Chip.py 42.5 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
import galsim
import os
import numpy as np
from astropy.table import Table
from numpy.random import Generator, PCG64
Fang Yuedong's avatar
Fang Yuedong committed
6
7
from astropy.io import fits
from datetime import datetime
Fang Yuedong's avatar
Fang Yuedong committed
8

9
10
11
12
from ObservationSim.Instrument.Chip import Effects as effects
from ObservationSim.Instrument.FocalPlane import FocalPlane
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader

Fang Yuedong's avatar
Fang Yuedong committed
13
14
15
16
17
18
try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources

Fang Yuedong's avatar
Fang Yuedong committed
19
class Chip(FocalPlane):
20
    def __init__(self, chipID, ccdEffCurve_dir=None, CRdata_dir=None, sls_dir=None, config=None, treering_func=None, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
21
22
23
24
25
26
27
28
        # Get focal plane (instance of paraent class) info
        # TODO: use chipID to config individual chip?
        super().__init__()
        self.npix_x = 9216
        self.npix_y = 9232
        self.read_noise = 5.0   # e/pix
        self.dark_noise = 0.02  # e/pix/s
        self.pix_scale  = 0.074 # pixel scale
Fang Yuedong's avatar
Fang Yuedong committed
29
30
        self.gain = float(config["ins_effects"]["gain"])
        self.bias_level = float(config["ins_effects"]["bias_level"])
Fang Yuedong's avatar
Fang Yuedong committed
31
        self.overscan   = 1000
Fang Yuedong's avatar
Fang Yuedong committed
32
33
34
35
        self.exptime    = float(config["obs_setting"]["exp_time"])   # second
        self.dark_exptime = float(config["ins_effects"]['dark_exptime'])
        self.flat_exptime = float(config["ins_effects"]['flat_exptime'])
        self.readout_time = float(config["ins_effects"]['readout_time'])
36
        self.full_well = int(config["ins_effects"]["full_well"])
Fang Yuedong's avatar
Fang Yuedong committed
37

38
39
        self.logger = logger

Fang Yuedong's avatar
Fang Yuedong committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        # A chip ID must be assigned
        self.chipID = int(chipID)
        self._getChipRowCol()

        # Get corresponding filter info
        self.filter_id, self.filter_type = self.getChipFilter()
        self.survey_type = self._getSurveyType()

        # Get boundary (in pix)
        self.bound = self.getChipLim()
        self.ccdEffCurve_dir = ccdEffCurve_dir
        self.CRdata_dir = CRdata_dir
        slsconfs = self.getChipSLSConf()
        if np.size(slsconfs) == 1:
54
55
56
57
58
59
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs) as conf_path:
                    self.sls_conf = str(conf_path)
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs) as conf_path:
                    self.sls_conf = str(conf_path)
Fang Yuedong's avatar
Fang Yuedong committed
60
        else:
Fang Yuedong's avatar
Fang Yuedong committed
61
62
            # self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
            self.sls_conf = []
63
64
65
66
67
68
69
70
71
72
73
74
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs[0]) as conf_path:
                    self.sls_conf.append(str(conf_path))
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[0]) as conf_path:
                    self.sls_conf.append(str(conf_path))
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs[1]) as conf_path:
                    self.sls_conf.append(str(conf_path))
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[1]) as conf_path:
                    self.sls_conf.append(str(conf_path))
Fang Yuedong's avatar
Fang Yuedong committed
75
76
77
78
79
        
        self.effCurve = self._getChipEffCurve(self.filter_type)
        self._getCRdata()

        # Define the sensor
Fang Yuedong's avatar
Fang Yuedong committed
80
        if config["ins_effects"]["bright_fatter"] == True and self.survey_type == "photometric":
Fang Yuedong's avatar
Fang Yuedong committed
81
            self.sensor = galsim.SiliconSensor(strength=config["ins_effects"]["df_strength"], treering_func=treering_func)
Fang Yuedong's avatar
Fang Yuedong committed
82
83
84
        else:
            self.sensor = galsim.Sensor()

85
86
        self.flat_cube = None # for spectroscopic flat field cube simulation

Fang Yuedong's avatar
Fang Yuedong committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    # def _getChipRowCol(self):
    #     self.rowID = (self.chipID - 1) // 5 + 1
    #     self.colID = (self.chipID - 1) % 5 + 1
    def _getChipRowCol(self):
        self.rowID, self.colID = self.getChipRowCol(self.chipID)

    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID

    def _getSurveyType(self):
        if self.filter_type in ["GI", "GV", "GU"]:
            return "spectroscopic"
        else:
            return "photometric"

    def _getChipEffCurve(self, filter_type):
        # CCD efficiency curves
        if filter_type in ['nuv', 'u', 'GU']: filename = 'UV0.txt'
        if filter_type in ['g', 'r', 'GV']: filename = 'Astro_MB.txt'
        if filter_type in ['i', 'z', 'y', 'GI']: filename = 'Basic_NIR.txt'
        # Mirror efficiency:
110
111
112
113
        # if filter_type == 'nuv': mirror_eff = 0.54
        # if filter_type == 'u': mirror_eff = 0.68
        # if filter_type in ['g', 'r', 'i', 'z', 'y']: mirror_eff = 0.8
        # if filter_type in ['GU', 'GV', 'GI']: mirror_eff = 1. # Not sure if this is right
Fang Yuedong's avatar
Fang Yuedong committed
114
        
