ChipUtils.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os
import galsim
import ctypes
import numpy as np
from astropy.io import fits
from datetime import datetime

from ObservationSim.Instrument.Chip import Effects as effects
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader

try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources


def log_info(msg, logger=None):
    if logger:
        logger.info(msg)
    else:
        print(msg, flush=True)

Zhang Xin's avatar
Zhang Xin committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def getChipSLSGratingID(chipID):
    gratingID = ['','']
    if chipID == 1: gratingID = ['GI2', 'GI1']
    if chipID == 2: gratingID = ['GV4', 'GV3']
    if chipID == 3: gratingID = ['GU2', 'GU1']
    if chipID == 4: gratingID = ['GU4', 'GU3']
    if chipID == 5: gratingID = ['GV2', 'GV1']
    if chipID == 10: gratingID = ['GI4', 'GI3']
    if chipID == 21: gratingID = ['GI6', 'GI5']
    if chipID == 26: gratingID = ['GV8', 'GV7']
    if chipID == 27: gratingID = ['GU6', 'GU5']
    if chipID == 28: gratingID = ['GU8', 'GU7']
    if chipID == 29: gratingID = ['GV6', 'GV5']
    if chipID == 30: gratingID = ['GI8', 'GI7']
    return gratingID

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def getChipSLSConf(chipID):
    confFile = ''
    if chipID == 1: confFile = ['CSST_GI2.conf', 'CSST_GI1.conf']
    if chipID == 2: confFile = ['CSST_GV4.conf', 'CSST_GV3.conf']
    if chipID == 3: confFile = ['CSST_GU2.conf', 'CSST_GU1.conf']
    if chipID == 4: confFile = ['CSST_GU4.conf', 'CSST_GU3.conf']
    if chipID == 5: confFile = ['CSST_GV2.conf', 'CSST_GV1.conf']
    if chipID == 10: confFile = ['CSST_GI4.conf', 'CSST_GI3.conf']
    if chipID == 21: confFile = ['CSST_GI6.conf', 'CSST_GI5.conf']
    if chipID == 26: confFile = ['CSST_GV8.conf', 'CSST_GV7.conf']
    if chipID == 27: confFile = ['CSST_GU6.conf', 'CSST_GU5.conf']
    if chipID == 28: confFile = ['CSST_GU8.conf', 'CSST_GU7.conf']
    if chipID == 29: confFile = ['CSST_GV6.conf', 'CSST_GV5.conf']
    if chipID == 30: confFile = ['CSST_GI8.conf', 'CSST_GI7.conf']
    return confFile

56
57
58
59
60
def generateHeader(chip, pointing, img_type=None, img_type_code=None, project_cycle='9', run_counter='1'):
    if (img_type is None) or (img_type_code is None):
        img_type = pointing.pointing_type
        img_type_code = pointing.pointing_type_code

61
62
63
    h_prim = generatePrimaryHeader(
        xlen=chip.npix_x, 
        ylen=chip.npix_y, 
64
65
66
67
        pointing_id = pointing.obs_id,
        pointing_type_code = img_type_code, 
        ra=pointing.ra, 
        dec=pointing.dec, 
68
        pixel_scale=chip.pix_scale,
69
70
71
72
73
        time_pt = pointing.timestamp,
        exptime=pointing.exp_time,
        im_type=img_type,
        sat_pos=[pointing.sat_x, pointing.sat_y, pointing.sat_z],
        sat_vel=[pointing.sat_vx, pointing.sat_vy, pointing.sat_vz],
74
75
        project_cycle=project_cycle,
        run_counter=run_counter,
76
        chip_name=str(chip.chipID).rjust(2, '0'))
77
78
79
80
    h_ext = generateExtensionHeader(
        chip=chip,
        xlen=chip.npix_x, 
        ylen=chip.npix_y, 
81
82
83
        ra=pointing.ra, 
        dec=pointing.dec, 
        pa=pointing.img_pa.deg, 
84
85
86
87
88
89
90
91
        gain=chip.gain, 
        readout=chip.read_noise, 
        dark=chip.dark_noise, 
        saturation=90000, 
        pixel_scale=chip.pix_scale, 
        pixel_size=chip.pix_size,
        xcen=chip.x_cen,
        ycen=chip.y_cen,
92
93
94
95
96
97
        extName=img_type,
        timestamp=pointing.timestamp,
        exptime=pointing.exp_time,
        readoutTime=chip.readout_time,
        t_shutter_open=pointing.t_shutter_open, 
        t_shutter_close=pointing.t_shutter_close)
98
99
    return h_prim, h_ext

