Star.py 5.14 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import galsim
import os, sys
import numpy as np
import astropy.constants as cons
from astropy.table import Table
from ._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, getABMAG, tag_sed
from .SpecDisperser import SpecDisperser
from .MockObject import MockObject
from scipy import interpolate

class Star(MockObject):
    def __init__(self, param):
        super().__init__(param)

    def unload_SED(self):
        """(Test) free up SED memory
        """
        del self.sed

    def load_SED(self, survey_type, normFilter=None, target_filt=None, sed_lib=None, sed_path=None):
        if survey_type == "photometric":
            norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
            # spec_lambda = Table.read(sed_path, path=f"/SED/wave_{self.model_tag}")
            # spec_flux = Table.read(sed_path, path=f"/SED/{self.sed_type}")
            # wave, flux = spec_lambda['col0'].data, spec_flux['col0'].data
            _, wave, flux = tag_sed(
                h5file=sed_lib, 
                model_tag=self.param['model_tag'], 
                teff=self.param['teff'],
                logg=self.param['logg'],
                feh=self.param['feh'])
            flux_photon = flux * (wave / (cons.h.value * cons.c.value)) * 1e-13
            sed_photon = Table(np.array([wave, flux_photon]).T, names=('WAVELENGTH', 'FLUX'))
            # Get scaling factor for SED
            sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'],
                spectrum=sed_photon,
                norm_thr=normFilter,
                sWave=np.floor(normFilter[norm_thr_rang_ids][0][0]),
                eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
            sed_photon = np.array([sed_photon['WAVELENGTH'], sed_photon['FLUX']*sedNormFactor]).T
            # Convert to galsim.SED object
            spec = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(sed_photon[:, 1]), interpolant='nearest')
            self.sed = galsim.SED(spec, wave_type='A', flux_type='1', fast=False)
            # Get magnitude
            interFlux = integrate_sed_bandpass(sed=self.sed, bandpass=target_filt.bandpass_full)
            self.param['mag_%s'%target_filt.filter_type] = getABMAG(
                interFlux=interFlux, 
                bandpass=target_filt.bandpass_full)
            # print('mag_use_normal = ', self.param['mag_use_normal'])
            # print('mag_%s = '%target_filt.filter_type, self.param['mag_%s'%target_filt.filter_type])

        elif survey_type == "spectroscopic":
            # self.sedPhotons(sed_path=sed_path)
            self.sedPhotons(sed_lib=sed_lib)

    def sedPhotons(self, sed_path=None, sed_lib=None):
        # spec_lambda = Table.read(sed_path, path=f"/SED/wave_{self.model_tag}")
        # spec_flux = Table.read(sed_path, path=f"/SED/{self.sed_type}")
        _, w_orig, f_orig = tag_sed(
                h5file=sed_lib, 
                model_tag=self.param['model_tag'], 
                teff=self.param['teff'],
                logg=self.param['logg'],
                feh=self.param['feh'])
        # spec_data = {}
        # f_orig = spec_flux["col0"].data
        # w_orig = spec_lambda["col0"].data
        speci = interpolate.interp1d(w_orig, f_orig)
        lamb = np.arange(2500, 10001 + 0.5, 0.5)
        y = speci(lamb)
        # erg/s/cm2/A --> photo/s/m2/A
        all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
        self.sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))

    def getGSObj(self, psf, g1=0, g2=0, flux=None, filt=None, tel=None, exptime=150.):
        if flux == None:
            flux = self.getElectronFluxFilt(filt, tel, exptime)
        # star = galsim.Gaussian(sigma=1.e-8, flux=1.)
        star = galsim.DeltaFunction()
        star = star.withFlux(flux)
        final = galsim.Convolve(psf, star)
        return final
        
    def getGSObj_multiband(self, tel, psf_list, bandpass_list, filt, nphotons_tot=None, g1=0, g2=0, exptime=150.):
        if len(psf_list) != len(bandpass_list):
            raise ValueError("!!!The number of PSF profiles and the number of bandpasses must be equal.")
        objs = []
        if nphotons_tot == None:
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)

        try:
            full = integrate_sed_bandpass(sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            return -1

        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                return -1
        
            ratio = sub/full

            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                return -1
            star = galsim.DeltaFunction()
            star = star.withFlux(nphotons)
            star = galsim.Convolve(psf, star)
            objs.append(star)
        final = galsim.Sum(objs)
        return final