Fang Yuedong's avatar
Fang Yuedong committed
115
116
        # path = os.path.join(self.ccdEffCurve_dir, filename)
        # table = Table.read(path, format='ascii')
117
118
119
120
121
122
        try:
            with pkg_resources.files('ObservationSim.Instrument.data.ccd').joinpath(filename) as ccd_path:
                table = Table.read(ccd_path, format='ascii')
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data.ccd', filename) as ccd_path:
                table = Table.read(ccd_path, format='ascii')
123
124
        # throughput = galsim.LookupTable(x=table['col1'], f=table['col2']*mirror_eff, interpolant='linear')
        throughput = galsim.LookupTable(x=table['col1'], f=table['col2'], interpolant='linear')
Fang Yuedong's avatar
Fang Yuedong committed
125
126
127
128
        bandpass = galsim.Bandpass(throughput, wave_type='nm')
        return bandpass

    def _getCRdata(self):
Fang Yuedong's avatar
Fang Yuedong committed
129
130
        # path = os.path.join(self.CRdata_dir, 'wfc-cr-attachpixel.dat')
        # self.attachedSizes = np.loadtxt(path)
131
132
133
134
135
136
        try:
            with pkg_resources.files('ObservationSim.Instrument.data').joinpath("wfc-cr-attachpixel.dat") as cr_path:
                self.attachedSizes = np.loadtxt(cr_path)
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data', "wfc-cr-attachpixel.dat") as cr_path:
                self.attachedSizes = np.loadtxt(cr_path)
Fang Yuedong's avatar
Fang Yuedong committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    def getChipFilter(self, chipID=None, filter_layout=None):
        """Return the filter index and type for a given chip #(chipID)
        """
        filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI"]
        # TODO: maybe a more elegent way other than hard coded?
        # e.g. use something like a nested dict:
        if filter_layout is not None:
            return filter_layout[chipID][0], filter_layout[chipID][1]
        if chipID == None:
            chipID = self.chipID

        # updated configurations
        # if chipID>30 or chipID<1: raise ValueError("!!! Chip ID: [1,30]")
        # if chipID in [10, 15, 16, 21]: filter_type = 'y'
        # if chipID in [11, 20]:         filter_type = "z"
        # if chipID in [9, 22]:           filter_type = "i"
        # if chipID in [12, 19]:         filter_type = "u"
        # if chipID in [7, 24]:         filter_type = "r"
        # if chipID in [14, 13, 18, 17]:    filter_type = "nuv"
        # if chipID in [8, 23]:         filter_type = "g"
        # if chipID in [6, 5, 25, 26]:    filter_type = "GI"
        # if chipID in [27, 30, 1, 4]:    filter_type = "GV"
        # if chipID in [28, 29, 2, 3]:    filter_type = "GU"
        if chipID in [6, 15, 16, 25]: filter_type = "y"
        if chipID in [11, 20]:         filter_type = "z"
        if chipID in [7, 24]:           filter_type = "i"
        if chipID in [14, 17]:         filter_type = "u"
        if chipID in [9, 22]:         filter_type = "r"
        if chipID in [12, 13, 18, 19]:    filter_type = "nuv"
        if chipID in [8, 23]:         filter_type = "g"
        if chipID in [1, 10, 21, 30]:    filter_type = "GI"
        if chipID in [2, 5, 26, 29]:    filter_type = "GV"
        if chipID in [3, 4, 27, 28]:    filter_type = "GU"
        filter_id = filter_type_list.index(filter_type)

        return filter_id, filter_type

    def getChipLim(self, chipID=None):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
        NOTE: There are 5*4 CCD chips in the focus plane for photometric observation.
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """
        # if chipID == None:
        #     chipID = self.chipID
        
        # gx = self.npix_gap_x
        # gy1, gy2 = self.npix_gap_y

        # # xlim of a given ccd chip
        # xrem = (chipID-1)%self.nchip_x - self.nchip_x // 2
        # xcen = (self.npix_x + gx) * xrem
        # nx0 = xcen - self.npix_x//2 + 1
        # nx1 = xcen + self.npix_x//2

        # # ylim of a given ccd chip
        # yrem = 2*((chipID-1)//self.nchip_x) - (self.nchip_y-1)
        # ycen = (self.npix_y//2 + gy1//2) * yrem
        # if chipID <= 6: ycen = (self.npix_y//2 + gy1//2) * yrem - (gy2-gy1)
        # if chipID >= 25: ycen = (self.npix_y//2 + gy1//2) * yrem + (gy2-gy1)
        # ny0 = ycen - self.npix_y//2 + 1
        # ny1 = ycen + self.npix_y//2

        if chipID == None:
            chipID = self.chipID
            rowID, colID = self.rowID, self.colID
        else:
            rowID, colID = self.getChipRowCol(chipID)
        gx1, gx2 = self.npix_gap_x
        gy = self.npix_gap_y

