
        img.addNoise(dark_noise)
        if config["abs_back"].lower() == "y":
            img += (sky_map * tel.pupil_area * exptime)
        ccd_noise = galsim.CCDNoise(rng, gain=self.gain, read_noise=self.read_noise)
        img.addNoise(ccd_noise)
        return img
        # pNoise = self.dark_noise * exptime
        # noise_img = galsim.Image(n_img_arrar, copy=True)
        # dNose = galsim.PoissonNoise(rng=rng, sky_level=pNoise)
        # noise_img.addNoise(dNose)
        # rdNoise = galsim.GaussianNoise(rng=rng, sigma=self.read_noise)
        # noise_img.addNoise(rdNoise)
        # return noise_img

    def addNoise(self, config, tel, filt, img, sky_map=None, exptime=150.0):
        if self.survey_type == "photometric":
            sky_level = filt.getSkyNoise(exptime=exptime, gain=self.gain)
            img = self.addNoise_phot(
                img=img, 
                exptime=exptime, 
                sky_noise=filt.getSkyNoise(exptime=exptime, gain=self.gain), 
                seed=int(config["seed_skynoise"]))
            if config["abs_back"].lower() == "y":
                img += sky_level
        elif self.survey_type == "spectroscopic":
            if sky_map is None:
                raise ValueError("Must provide sky_map for spectroscopic chip")
            img = self.addNoise_spec(
                config=config, 
                tel=tel, 
                img=img, 
                sky_map=sky_map, 
                exptime=exptime, 
                seed=int(config["seed_skynoise"]))
        return img

    def getChipSLSConf(self):
        confFile = ''
        if self.chipID == 1: confFile = ['CSST_GI2.conf', 'CSST_GI1.conf']
        if self.chipID == 2: confFile = ['CSST_GV4.conf', 'CSST_GV3.conf']
        if self.chipID == 3: confFile = ['CSST_GU2.conf', 'CSST_GU1.conf']
        if self.chipID == 4: confFile = ['CSST_GU4.conf', 'CSST_GU3.conf']
        if self.chipID == 5: confFile = ['CSST_GV2.conf', 'CSST_GV1.conf']
        if self.chipID == 10: confFile = ['CSST_GI4.conf', 'CSST_GI3.conf']
        if self.chipID == 21: confFile = ['CSST_GI6.conf', 'CSST_GI5.conf']
        if self.chipID == 26: confFile = ['CSST_GV8.conf', 'CSST_GV7.conf']
        if self.chipID == 27: confFile = ['CSST_GU6.conf', 'CSST_GU5.conf']
        if self.chipID == 28: confFile = ['CSST_GU8.conf', 'CSST_GU7.conf']
        if self.chipID == 29: confFile = ['CSST_GV6.conf', 'CSST_GV5.conf']
        if self.chipID == 30: confFile = ['CSST_GI8.conf', 'CSST_GI7.conf']
        return confFile

    def addEffects(self, config, img, chip_output, filt, exptime=150., pointing_ID=0):
        SeedGainNonuni=int(config["seed_gainNonUniform"])
        SeedBiasNonuni=int(config["seed_biasNonUniform"])
        SeedRnNonuni = int(config["seed_rnNonUniform"])
        SeedBadColumns = int(config["seed_badcolumns"])
        SeedDefective = int(config["seed_defective"])
        SeedCosmicRay = int(config["seed_CR"])
        fullwell = int(config["full_well"])
        if config["add_hotpixels"].lower() == "y":
            BoolHotPix = True
        else:
            BoolHotPix = False
        if config["add_deadpixels"].lower() == "y":
            BoolDeadPix = True
        else:
            BoolDeadPix = False

        # Apply flat-field large scale structure for one chip
        if config["flat_fielding"].lower() == "y":
            print("  Creating and applying Flat-Fielding", flush=True)
            print(img.bounds, flush=True)
            flat_img = effects.MakeFlatSmooth(
                img.bounds, 
                int(config["seed_flat"]))
            flat_normal = flat_img / np.mean(flat_img.array)
            img *= flat_normal
            del flat_normal
            if config["flat_output"].lower() == "n":
                del flat_img

        # Apply Shutter-effect for one chip
        if config["shutter_effect"].lower() == "y":
            print("  Apply shutter effect", flush=True)
            shuttimg = effects.ShutterEffectArr(img, t_shutter=1.3, dist_bearing=735, dt=1E-3)    # shutter effect normalized image for this chip
            img *= shuttimg
            if config["shutter_output"].lower() == "y":    # output 16-bit shutter effect image with pixel value <=65535
                shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
                shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" % (chip_output.subdir, self.chipID))
                del shutt_gsimg
            del shuttimg