100
def output_fits_image(chip, pointing, img, output_dir, img_type=None, img_type_code=None, project_cycle='9', run_counter='1'):
101
    h_prim, h_ext = generateHeader(
102
103
104
105
        chip=chip, 
        pointing=pointing, 
        img_type=img_type, 
        img_type_code=img_type_code,
106
        project_cycle=project_cycle,
107
        run_counter=run_counter)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    hdu1 = fits.PrimaryHDU(header=h_prim)
    hdu1.add_checksum()
    hdu1.header.comments['CHECKSUM'] = 'HDU checksum'
    hdu1.header.comments['DATASUM'] = 'data unit checksum'
    hdu2 = fits.ImageHDU(img.array, header=h_ext)
    hdu2.add_checksum()
    hdu2.header.comments['XTENSION'] = 'extension type'
    hdu2.header.comments['CHECKSUM'] = 'HDU checksum'
    hdu2.header.comments['DATASUM'] = 'data unit checksum'
    hdu1 = fits.HDUList([hdu1, hdu2])
    fname = os.path.join(output_dir, h_prim['FILENAME']+'.fits')
    hdu1.writeto(fname, output_verify='ignore', overwrite=True)

def add_sky_background(img, filt, exptime, sky_map=None, tel=None):
    # Add sky background
    if sky_map is None:
        sky_map = filt.getSkyNoise(exptime=exptime)
        sky_map = sky_map * np.ones_like(img.array)
        sky_map = galsim.Image(array=sky_map)
        # Apply Poisson noise to the sky map
        # # (NOTE): only for photometric chips if it utilizes the photon shooting to draw stamps
        # if self.survey_type == "photometric":
        #     sky_map.addNoise(poisson_noise)
    elif img.array.shape != sky_map.shape:
        raise ValueError("The shape img and sky_map must be equal.")
    elif tel is not None: # If sky_map is given in flux
        sky_map = sky_map * tel.pupil_area * exptime
    img += sky_map
    return img, sky_map

def get_flat(img, seed):
    flat_img = effects.MakeFlatSmooth(
                GSBounds=img.bounds, 
                seed=seed)
    flat_normal = flat_img / np.mean(flat_img.array)
    return flat_img, flat_normal

def add_cosmic_rays(img, chip, exptime=150, seed=0):
    cr_map, cr_event_num = effects.produceCR_Map(
        xLen=chip.npix_x, yLen=chip.npix_y, 
        exTime=exptime+0.5*chip.readout_time, 
        cr_pixelRatio=0.003*(exptime+0.5*chip.readout_time)/600.,
        gain=chip.gain, 
        attachedSizes=chip.attachedSizes,
        seed=seed)   # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
    img += cr_map
    cr_map[cr_map > 65535] = 65535
    cr_map[cr_map < 0] = 0
    crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
    del cr_map
    return img, crmap_gsimg, cr_event_num

def add_PRNU(img, chip, seed=0):
    prnu_img = effects.PRNU_Img(
        xsize=chip.npix_x, 
        ysize=chip.npix_y, 
        sigma=0.01, 
        seed=seed)
    img *= prnu_img
    return img, prnu_img

def get_poisson(seed=0, sky_level=0.):
    rng_poisson = galsim.BaseDeviate(seed)
    poisson_noise = galsim.PoissonNoise(rng_poisson, sky_level=sky_level)
    return rng_poisson, poisson_noise

Wei Chengliang's avatar
Wei Chengliang committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def get_base_img(img, chip, read_noise, readout_time, dark_noise, exptime=150., InputDark=None):
    if InputDark == None:
        # base_level = read_noise**2 + dark_noise*(exptime+0.5*readout_time)
        ## base_level = dark_noise*(exptime+0.5*readout_time)
        base_level = dark_noise*(exptime)
        base_img1 = base_level * np.ones_like(img.array)
    else:
        base_img1 = np.zeros_like(img.array)

    ny = int(chip.npix_y/2)
    nx = chip.npix_x
    arr = np.arange(ny).reshape(ny, 1)
    arr = np.broadcast_to(arr, (ny, nx))
    base_img2 = np.zeros_like(img.array)
    base_img2[:ny, :] = arr
    base_img2[ny:, :] = arr[::-1,:]
    base_img2[:,:]    = base_img2[:,:]*(readout_time/ny)*dark_noise
    return base_img1+base_img2