        # xlim of a given CCD chip
        xrem = 2*(colID - 1) - (self.nchip_x - 1)
        xcen = (self.npix_x//2 + gx1//2) * xrem
        if chipID >= 26 or chipID == 21:
            xcen = (self.npix_x//2 + gx1//2) * xrem - (gx2-gx1)
        if chipID <= 5 or chipID == 10:
            xcen = (self.npix_x//2 + gx1//2) * xrem + (gx2-gx1)
        nx0 = xcen - self.npix_x//2 + 1
        nx1 = xcen + self.npix_x//2

        # ylim of a given CCD chip
        yrem = (rowID - 1) - self.nchip_y // 2
        ycen = (self.npix_y + gy) * yrem
        ny0 = ycen - self.npix_y//2 + 1
        ny1 = ycen + self.npix_y//2

        return galsim.BoundsD(nx0-1, nx1-1, ny0-1, ny1-1)


    def getSkyCoverage(self, wcs):
Fang Yuedong's avatar
Fang Yuedong committed
232
        # print("In getSkyCoverage: xmin = %.3f, xmax = %.3f, ymin = %.3f, ymax = %.3f"%(self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax))
Fang Yuedong's avatar
Fang Yuedong committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)


    def getSkyCoverageEnlarged(self, wcs, margin=0.5):
        """The enlarged sky coverage of the chip
        """
        margin /= 60.0
        bound = self.getSkyCoverage(wcs)
        return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)

    def isContainObj(self, ra_obj, dec_obj, wcs=None, margin=1):
        # magin in number of pix
        if wcs is None:
            wcs = self.img.wcs
        pos_obj = wcs.toImage(galsim.CelestialCoord(ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
        xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
        ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
        if (pos_obj.x - xmin) * (pos_obj.x - xmax) > 0.0 or (pos_obj.y - ymin) * (pos_obj.y - ymax) > 0.0:
            return False
        return True

    def getChipNoise(self, exptime=150.0):
        noise = self.dark_noise * exptime + self.read_noise**2
        return noise

    def getChipSLSConf(self):
        confFile = ''
        if self.chipID == 1: confFile = ['CSST_GI2.conf', 'CSST_GI1.conf']
        if self.chipID == 2: confFile = ['CSST_GV4.conf', 'CSST_GV3.conf']
        if self.chipID == 3: confFile = ['CSST_GU2.conf', 'CSST_GU1.conf']
        if self.chipID == 4: confFile = ['CSST_GU4.conf', 'CSST_GU3.conf']
        if self.chipID == 5: confFile = ['CSST_GV2.conf', 'CSST_GV1.conf']
        if self.chipID == 10: confFile = ['CSST_GI4.conf', 'CSST_GI3.conf']
        if self.chipID == 21: confFile = ['CSST_GI6.conf', 'CSST_GI5.conf']
        if self.chipID == 26: confFile = ['CSST_GV8.conf', 'CSST_GV7.conf']
        if self.chipID == 27: confFile = ['CSST_GU6.conf', 'CSST_GU5.conf']
        if self.chipID == 28: confFile = ['CSST_GU8.conf', 'CSST_GU7.conf']
        if self.chipID == 29: confFile = ['CSST_GV6.conf', 'CSST_GV5.conf']
        if self.chipID == 30: confFile = ['CSST_GI8.conf', 'CSST_GI7.conf']
        return confFile

Fang Yuedong's avatar
Fang Yuedong committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    def generateHeader(self, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, exptime=150.):
        h_prim = generatePrimaryHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            pointNum = str(pointing_ID),
            ra=ra_cen, 
            dec=dec_cen, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            date=date_obs,
            time_obs=time_obs,
            im_type = im_type,
            exptime=exptime
            )
        h_ext = generateExtensionHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            ra=ra_cen, 
            dec=dec_cen, 
            pa=img_rot.deg, 
            gain=self.gain, 
            readout=self.read_noise, 
            dark=self.dark_noise, 
            saturation=90000, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            extName='raw')
        return h_prim, h_ext

    def outputCal(self, img, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, output_dir, exptime=150.):
        h_prim, h_ext = self.generateHeader(
            ra_cen=ra_cen,
            dec_cen=dec_cen,
            img_rot=img_rot,
            im_type=im_type,
            pointing_ID=pointing_ID,
            date_obs=date_obs,
            time_obs=time_obs,
            exptime=exptime)
        hdu1 = fits.PrimaryHDU(header=h_prim)
        hdu2 = fits.ImageHDU(img.array, header=h_ext)
        hdu1 = fits.HDUList([hdu1, hdu2])
        fname = os.path.join(output_dir, h_prim['FILENAME']+'.fits')
        hdu1.writeto(fname, output_verify='ignore', overwrite=True)