        # Apply PRNU effect and output PRNU flat file:
        if config["prnu_effect"].lower() == "y":
            print("  Applying PRNU effect", flush=True)
            prnu_img = effects.PRNU_Img(
                xsize=self.npix_x, 
                ysize=self.npix_y, 
                sigma=0.01, 
                seed=int(config["seed_prnu"]+self.chipID))
            img *= prnu_img
            if config["prnu_output"].lower() == "y":
                prnu_img.write("%s/FlatImg_PRNU_%s.fits" % (chip_output.subdir,self.chipID))
            if config["flat_output"].lower() == "n":
                del prnu_img

        # Add dark current
        img += self.dark_noise*exptime

        # Add cosmic-rays
        if config["cosmic_ray"].lower() == "y":
            print("  Adding Cosmic-Ray", flush=True)
            cr_map = effects.produceCR_Map(
                xLen=self.npix_x, yLen=self.npix_y, 
                exTime=exptime, 
                cr_pixelRatio=0.003, 
                gain=self.gain, 
                attachedSizes=self.attachedSizes,
                seed=SeedCosmicRay+pointing_ID*30+self.chipID)
            img += cr_map
            cr_map[cr_map > 65535] = 65535
            cr_map[cr_map < 0] = 0
            crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
            # crmap_gsimg.write("%s/CosmicRay_%s_1.fits" % (chip_output.subdir, self.chipID))
            crmap_gsimg.write("%s/CosmicRay_%s.fits" % (chip_output.subdir, self.chipID))
            del crmap_gsimg

        # Add Bias level
        if config["add_bias"].lower() == "y":
            print("  Adding Bias level and 16-channel non-uniformity")
            # img += float(config["bias_level"])
            img = effects.AddBiasNonUniform16(img, 
                bias_level=float(config["bias_level"]), 
                nsecy = 2, nsecx=8, 
                seed=SeedBiasNonuni+self.chipID)

        # Bias output
        if config["bias_output"].lower() == "y":
            print("  Output N frame Bias files", flush=True)
            NBias = int(config["NBias"])
            for i in range(NBias):
                BiasCombImg, BiasTag = effects.MakeBiasNcomb(
                    self.npix_x, self.npix_y, 
                    bias_level=float(config["bias_level"]), 
                    ncombine=1, read_noise=self.read_noise, gain=1,
                    seed=SeedBiasNonuni+self.chipID)
                
                # Non-Linearity for Bias
                if config["non_linear"].lower() == "y":
                    print("  Applying Non-Linearity on the Bias image", flush=True)
                    BiasCombImg = effects.NonLinearity(GSImage=BiasCombImg, beta1=1.e-7, beta2=1.e-10)

                BiasCombImg = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
                    seed=SeedGainNonuni+self.chipID)
                # BiasCombImg = effects.AddOverscan(
                #     BiasCombImg, 
                #     overscan=float(config["bias_level"])-2, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                BiasCombImg.replaceNegative(replace_value=0)
                BiasCombImg.quantize()
                BiasCombImg = galsim.ImageUS(BiasCombImg)
                BiasCombImg.write("%s/BiasImg_%s_%s_%s.fits" % (chip_output.subdir, BiasTag, self.chipID, i+1))
            del BiasCombImg

        # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
        if config["flat_output"].lower() == "y":
            print("  Output N frame Flat-Field files", flush=True)
            NFlat = int(config["NFlat"])
            if config["add_bias"].lower() == "y":
                biaslevel = self.bias_level
                overscan = biaslevel-2
            elif config["add_bias"].lower() == "n":
                biaslevel = 0
                overscan = 0
            darklevel = self.dark_noise*self.exptime
            for i in range(NFlat):
                FlatSingle = flat_img * prnu_img + darklevel
                FlatCombImg, FlatTag = effects.MakeFlatNcomb(
                    flat_single_image=FlatSingle, 
                    ncombine=1, 
                    read_noise=self.read_noise,
                    gain=1, 
                    overscan=overscan, 
                    biaslevel=biaslevel,
                    seed_bias=SeedDefective+self.chipID
                    )
                if config["cosmic_ray"].lower() == "y":
                    FlatCombImg += cr_map

                if config["non_linear"].lower() == "y":
                    print("  Applying Non-Linearity on the Flat image", flush=True)
                    FlatCombImg = effects.NonLinearity(GSImage=FlatCombImg, beta1=1.e-7, beta2=1.e-10)

                if config["cte_trail"].lower() == "y":
                    FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)

                # Apply Bad lines 
                if config["add_badcolumns"].lower() == "y":
                    FlatCombImg = effects.BadColumns(FlatCombImg, seed=SeedBadColumns, chipid=self.chipID)

                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                FlatCombImg = effects.DefectivePixels(FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=self.bias_level)