def add_poisson(img, chip, exptime=150., seed=0, sky_level=0., poisson_noise=None, dark_noise=None, InputDark=None):
194
195
196
197
198
    if poisson_noise is None:
        _, poisson_noise = get_poisson(seed=seed, sky_level=sky_level)
    read_noise = chip.read_noise
    if dark_noise is None:
        dark_noise = chip.dark_noise
Wei Chengliang's avatar
Wei Chengliang committed
199
    base_img = get_base_img(img=img, chip=chip, read_noise=read_noise, readout_time=chip.readout_time, dark_noise=dark_noise, exptime=exptime, InputDark=InputDark)
200
201
    img += base_img
    img.addNoise(poisson_noise)
202
    # img -= read_noise**2
Wei Chengliang's avatar
Wei Chengliang committed
203
204
205
206
207

    if InputDark != None:
        hdu = fits.open(InputDark)  ##"Instrument/data/dark/dark_1000s_example_0.fits"
        img += hdu[0].data/hdu[0].header['exptime']*exptime
        hdu.close()
208
209
210
211
212
    return img, base_img

def add_brighter_fatter(img):
    #Inital dynamic lib
    try:
Wei Chengliang's avatar
Wei Chengliang committed
213
        with pkg_resources.files('ObservationSim.Instrument.Chip.libBF').joinpath("libmoduleBF.so") as lib_path:
214
215
            lib_bf = ctypes.CDLL(lib_path)
    except AttributeError:
Wei Chengliang's avatar
Wei Chengliang committed
216
        with pkg_resources.path('ObservationSim.Instrument.Chip.libBF', "libmoduleBF.so") as lib_path:
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
            lib_bf = ctypes.CDLL(lib_path)
    lib_bf.addEffects.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_float), ctypes.POINTER(ctypes.c_float), ctypes.c_int]
    
    # Set bit flag
    bit_flag = 1
    bit_flag = bit_flag | (1 << 2)

    nx, ny = img.array.shape
    nn = nx * ny
    arr_ima= (ctypes.c_float*nn)()
    arr_imc= (ctypes.c_float*nn)()

    arr_ima[:]= img.array.reshape(nn)
    arr_imc[:]= np.zeros(nn)

    lib_bf.addEffects(nx, ny, arr_ima, arr_imc, bit_flag)
233
    img.array[:, :] = np.reshape(arr_imc, [nx, ny])
234
    del arr_ima, arr_imc
235
    return img
Wei Chengliang's avatar
Wei Chengliang committed
236
"""
237
238
239
240
241
242
243
244
245
def add_inputdark(img, chip, exptime):
    fname = "/share/home/weichengliang/CSST_git/test_new_sim/csst-simulation/ObservationSim/Instrument/data/dark/dark_1000s_example_0.fits"
    hdu = fits.open(fname)
    #ny, nx = img.array.shape
    #inputdark = np.zeros([ny, nx])
    img.array[:, :] += hdu[0].data/hdu[0].header['exptime']*exptime
    hdu.close()
    del inputdark
    return img
Wei Chengliang's avatar
Wei Chengliang committed
246
"""
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def AddPreScan(GSImage, pre1=27, pre2=4, over1=71, over2=80, nsecy = 2, nsecx=8):
    img= GSImage.array
    ny, nx = img.shape
    dx = int(nx/nsecx)
    dy = int(ny/nsecy)

    imgt=np.zeros([int(nsecy*nsecx), int(ny/nsecy+pre2+over2), int(nx/nsecx+pre1+over1)])
    for iy in range(nsecy):
        for ix in range(nsecx):
            if iy % 2 == 0:
                tx = ix
            else:
                tx = (nsecx-1)-ix
            ty = iy 
            chunkidx = int(tx+ty*nsecx) #chunk1-[1,2,3,4], chunk2-[5,6,7,8], chunk3-[9,10,11,12], chunk4-[13,14,15,16]

            imgtemp = np.zeros([int(ny/nsecy+pre2+over2), int(nx/nsecx+pre1+over1)])
            if int(chunkidx/4) == 0:
Wei Chengliang's avatar
Wei Chengliang committed
265
                imgtemp[pre2:pre2+dy, pre1:pre1+dx] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
266
267
                imgt[chunkidx, :, :] = imgtemp
            if int(chunkidx/4) == 1:
Wei Chengliang's avatar
Wei Chengliang committed
268
                imgtemp[pre2:pre2+dy, over1:over1+dx] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
269
270
                imgt[chunkidx, :, :] = imgtemp #[:, ::-1]
            if int(chunkidx/4) == 2:
Wei Chengliang's avatar
Wei Chengliang committed
271
                imgtemp[over2:over2+dy, over1:over1+dx] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
272
273
                imgt[chunkidx, :, :] = imgtemp #[::-1, ::-1]
            if int(chunkidx/4) == 3:
Wei Chengliang's avatar
Wei Chengliang committed
274
                imgtemp[over2:over2+dy, pre1:pre1+dx] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
275
276
                imgt[chunkidx, :, :] = imgtemp #[::-1, :]