321
    def addEffects(self, config, img, chip_output, filt, ra_cen, dec_cen, img_rot, exptime=150., pointing_ID=0, timestamp_obs=1621915200, pointing_type='MS', sky_map=None, tel=None, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
322
323
324
325
326
327
328
329
        SeedGainNonuni=int(config["random_seeds"]["seed_gainNonUniform"])
        SeedBiasNonuni=int(config["random_seeds"]["seed_biasNonUniform"])
        SeedRnNonuni = int(config["random_seeds"]["seed_rnNonUniform"])
        SeedBadColumns = int(config["random_seeds"]["seed_badcolumns"])
        SeedDefective = int(config["random_seeds"]["seed_defective"])
        SeedCosmicRay = int(config["random_seeds"]["seed_CR"])
        fullwell = int(config["ins_effects"]["full_well"])
        if config["ins_effects"]["add_hotpixels"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
330
331
332
            BoolHotPix = True
        else:
            BoolHotPix = False
Fang Yuedong's avatar
Fang Yuedong committed
333
        if config["ins_effects"]["add_deadpixels"]== True:
Fang Yuedong's avatar
Fang Yuedong committed
334
335
336
            BoolDeadPix = True
        else:
            BoolDeadPix = False
337
        self.logger = logger
Fang Yuedong's avatar
Fang Yuedong committed
338

339
340
341
342
343
        # Get Poisson noise generator
        seed = int(config["random_seeds"]["seed_poisson"]) + pointing_ID*30 + self.chipID
        rng_poisson = galsim.BaseDeviate(seed)
        poisson_noise = galsim.PoissonNoise(rng_poisson, sky_level=0.)

344
        # Add sky background
Zhang Xin's avatar
Zhang Xin committed
345
        if sky_map is None:
346
            sky_map = filt.getSkyNoise(exptime=self.exptime)
347
348
349
350
351
352
353
354
            sky_map = sky_map * np.ones_like(img.array)
            sky_map = galsim.Image(array=sky_map)
            # Apply Poisson noise to the sky map
            # (NOTE): only for photometric chips
            # since it utilize the photon shooting
            # to draw stamps
            if self.survey_type == "photometric":
                sky_map.addNoise(poisson_noise)
355
356
357
358
        elif img.array.shape != sky_map.shape:
            raise ValueError("The shape img and sky_map must be equal.")
        elif tel is not None: # If sky_map is given in flux
            sky_map = sky_map * tel.pupil_area * self.exptime
Fang Yuedong's avatar
Fang Yuedong committed
359
        if config["ins_effects"]["add_back"] == True:
360
361
362
            img += sky_map
        del sky_map

Fang Yuedong's avatar
Fang Yuedong committed
363
        # Apply flat-field large scale structure for one chip
Fang Yuedong's avatar
Fang Yuedong committed
364
        if config["ins_effects"]["flat_fielding"] == True:
365
366
367
368
369
370
371
            if self.logger is not None:
                self.logger.info("  Creating and applying Flat-Fielding")
                msg = str(img.bounds)
                self.logger.info(msg)
            else:
                print("  Creating and applying Flat-Fielding", flush=True)
                print(img.bounds, flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
372
373
            flat_img = effects.MakeFlatSmooth(
                img.bounds, 
Fang Yuedong's avatar
Fang Yuedong committed
374
                int(config["random_seeds"]["seed_flat"]))
Fang Yuedong's avatar
Fang Yuedong committed
375
            flat_normal = flat_img / np.mean(flat_img.array)
376
377
            if self.survey_type == "photometric":
                img *= flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
378
            del flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
379
            if config["output_setting"]["flat_output"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
380
381
382
                del flat_img

        # Apply Shutter-effect for one chip
Fang Yuedong's avatar
Fang Yuedong committed
383
        if config["ins_effects"]["shutter_effect"] == True:
384
385
386
387
            if self.logger is not None:
                self.logger.info("  Apply shutter effect")
            else:
                print("  Apply shutter effect", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
388
            shuttimg = effects.ShutterEffectArr(img, t_shutter=1.3, dist_bearing=735, dt=1E-3)    # shutter effect normalized image for this chip
389
390
            if self.survey_type == "photometric":
                img *= shuttimg
Fang Yuedong's avatar
Fang Yuedong committed
391
            if config["output_setting"]["shutter_output"] == True:    # output 16-bit shutter effect image with pixel value <=65535
Fang Yuedong's avatar
Fang Yuedong committed
392
393
394
395
396
                shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
                shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" % (chip_output.subdir, self.chipID))
                del shutt_gsimg
            del shuttimg

397
398
399
400
401
        # Add Poisson noise to the resulting images
        # (NOTE): this can only applied to the slitless image
        # since it dose not use photon shooting to draw stamps
        if self.survey_type == "spectroscopic":
            img.addNoise(poisson_noise)
Fang Yuedong's avatar
Fang Yuedong committed
402
403