                FlatCombImg = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
                    seed=SeedGainNonuni+self.chipID)
                # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
                FlatCombImg.replaceNegative(replace_value=0)
                FlatCombImg.quantize()
                FlatCombImg = galsim.ImageUS(FlatCombImg)
                FlatCombImg.write("%s/FlatImg_%s_%s_%s.fits" % (chip_output.subdir, FlatTag, self.chipID, i+1))
            del FlatCombImg, FlatSingle, prnu_img
            # flat_img.replaceNegative(replace_value=0)
            # flat_img.quantize()
            # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
            del flat_img

        # Export Dark current images
        if config["dark_output"].lower() == "y":
            print("  Output N frame Dark Current files", flush=True)
            NDark = int(config["NDark"])
            if config["add_bias"].lower() == "y":
                biaslevel = self.bias_level
                overscan = biaslevel-2
            elif config["add_bias"].lower() == "n":
                biaslevel = 0
                overscan = 0
            for i in range(NDark):
                DarkCombImg, DarkTag = effects.MakeDarkNcomb(
                    self.npix_x, self.npix_y, 
                    overscan=overscan, bias_level=biaslevel, darkpsec=0.02, exptime=150,
                    ncombine=1, read_noise=self.read_noise, 
                    gain=1, seed_bias=SeedBiasNonuni+self.chipID)
                if config["cosmic_ray"].lower() == "y":
                    DarkCombImg += cr_map

                # Non-Linearity for Dark
                if config["non_linear"].lower() == "y":
                    print("  Applying Non-Linearity on the Dark image", flush=True)
                    DarkCombImg = effects.NonLinearity(GSImage=DarkCombImg, beta1=1.e-7, beta2=1.e-10)

                if config["cte_trail"].lower() == "y":
                    DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)

                # Apply Bad lines 
                if config["add_badcolumns"].lower() == "y":
                    DarkCombImg = effects.BadColumns(DarkCombImg, seed=SeedBadColumns, chipid=self.chipID)

                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                DarkCombImg = effects.DefectivePixels(DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=self.bias_level)

                DarkCombImg = effects.ApplyGainNonUniform16(
                    DarkCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
                    seed=SeedGainNonuni+self.chipID)
                # DarkCombImg = effects.AddOverscan(
                #     DarkCombImg, 
                #     overscan=overscan, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                DarkCombImg.replaceNegative(replace_value=0)
                DarkCombImg.quantize()
                DarkCombImg = galsim.ImageUS(DarkCombImg)
                DarkCombImg.write("%s/DarkImg_%s_%s_%s.fits" % (chip_output.subdir, DarkTag, self.chipID, i+1))
            del DarkCombImg

        # garbage collection of cosmic-ray array
        if config["cosmic_ray"].lower() == "y":
            del cr_map

        # Apply Nonlinearity on the chip image
        if config["non_linear"].lower() == "y":
            print("  Applying Non-Linearity on the chip image", flush=True)
            img = effects.NonLinearity(GSImage=img, beta1=1.e-7, beta2=1.e-10)

        # Apply CCD Saturation & Blooming
        if config["saturbloom"].lower() == "y":
            print("  Applying CCD Saturation & Blooming")
            img = effects.SaturBloom(GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)

        # Apply CTE Effect
        if config["cte_trail"].lower() == "y":
            print("  Apply CTE Effect")
            img = effects.CTE_Effect(GSImage=img, threshold=27)

        # Apply Bad lines 
        if config["add_badcolumns"].lower() == "y":
            img = effects.BadColumns(img, seed=SeedBadColumns, chipid=self.chipID)

        # Add Hot Pixels or/and Dead Pixels
        rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
        badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
        img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=self.bias_level)
        

        # Apply Gain & Quantization
        print("  Applying Gain (and 16 channel non-uniformity) & Quantization", flush=True)
        img = effects.ApplyGainNonUniform16(
            img, gain=self.gain, 
            nsecy = 2, nsecx=8, 
            seed=SeedGainNonuni+self.chipID)
        img.array[img.array > 65535] = 65535
        img.replaceNegative(replace_value=0)
        img.quantize()
        # img = galsim.ImageUS(img)

        # # 16 output channel, with each a single image file
        # if config["readout16"].lower() == "y":
        #     print("  16 Output Channel simulation")
        #     for coli in [0, 1]:
        #         for rowi in range(8):
        #             sub_img = effects.readout16(
        #                 GSImage=img, 
        #                 rowi=rowi, 
        #                 coli=coli, 
        #                 overscan_value=self.overscan)
        #             rowcoltag = str(rowi) + str(coli)
        #             img_name_root = chip_output.img_name.split(".")[0]
        #             sub_img.write("%s/%s_%s.fits" % (chip_output.subdir, img_name_root, rowcoltag))
        #     del sub_img
        return img