Wei Chengliang's avatar
Wei Chengliang committed
277
278
    imgtx1 = np.hstack(imgt[:nsecx:,       :, :])  #hstack chunk(1,2)-[1,2,3,4,5,6,7,8]
    imgtx2 = np.hstack(imgt[:(nsecx-1):-1, :, :])  #hstack chunk(4,3)-[16,15,14,13,12,11,,10,9]
279
280

    newimg = galsim.Image(int(nx+(pre1+over1)*nsecx), int(ny+(pre2+over2)*nsecy), init_value=0)
Wei Chengliang's avatar
Wei Chengliang committed
281
    newimg.array[:, :] = np.concatenate([imgtx1, imgtx2]) #vstack chunk(1,2) & chunk(4,3)
282
283
284
285

    newimg.wcs = GSImage.wcs
    return newimg

Wei Chengliang's avatar
Wei Chengliang committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def AddPreScanFO(GSImage, pre1=27, pre2=4, over1=71, over2=80, nsecy = 1, nsecx=16):
    img= GSImage.array
    ny, nx = img.shape
    dx = int(nx/nsecx)
    dy = int(ny/nsecy)

    newimg = galsim.Image(int(nx+(pre1+over1)*nsecx), int(ny+(pre2+over2)*nsecy), init_value=0)
    for ix in range(nsecx):
        newimg.array[pre2:pre2+dy, pre1+ix*(dx+pre1+over1):pre1+dx+ix*(dx+pre1+over1)] = img[0:dy, 0+ix*dx:dx+ix*dx]

    newimg.wcs = GSImage.wcs
    return newimg


300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
def formatOutput(GSImage, nsecy = 2, nsecx=8):
    img = GSImage.array
    ny, nx = img.shape
    dx = int(nx/nsecx)
    dy = int(ny/nsecy)
    
    imgt = np.zeros([int(nsecx*nsecy), dy, dx])
    for iy in range(nsecy):
        for ix in range(nsecx):
            if iy % 2 == 0:
                tx = ix
            else:
                tx = (nsecx-1)-ix
            ty = iy
            chunkidx = int(tx+ty*nsecx)
            if int(chunkidx/4) == 0:
                imgt[chunkidx, :, :] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
            if int(chunkidx/4) == 1:
                imgt[chunkidx, :, :] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
            if int(chunkidx/4) == 2:
                imgt[chunkidx, :, :] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
            if int(chunkidx/4) == 3:
                imgt[chunkidx, :, :] = img[iy*dy:(iy+1)*dy, ix*dx:(ix+1)*dx]
    
    imgttx0 = np.hstack(imgt[ 0:4:,    :,    :])
    imgttx1 = np.hstack(imgt[ 4:8:,    :, ::-1])
    imgttx2 = np.hstack(imgt[8:12:, ::-1, ::-1])
    imgttx3 = np.hstack(imgt[12:16:,::-1,    :])
    
    newimg = galsim.Image(int(dx*nsecx*nsecy), dy, init_value=0)
    newimg.array[:, :] = np.hstack([imgttx0, imgttx1, imgttx2, imgttx3])
    return newimg

Wei Chengliang's avatar
Wei Chengliang committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def formatRevert(GSImage, nsecy = 1, nsecx=16):
    img = GSImage.array
    ny, nx = img.shape
    dx = int(nx/nsecx)
    dy = int(ny/nsecy)

    newimg = galsim.Image(int(dx*8), int(dy*2), init_value=0)

    for ix in range(0,4):
        tx = ix
        newimg.array[0:dy, 0+tx*dx:dx+tx*dx] = img[:, 0+ix*dx:dx+ix*dx]
    for ix in range(4,8):
        tx = ix
        newimg.array[0:dy, 0+tx*dx:dx+tx*dx] = img[:, 0+ix*dx:dx+ix*dx][:, ::-1]
    for ix in range(8,12):
        tx = 7-(ix-8)
        newimg.array[0+dy:dy+dy, 0+tx*dx:dx+tx*dx] = img[:, 0+ix*dx:dx+ix*dx][::-1, ::-1]
    for ix in range(12,16):
        tx = 7-(ix-8)
        newimg.array[0+dy:dy+dy, 0+tx*dx:dx+tx*dx] = img[:, 0+ix*dx:dx+ix*dx][::-1, :]

    return newimg