        # Add cosmic-rays
Fang Yuedong's avatar
Fang Yuedong committed
404
        if config["ins_effects"]["cosmic_ray"] == True and pointing_type=='MS':
405
406
407
408
            if self.logger is not None:
                self.logger.info(("  Adding Cosmic-Ray"))
            else:
                print("  Adding Cosmic-Ray", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
409
            cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
410
                xLen=self.npix_x, yLen=self.npix_y, 
411
                exTime=self.exptime+0.5*self.readout_time, 
Xin Zhang's avatar
Xin Zhang committed
412
                cr_pixelRatio=0.003*(self.exptime+0.5*self.readout_time)/600.,
Fang Yuedong's avatar
Fang Yuedong committed
413
414
                gain=self.gain, 
                attachedSizes=self.attachedSizes,
Fang Yuedong's avatar
Fang Yuedong committed
415
                seed=SeedCosmicRay+pointing_ID*30+self.chipID)   # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
416
417
418
419
            img += cr_map
            cr_map[cr_map > 65535] = 65535
            cr_map[cr_map < 0] = 0
            crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
Fang Yuedong's avatar
Fang Yuedong committed
420
            del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
421
            # crmap_gsimg.write("%s/CosmicRay_%s_1.fits" % (chip_output.subdir, self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
422
            # crmap_gsimg.write("%s/CosmicRay_%s.fits" % (chip_output.subdir, self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
423
            datetime_obs = datetime.utcfromtimestamp(timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
424
425
426
427
428
429
430
431
432
433
434
435
            date_obs = datetime_obs.strftime("%y%m%d")
            time_obs = datetime_obs.strftime("%H%M%S")
            self.outputCal(
                img=crmap_gsimg,
                ra_cen=ra_cen,
                dec_cen=dec_cen,
                img_rot=img_rot,
                im_type='CRS',
                pointing_ID=pointing_ID,
                date_obs=date_obs,
                time_obs=time_obs,
                output_dir=chip_output.subdir,
Fang Yuedong's avatar
Fang Yuedong committed
436
                exptime=self.exptime)
Fang Yuedong's avatar
Fang Yuedong committed
437
438
            del crmap_gsimg

439
        # Apply PRNU effect and output PRNU flat file:
Fang Yuedong's avatar
Fang Yuedong committed
440
        if config["ins_effects"]["prnu_effect"] == True:
441
442
443
444
            if self.logger is not None:
                self.logger.info("  Applying PRNU effect")
            else:
                print("  Applying PRNU effect", flush=True)
445
446
447
448
            prnu_img = effects.PRNU_Img(
                xsize=self.npix_x, 
                ysize=self.npix_y, 
                sigma=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
449
                seed=int(config["random_seeds"]["seed_prnu"]+self.chipID))
450
            img *= prnu_img
Fang Yuedong's avatar
Fang Yuedong committed
451
            if config["output_setting"]["prnu_output"] == True:
452
                prnu_img.write("%s/FlatImg_PRNU_%s.fits" % (chip_output.subdir,self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
453
            if config["output_setting"]["flat_output"] == False:
454
455
456
                del prnu_img

        # Add dark current
Fang Yuedong's avatar
Fang Yuedong committed
457
        if config["ins_effects"]["add_dark"] == True:
458
459
460
461
462
463
464
465
466
            dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng_poisson, self.dark_noise*(self.exptime+0.5*self.readout_time)))
            img.addNoise(dark_noise)

        # Add Hot Pixels or/and Dead Pixels
        rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
        badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
        img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

        # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
467
        if config["ins_effects"]["add_badcolumns"] == True:
468
            img = effects.BadColumns(img, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
469

Fang Yuedong's avatar
Fang Yuedong committed
470
        # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
471
        if config["ins_effects"]["add_bias"] == True:
472
473
474
475
            if self.logger is not None:
                self.logger.info("  Adding Bias level and 16-channel non-uniformity")
            else:
                print("  Adding Bias level and 16-channel non-uniformity")
476
477
478
479
480
481
482
483
            if config["ins_effects"]["bias_16channel"] == True:
                img = effects.AddBiasNonUniform16(img, 
                    bias_level=float(config["ins_effects"]["bias_level"]), 
                    nsecy = 2, nsecx=8, 
                    seed=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
            elif config["ins_effects"]["bias_16channel"] == False:
                img += self.bias_level
Fang Yuedong's avatar
Fang Yuedong committed
484

485
        # Apply Nonlinearity on the chip image
Fang Yuedong's avatar
Fang Yuedong committed
486
        if config["ins_effects"]["non_linear"] == True:
487
488
489
490
            if self.logger is not None:
                self.logger.info("  Applying Non-Linearity on the chip image")
            else:
                print("  Applying Non-Linearity on the chip image", flush=True)
491
492
493
            img = effects.NonLinearity(GSImage=img, beta1=5.e-7, beta2=0)

        # Apply CCD Saturation & Blooming
Fang Yuedong's avatar
Fang Yuedong committed
494
        if config["ins_effects"]["saturbloom"] == True:
495
496
497
498
            if self.logger is not None:
                self.logger.info("  Applying CCD Saturation & Blooming")
            else:
                print("  Applying CCD Saturation & Blooming")
499
500
501
            img = effects.SaturBloom(GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)

        # Apply CTE Effect
Fang Yuedong's avatar
Fang Yuedong committed
502
        if config["ins_effects"]["cte_trail"] == True:
503
504
505
506
            if self.logger is not None:
                self.logger.info("  Apply CTE Effect")
            else:
                print("  Apply CTE Effect")
507
508
509
            img = effects.CTE_Effect(GSImage=img, threshold=27)

        # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
510
511
        if config["ins_effects"]["add_readout"] == True:
            seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
512
513
514
515
516
            rng_readout = galsim.BaseDeviate(seed)
            readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
            img.addNoise(readout_noise)

        # Apply Gain & Quantization
517
518
519
520
        if self.logger is not None:
            self.logger.info("  Applying Gain (and 16 channel non-uniformity) & Quantization")
        else:
            print("  Applying Gain (and 16 channel non-uniformity) & Quantization", flush=True)
521
522
523
524
525
526
527
528
529
        if config["ins_effects"]["gain_16channel"] == True:
            img = effects.ApplyGainNonUniform16(
                img, gain=self.gain, 
                nsecy = 2, nsecx=8, 
                seed=SeedGainNonuni+self.chipID,
                logger=self.logger)
        elif config["ins_effects"]["gain_16channel"] == False:
            img /= self.gain
            
530
531
532
533
534
535
536
        img.array[img.array > 65535] = 65535
        img.replaceNegative(replace_value=0)
        img.quantize()

        ######################################################################################
        # Output images for calibration pointing
        ######################################################################################
Fang Yuedong's avatar
Fang Yuedong committed
537
        # Bias output
538
        if config["ins_effects"]["add_bias"] == True and config["output_setting"]["bias_output"] == True and pointing_type=='CAL':
539
540
541
542
            if self.logger is not None:
                self.logger.info("  Output N frame Bias files")
            else:
                print("  Output N frame Bias files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
543
            NBias = int(config["ins_effects"]["NBias"])
Fang Yuedong's avatar
Fang Yuedong committed
544
545
546
            for i in range(NBias):
                BiasCombImg, BiasTag = effects.MakeBiasNcomb(
                    self.npix_x, self.npix_y, 
Fang Yuedong's avatar
Fang Yuedong committed
547
                    bias_level=float(config["ins_effects"]["bias_level"]), 
Fang Yuedong's avatar
Fang Yuedong committed
548
                    ncombine=1, read_noise=self.read_noise, gain=1,
549
550
                    seed=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
551
                # Readout noise for Biases is not generated with random seeds. So readout noise for bias images can't be reproduced.
Fang Yuedong's avatar
Fang Yuedong committed
552
553
554
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
555
556
                            xLen=self.npix_x, yLen=self.npix_y, 
                            exTime=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
557
                            cr_pixelRatio=0.003*(0.01+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
558
559
560
561
562
563
564
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+1)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
                    BiasCombImg += cr_map
                    del cr_map

Fang Yuedong's avatar
Fang Yuedong committed
565
                # Non-Linearity for Bias
Fang Yuedong's avatar
Fang Yuedong committed
566
                if config["ins_effects"]["non_linear"] == True:
567
568
569
570
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Bias image")
                    else:
                        print("  Applying Non-Linearity on the Bias image", flush=True)
571
572
573
                    BiasCombImg = effects.NonLinearity(GSImage=BiasCombImg, beta1=5.e-7, beta2=0)

                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
574
                if config["ins_effects"]["add_badcolumns"] == True:
575
                    BiasCombImg = effects.BadColumns(BiasCombImg-float(config["ins_effects"]["bias_level"])+5, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger) + float(config["ins_effects"]["bias_level"])-5
Fang Yuedong's avatar
Fang Yuedong committed
576
577
578

                BiasCombImg = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
579
580
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
581
582
                # BiasCombImg = effects.AddOverscan(
                #     BiasCombImg, 
Fang Yuedong's avatar
Fang Yuedong committed
583
                #     overscan=float(config["ins_effects"]["bias_level"])-2, gain=self.gain, 
Fang Yuedong's avatar
Fang Yuedong committed
584
585
586
587
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                BiasCombImg.replaceNegative(replace_value=0)
                BiasCombImg.quantize()
                BiasCombImg = galsim.ImageUS(BiasCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
588
                # BiasCombImg.write("%s/BiasImg_%s_%s_%s.fits" % (chip_output.subdir, BiasTag, self.chipID, i+1))
Fang Yuedong's avatar
Fang Yuedong committed
589
                datetime_obs = datetime.utcfromtimestamp(timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
590
591
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
592
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
593
594
595
596
597
                self.outputCal(
                    img=BiasCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
598
                    im_type='BIAS',
Fang Yuedong's avatar
Fang Yuedong committed
599
600
601
602
603
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=0.0)
Fang Yuedong's avatar
Fang Yuedong committed
604
605
606
            del BiasCombImg

        # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
607
        if config["ins_effects"]["flat_fielding"] == True and config["output_setting"]["flat_output"] == True and pointing_type=='CAL':
608
609
610
611
            if self.logger is not None:
                self.logger.info("  Output N frame Flat-Field files")
            else:
                print("  Output N frame Flat-Field files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
612
613
            NFlat = int(config["ins_effects"]["NFlat"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
614
615
                biaslevel = self.bias_level
                overscan = biaslevel-2
616
            elif config["ins_effects"]["add_bias"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
617
618
                biaslevel = 0
                overscan = 0
619
            darklevel = self.dark_noise*(self.flat_exptime+0.5*self.readout_time)
Fang Yuedong's avatar
Fang Yuedong committed
620
621
622
623
624
625
626
627
            for i in range(NFlat):
                FlatSingle = flat_img * prnu_img + darklevel
                FlatCombImg, FlatTag = effects.MakeFlatNcomb(
                    flat_single_image=FlatSingle, 
                    ncombine=1, 
                    read_noise=self.read_noise,
                    gain=1, 
                    overscan=overscan, 
628
                    biaslevel=0,
629
630
                    seed_bias=SeedDefective+self.chipID,
                    logger=self.logger
Fang Yuedong's avatar
Fang Yuedong committed
631
                    )
Fang Yuedong's avatar
Fang Yuedong committed
632
633
634
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
635
                            xLen=self.npix_x, yLen=self.npix_y, 
636
                            exTime=self.flat_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
637
                            cr_pixelRatio=0.003*(self.flat_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
638
639
640
641
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+3)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
642
                    FlatCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
643
                    del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
644

Fang Yuedong's avatar
Fang Yuedong committed
645
                if config["ins_effects"]["non_linear"] == True:
646
647
648
649
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Flat image")
                    else:
                        print("  Applying Non-Linearity on the Flat image", flush=True)
650
                    FlatCombImg = effects.NonLinearity(GSImage=FlatCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
651

Fang Yuedong's avatar
Fang Yuedong committed
652
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
653
654
                    FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)

655
656
657
658
659
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                FlatCombImg = effects.DefectivePixels(FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
660
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
661
                if config["ins_effects"]["add_badcolumns"] == True:
662
                    FlatCombImg = effects.BadColumns(FlatCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
663

664
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
665
                if config["ins_effects"]["add_bias"] == True:
666
667
668
669
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
670
                    # img += float(config["ins_effects"]["bias_level"])
671
672
673
                    FlatCombImg = effects.AddBiasNonUniform16(FlatCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
674
675
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
676
677
                
                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
678
                if config["ins_effects"]["add_readout"] == True:
679
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID + 3
680
681
682
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    FlatCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
683
684
685

                FlatCombImg = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
686
687
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
688
689
690
691
                # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
                FlatCombImg.replaceNegative(replace_value=0)
                FlatCombImg.quantize()
                FlatCombImg = galsim.ImageUS(FlatCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
692
                # FlatCombImg.write("%s/FlatImg_%s_%s_%s.fits" % (chip_output.subdir, FlatTag, self.chipID, i+1))
Fang Yuedong's avatar
Fang Yuedong committed
693
                datetime_obs = datetime.utcfromtimestamp(timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
694
695
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
696
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
697
698
699
700
701
                self.outputCal(
                    img=FlatCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
702
                    im_type='FLAT',
Fang Yuedong's avatar
Fang Yuedong committed
703
704
705
706
707
708
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.flat_exptime)

Fang Yuedong's avatar
Fang Yuedong committed
709
710
711
712
713
714
715
            del FlatCombImg, FlatSingle, prnu_img
            # flat_img.replaceNegative(replace_value=0)
            # flat_img.quantize()
            # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
            del flat_img

        # Export Dark current images
716
        if config["ins_effects"]["add_dark"] == True and config["output_setting"]["dark_output"] == True and pointing_type=='CAL':
717
718
719
720
            if self.logger is not None:
                self.logger.info("  Output N frame Dark Current files")
            else:
                print("  Output N frame Dark Current files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
721
722
            NDark = int(config["ins_effects"]["NDark"])
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
723
724
                biaslevel = self.bias_level
                overscan = biaslevel-2
725
            elif config["ins_effects"]["add_bias"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
726
727
728
729
730
                biaslevel = 0
                overscan = 0
            for i in range(NDark):
                DarkCombImg, DarkTag = effects.MakeDarkNcomb(
                    self.npix_x, self.npix_y, 
731
                    overscan=overscan, bias_level=0, darkpsec=0.02, exptime=self.dark_exptime+0.5*self.readout_time,
Fang Yuedong's avatar
Fang Yuedong committed
732
                    ncombine=1, read_noise=self.read_noise, 
733
734
                    gain=1, seed_bias=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
735
736
737
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
738
                            xLen=self.npix_x, yLen=self.npix_y, 
739
                            exTime=self.dark_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
740
                            cr_pixelRatio=0.003*(self.dark_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
741
742
743
744
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+2)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
745
                    DarkCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
746
747
748
749
                    cr_map[cr_map > 65535] = 65535
                    cr_map[cr_map < 0] = 0
                    crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
                    del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
750
                    datetime_obs = datetime.utcfromtimestamp(timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
                    date_obs = datetime_obs.strftime("%y%m%d")
                    time_obs = datetime_obs.strftime("%H%M%S")
                    self.outputCal(
                        img=crmap_gsimg,
                        ra_cen=ra_cen,
                        dec_cen=dec_cen,
                        img_rot=img_rot,
                        im_type='CRD',
                        pointing_ID=pointing_ID,
                        date_obs=date_obs,
                        time_obs=time_obs,
                        output_dir=chip_output.subdir,
                        exptime=self.dark_exptime)
                    del crmap_gsimg
Fang Yuedong's avatar
Fang Yuedong committed
765
766

                # Non-Linearity for Dark
Fang Yuedong's avatar
Fang Yuedong committed
767
                if config["ins_effects"]["non_linear"] == True:
768
769
770
771
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Dark image")
                    else:
                        print("  Applying Non-Linearity on the Dark image", flush=True)
772
                    DarkCombImg = effects.NonLinearity(GSImage=DarkCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
773

Fang Yuedong's avatar
Fang Yuedong committed
774
                if config["ins_effects"]["cte_trail"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
775
776
                    DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)

777
778
779
780
781
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                DarkCombImg = effects.DefectivePixels(DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
782
                # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
783
                if config["ins_effects"]["add_badcolumns"] == True:
784
                    DarkCombImg = effects.BadColumns(DarkCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
785

786
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
787
                if config["ins_effects"]["add_bias"] == True:
788
789
790
791
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
792
                    # img += float(config["ins_effects"]["bias_level"])
793
794
795
                    DarkCombImg = effects.AddBiasNonUniform16(DarkCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
796
797
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
798
799

                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
800
                if config["ins_effects"]["add_readout"] == True:
801
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID + 2
802
803
804
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    DarkCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
805
806
807
808

                DarkCombImg = effects.ApplyGainNonUniform16(
                    DarkCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
809
810
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
811
812
813
814
815
816
817
                # DarkCombImg = effects.AddOverscan(
                #     DarkCombImg, 
                #     overscan=overscan, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                DarkCombImg.replaceNegative(replace_value=0)
                DarkCombImg.quantize()
                DarkCombImg = galsim.ImageUS(DarkCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
818
                # DarkCombImg.write("%s/DarkImg_%s_%s_%s.fits" % (chip_output.subdir, DarkTag, self.chipID, i+1))
Fang Yuedong's avatar
Fang Yuedong committed
819
                datetime_obs = datetime.utcfromtimestamp(timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
820
821
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
822
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
823
824
825
826
827
                self.outputCal(
                    img=DarkCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
828
                    im_type='DARK',
Fang Yuedong's avatar
Fang Yuedong committed
829
830
831
832
833
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.dark_exptime)
Fang Yuedong's avatar
Fang Yuedong committed
834
835
836
837
            del DarkCombImg
        # img = galsim.ImageUS(img)

        # # 16 output channel, with each a single image file
Fang Yuedong's avatar
Fang Yuedong committed
838
        # if config["ins_effects"]["readout16"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
839
840
841
842
843
844
845
846
847
848
849
850
        #     print("  16 Output Channel simulation")
        #     for coli in [0, 1]:
        #         for rowi in range(8):
        #             sub_img = effects.readout16(
        #                 GSImage=img, 
        #                 rowi=rowi, 
        #                 coli=coli, 
        #                 overscan_value=self.overscan)
        #             rowcoltag = str(rowi) + str(coli)
        #             img_name_root = chip_output.img_name.split(".")[0]
        #             sub_img.write("%s/%s_%s.fits" % (chip_output.subdir, img_name_root, rowcoltag))
        #     del sub_img
Zhang Xin's avatar
Zhang Xin committed
851
        return img
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

    def loadSLSFLATCUBE(self, flat_fn='flat_cube.fits'):
        from astropy.io import fits
        try:
            with pkg_resources.files('ObservationSim.Instrument.data').joinpath(flat_fn) as data_path:
                flat_fits = fits.open(data_path, ignore_missing_simple=True)
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data', flat_fn) as data_path:
                flat_fits = fits.open(data_path, ignore_missing_simple=True)

        fl = len(flat_fits)
        fl_sh = flat_fits[0].data.shape
        assert fl == 4, 'FLAT Field Cube is Not 4 layess!!!!!!!'
        self.flat_cube = np.zeros([fl, fl_sh[0], fl_sh[1]])
        for i in np.arange(0, fl, 1):
            self.flat_cube[i] = flat_fits[i].data